液压系统计算
- 格式:xls
- 大小:165.00 KB
- 文档页数:7
溢流阀的保养及故障排除减压阀的保养及故障排除流量控制阀的保养及故障排除方向控制阀的保养及故障排除的油封漏油B 机械操作的阀芯不能动作1、排油口有背压2、压下阀芯的凸块角度过大3、压力口及排油口的配管错误同上凸块的角度应在30°以上。
修正配管。
C 电磁阀的线圈烧坏1、线圈绝缘不良2、磁力线圈铁芯卡住3、电压过高或过低4、转换的压力在规定以上5、转换的流量在规定以上6、回油接口有背压更换电磁线圈。
更换电磁圈铁芯。
检查电压适切调整。
降下压力,检查压力计。
更换流量大小的控制阀低压用为1.0kgf/cm²,高压用为kgf/cm²回油口直接接回油箱,尤其是泄油(使用外部泄油)D 液控阀不会作动1、液控压力不足2、阀芯胶着,分解清理之,洗净3、灰尘进入,分解清理之,洗净液控压力为3.5kgf/cm²以上,在全开或中立回油阀须加装止回阀使形成液控压力。
分解清理之,洗净。
电磁阀的保养及故障排除故障原因处置A 动作不良1、因弹簧不良致滑轴无法恢复至原位置2、阀芯的动作不良及动作迟缓3、螺栓上紧过度或因温度上升至本体变形4、电气系统不良更换弹簧。
1、洗净控制阀内部除去油中的混入物。
2、检查过滤器,必要时洗涤过滤器或更换液压油。
3、检查滑轴的磨耗情形,必要时须更换。
松开螺栓上紧程度(对角交互上紧) 检查插入端子部的接触状态,确认电磁线圈的动作是否正常,如果线圈断线或烧损时须更换。
B 磁力线圈噪音及烧损1、负荷电压错误2、灰尘等不纯物质进入3、电磁线圈破损,烧损4、阀芯的异常磨耗检查电压,使用适当的电磁线圈。
除去不纯物。
更换更换C 内部漏油大外部漏油1、封环损伤2、螺栓松更换再上紧液压机器其他故障及排除共振、振动及噪音故障原因处置A 弹簧与弹簧共振二组以上控制阀的弹簧的共振(如溢流阀及溢流阀、溢流阀及顺序阀、溢流阀及止回阀)1、将弹簧的设定压力错开,10kgf/cm²或10%以上。
液压系统设计计算举例某厂汽缸加工自动线上要求设计一台卧式单面多轴钻孔组合机床,机床有主轴16根,钻14个φ13.9mm 的孔,2个φ8.5mm 的孔,要求的工作循环是:快速接近工件,然后以工 作速度钻孔,加工完毕后快速退回原始位置,最后自动停止;工件材料:铸铁,硬度HB 为240;假设运动部件重G =9800N ;快进快退速度v1=0.1m/s ;动力滑台采用平导轨,静、动摩擦因数μs =0.2,μd =0.1;往复运动的加速、减速时间为0.2s ;快进行程L1=100mm ;工进行程L2=50mm 。
试设计计算其液压系统。
一、作F —t 与v —t 图1.计算切削阻力钻铸铁孔时,其轴向切削阻力可用以下公式计算:F c =25.5DS 0.8硬度0.6(N)式中:D 为钻头直径(mm);S 为每转进给量(mm/r)。
选择切削用量:钻φ13.9mm 孔时,主轴转速n1=360r/min ,每转进给量S1=0.147mm/r ;钻8.5mm 孔时,主轴转速n2=550r/min ,每转进给量S2=0.096mm/r 。
则F c =14×25.5D 1S 0.81硬度0.6+2×25.5D 2S 0.82硬度0.6=14×25.5×13.9×0.1470.8×2400.6+2×25.5×8.5×0.0960.8×2400.6=30500(N) 2.计算摩擦阻力静摩擦阻力:Fs=f s G=0.2×9800=1960N 动摩擦阻力:F d =f d G=0.1×9800=980N 3.计算惯性阻力4.计算工进速度工进速度可按加工φ13.9的切削用量计算,即:v 2=n 1S 1=360/60×0.147=0.88mm/s=0.88×10-3m/s 5.根据以上分析计算各工况负载如表所示。
液压系统发热量的计算
液压系统的发热量计算需要考虑以下几个因素:
1. 液压系统的工作压力:液压系统工作时所承受的压力越高,发热量也越大。
2. 液压系统的流量:液压系统的流量越大,所需要的泵的功率也越大,从而产生更多的发热量。
3. 液体的黏度:黏度越大的液体,在通过管道流动时,需要克服更大的摩擦,从而产生更多的热量。
4. 系统中的阀门:阀门的流阻会增加系统的压降,从而增加系统的发热量。
发热量的计算可以使用下面的公式:
Q = V × rho × Cp × deltaT
其中,Q表示热量,单位为J(焦耳);
V表示液体的体积流量,单位为m³/s;
rho表示液体的密度,单位为kg/m³;
Cp表示液体的定压比热容,单位为J/(kg·K);
deltaT表示液体的温度差,单位为K。
通过对几个因素的把握,我们可以计算出液压系统的发热量,并进行相应的优化。
液压计算公式单位换算方法液压系统是一种利用液体传递能量的技术,广泛应用于各种工业和机械设备中。
在液压系统中,液体的压力是一个重要的参数,需要进行精确的计算和控制。
在进行液压计算时,常常需要进行单位换算,以确保计算结果的准确性。
本文将介绍液压计算公式中常用的单位换算方法。
一、压力单位换算。
在液压系统中,常用的压力单位有帕斯卡(Pa)、兆帕(MPa)、巴(bar)、千克力/平方厘米(kgf/cm²)等。
进行不同单位之间的换算时,可以使用以下公式:1兆帕(MPa)= 1000千帕(kPa)= 1000000帕斯卡(Pa)。
1兆帕(MPa)= 10巴(bar)。
1巴(bar)= 100千帕(kPa)= 100000帕斯卡(Pa)。
1巴(bar)= 0.1兆帕(MPa)。
例如,如果需要将5兆帕(MPa)转换为巴(bar),可以使用以下公式进行计算:5 MPa = 5 10 bar = 50 bar。
二、流量单位换算。
在液压系统中,流量是液体通过管道或阀门的速度,常用的流量单位有升/分钟(l/min)、立方米/小时(m³/h)、加仑/分钟(gpm)等。
进行不同单位之间的换算时,可以使用以下公式:1立方米/小时(m³/h)= 1000升/分钟(l/min)。
1升/分钟(l/min)= 0.06立方米/小时(m³/h)。
1加仑/分钟(gpm)= 3.785升/分钟(l/min)。
例如,如果需要将200升/分钟(l/min)转换为立方米/小时(m³/h),可以使用以下公式进行计算:200 l/min = 200 0.06 m³/h = 12 m³/h。
三、功率单位换算。
在液压系统中,功率是指单位时间内所做的功,常用的功率单位有千瓦(kW)、马力(hp)等。
进行不同单位之间的换算时,可以使用以下公式:1千瓦(kW)= 1.36马力(hp)。
1马力(hp)= 0.74千瓦(kW)。
液压系统设计计算有的液压系统简单,有的液压系统复杂。
这是由负载的工艺要求决定的。
我们在这里介绍的液压系统是简单的开关型液压系统,也即普通液压系统,不是伺服或者电液比例液压系统。
关于伺服或者电液比例液压系统,我们以后再研究。
我公司原有一台工程油缸试验台,采用的是高低压泵合流。
额定流量为100升,系统额定最高压力为31.5MPa。
为了突出重点,便于叙述,适当做了一些简化。
一液压基本回路一个实用的液压系统原理图都是由液压基本回路组成的。
液压基本回路可以在机械设计手册,或者其他液压设计资料中查到。
1 液压基本回路的分类设计资料中介绍的液压基本回路分类很详细。
但总括起来无非是,泵-电机组,压力控制回路,流量控制回路,方向控制回路和执行机构。
参看图1油缸试验台液压原理图。
在图1中,电机M1 Y112M-4和斜盘柱塞泵10YCY14-1B,电机Y160M-4和叶片泵YB1-80,组成泵-电机组,为系统提供动力;先导卸荷阀③,安全溢流阀④,电磁溢流阀⑤,组成压力控制回路;电液换向阀⑥和先导式液控单向阀⑦,组成方向控制回路。
一般说来,流量控制往往会伴随着压力的损失。
例如,在薄壁节流小孔中,流量d Q C A = (1) 此公式的使用条件为0.5l d≤。
式中Q —经过薄壁小孔的流量,3/m s ;d C —薄壁小孔流量系数,对于紊流,0.600.61d C = ; 0A —孔口面积,2m ; ρ—流体的密度,3/kg m ; p ∆—压力差,12p p p ∆=−,Pa ;d —小孔的直径,m ; l —小孔的长度,m 。
这种压力能损失往往转化为热能,使液压系统升温。
在理论上,变量泵不会因为流量或压力的变量产生能量损失。
2 液压基本回路的联结液压基本回路,特别是液压元件,在液压原理图中的联结,要么是并联,要么是串联。
二 液压系统原理图1 液压系统原理图应该包括的的基本内容一个符合要求的液压原理图除了表示系统外,还应该包括两个基本内容:液压元件明细表和电磁铁动作顺序表。
液压油量计算液压油量计算是液压系统设计和维护中非常重要的一项工作。
通过合理计算液压油量,可以确保液压系统的正常运行、延长液压元件的使用寿命,并且降低设备的能耗。
液压油量计算的基本原理是根据液压系统中液压缸或液压马达所需的体积和行程,以及系统中其他液压元件的需要,来确定所需的液压油量。
下面介绍液压油量计算的一些相关参考内容:1. 液压缸液压油量计算:液压油量 = 工作体积 ×数量工作体积 = 圆柱体积 + 活塞杆体积圆柱体积= π × (缸内径/2)² ×缸行程活塞杆体积= π × (活塞杆直径/2)² ×缸行程数量为液压系统中液压缸的个数。
2. 液压马达液压油量计算:液压油量 = 工作体积 ×转速工作体积 = 位移体积 ×密闭体积位移体积可通过设计参数或从厂家提供的参数表中获得。
转速为液压马达的转速。
3. 其他液压元件的液压油量计算:其他液压元件如液压泵、液压阀等的液压油量计算可通过设计参数或从厂家提供的参数表中获得。
4. 液压系统总油量计算:液压系统总油量 = 所有液压元件需求的液压油量之和通过以上计算方法得到各个液压元件需要的液压油量,将其累加得到液压系统的总油量。
在实际液压系统设计中,还需要考虑一些额外因素,例如润滑油的损耗和密封元件容纳的余量等。
这些因素可以根据具体的液压系统要求进行调整和计算。
总之,液压油量计算需要综合考虑液压系统中各个液压元件的需求,通过合理计算液压油量,可以确保液压系统的正常运行、延长液压元件的使用寿命,并且降低设备的能耗。
以上所提到的液压油量计算方法可以作为液压系统设计和维护的参考内容。
液压系统设计计算举例液压系统设计计算举例XS-ZY-500注塑机液压系统设计计算⼆、XS-ZY-500注塑机成型设计技术参数公称注射量(L) 0.5螺杆直径(mm) 63螺杆⾏程(mm) 200最⼤注射压⼒(MPa) 110注射容量(理论值)(cm) 665预塑电机(KW) 7.5塑化容量(N/h) 450螺杆转速(r/min) 20—80 料筒加热功率(KW) 14注射座⾏程(mm) 280合模⼒(KN) 3500启模⼒(KN) 135顶出⼒(KN) 30最⼤注射⾯积(cm) 1000模板最⼤开距(mm) 950拉杆间距(mm) 540x440 模具最⼤厚度(mm) 450模具最⼩厚度(mm) 300注射总⼒(KN) 345注射座最⼤推⼒(KN) 73螺杆驱动功率PM(KW) 5KW各油缸运动数值如下:快速合模速度(m/s) 0.12慢速合模速度(m/s) 0.024 快速启模速度(m/s) 0.13慢速启模速度(m/s) 0.028 快速注射速度(m/s) 0.07注射座前移速度(m/s) 0.06注射座后退速度(m/s) 0.08顶出速度(m/s) 0.04三、⼯况分析xxxx塑料注射成型机械液压系统的特点是在整个动作循环过程中,系统负载和速度变化均较⼤,在进⾏⼯况分析时必须加以考虑:(⼀)合模油缸负载xxxx闭模动作的⼯况特点是:模具闭合过程中的负载是轻载,速度有慢—快—慢的变化;模具闭合后的负载为重载,速度为零。
1. 根据合模⼒确定合模缸推⼒:根据连杆受⼒分析可得出合模油缸推⼒为:式中:N1z——合模油缸为保证模具锁紧所需的推⼒,N.ssssss N合————模具锁紧所需的合模⼒,N.ssssss l1/l——有关长度⽐,⼀般取其值为0.7.为保证模具锁紧⼒(3500KN)所需的油缸推⼒为: N1z=223KN2. 空⾏程时油缸推⼒:aaaa空⾏程时油缸推⼒P1q只须克服摩擦⼒的要求,根据设计经验得:N1q=0.14N1z z, 故s N1q=31.22KN3. 启模时油缸的推⼒:ssss启模时油缸的推⼒需满⾜启模⼒和克服油缸摩擦⼒的要求。