基于MATLAB的整流电路仿真分析
- 格式:doc
- 大小:2.20 MB
- 文档页数:25
三相桥式全控整流电路matlab仿真总结三相桥式全控整流电路是一种常用于工业领域的电力电子装置,它可实现对高压交流电进行整流,将其转化为直流电供给负载。
在本文中,我们将使用MATLAB 软件进行仿真分析,并一步一步解答相关问题。
【第一步:建立电路模型】首先,我们需要建立三相桥式全控整流电路的模型。
在MATLAB中,我们可以使用Simulink来进行电路建模。
打开Simulink界面,选择建立一个新的模型文件。
然后,选择信号源模块,设置输入电压的参数,例如频率、幅值等。
接下来,选择桥式全控整流电路模块,设置电路的参数,如电阻、电感、电容等。
最后,建立一个输出信号的示波器,以便观察电路中各节点的电压和电流波形。
【第二步:参数设置】在进行仿真前,我们需要设置电路的参数。
在三相桥式全控整流电路中,常见的参数有:输入电压的频率和幅值、电压和电流传感器的增益、电阻和电容的数值等。
根据实际需求,选择合适的数值进行设置。
【第三步:电路仿真】设置好电路的参数后,我们可以开始进行仿真分析了。
在Simulink界面,点击“运行”按钮,MATLAB将根据设置的参数自动进行仿真计算,得到电路中各节点的电压和电流波形。
同时,仿真过程中,Simulink还会显示实时的仿真结果,以便我们观察电路的动态特性。
【第四步:结果分析】得到仿真结果后,我们可以进行结果分析。
首先,观察电路中各节点的电压波形,了解电路的工作状态和稳定性。
然后,计算电路中的电流波形,分析电路的功率损耗和能效等指标。
最后,将仿真结果与实际应用需求进行对比,评估电路的性能和可靠性。
【第五步:参数优化】在分析结果的基础上,我们可以对电路的参数进行优化。
通过调节电路的电阻、电容等参数,以达到更好的性能指标。
在MATLAB中,我们可以使用优化算法进行参数优化,例如粒子群算法、遗传算法等。
经过优化后,再次进行仿真验证,评估优化效果。
综上所述,通过MATLAB软件进行仿真分析,可以快速、准确地评估三相桥式全控整流电路的性能指标。
基于matlab的单相桥式可控整流电路环节仿真设计目的和意义目录1. 引言1.1 背景和意义1.2 结构概述1.3 目的2. 单相桥式可控整流电路的基本原理2.1 桥式整流电路概述2.2 可控整流电路原理介绍2.3 Matlab在电路仿真中的应用3. 环节仿真设计步骤与方法3.1 仿真设计的准备工作3.2 桥式可控整流电路参数设置与模型建立3.3 信号源设计与输入波形调整4. 结果分析与讨论4.1 输出电压与负载特性分析4.2 输入功率和效率计算及分析4.3 控制方式对输出特性的影响分析5. 结论与展望5.1 结论总结和发现归纳5.2 设计中存在问题及改进方向提议1. 引言1.1 背景和意义随着电力系统的快速发展,可控整流技术作为一种重要的电能转换技术在电气领域中得到广泛应用。
而单相桥式可控整流电路作为可控整流技术的典型代表之一,具有显著的优势和重要的应用价值。
单相桥式可控整流电路被广泛应用于直流电源、交直流变频器、焊接设备以及伺服驱动等领域。
其主要功能是将交流电转换为带有直流成分的输出电压,并通过调节触发角来实现对输出电压幅值和形状的精确控制。
这种控制方式可以根据需要灵活地调整输出信号,达到各种特定使用要求。
因此,对于单相桥式可控整流电路进行准确的仿真设计和性能分析,是深入理解其工作原理和提高其运行效率的重要手段。
1.2 结构概述单相桥式可控整流电路由四个晶闸管连接而成,组成一个反并联结构。
其中两个晶闸管连接在正半周机架上,另外两个晶闸管连接在负半周机架上。
通过适当地触发晶闸管的导通,可以实现对输出电压大小和形状的精确控制。
1.3 目的本文旨在利用Matlab软件对单相桥式可控整流电路进行环节仿真设计,并验证其性能。
具体目的包括以下几点: 1. 理解单相桥式可控整流电路的基本原理和工作方式; 2. 建立合适的仿真模型,模拟出整流电路的运行过程; 3. 通过仿真结果分析输出电压与负载特性、输入功率和效率等参数变化情况; 4. 分析不同控制方式对输出特性的影响,并提出改进方案。
基于Matlab/Simulink的三相桥式全控整流电路的建模与仿真摘要本文在对三相桥式全控整流电路理论分析的基础上,建立了基于Simulink的三相桥式全控整流电路的仿真模型,并对其带电阻负载时的工作情况进行了仿真分析与研究。
通过仿真分析也验证了本文所建模型的正确性。
关键词Simulink建模仿真三相桥式全控整流对于三相对称电源系统而言,单相可控整流电路为不对称负载,可影响电源三相负载的平衡性和系统的对称性。
故在负载容量较大的场合,通常采用三相或多相整流电路。
三相或多相电源可控整流电路是三相电源系统的对称负载,输出整流电压的脉动小、控制响应快,因此被广泛应用于众多工业场合。
本文在Simulink仿真环境下,运用PowerSystemBlockset的各种元件模型建立三相桥式全控整流电路的仿真模型,并对其进行仿真研究。
一、三相桥式全控整流电路的工作原理三相桥式全控整流原理电路结构如图1所示。
三相桥式全控整流电路是应用最广泛的整流电路,完整的三相桥式整流电路由整流变压器、6个桥式连接的晶闸管、负载、触发器和同步环节组成(见图1-1)。
6个晶闸管以次相隔60度触发,将电源交流电整流为直流电。
三相桥式整流电路必须采用双脉冲触发或宽脉冲触发方式,以保证在每一瞬时都有两个晶闸管同时导通(上桥臂和下桥臂各一个)。
整流变压器采用三角形/星形联结是为了减少3的整倍次谐波电流对电源的影响。
元件的有序控制,即共阴极组中与a、b、c三相电源相接的三个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的三个晶闸管分别为VT、VT。
它们可构成电源系统对负载供电的6条整流回路,各整流回路的交流电源电压为两元件所在的相间的线电压。
图1-1 三相桥式全控整流原理电路二、基于Simulink三相桥式全控整流电路的建模三相桥式全控整流电路在Simulink环境下,运用PowerSystemBlockset的各种元件模型建立了三相桥式全控整流电路的仿真模型,仿真结构如图2-1所示:图2-1 三相桥式全控整流电路的仿真模型在模型的整流变压器和整流桥之间接入一个三相电压-电流测量单元V-I是为了观测方便。
电气信息工程学院论文10 — 11 学年第一学期课题名称基于Matlab/Simulink的单相桥式全控整流电路仿真姓名学号班级成绩基于Matlab/Simulink的单相桥式全控整流电路仿真(电阻负载)摘要:整流电路的类型很多,按整流电压的波形来分,有半波整流,全波整流;按整流输出电压的脉冲数来分,有3脉波﹑6脉波及多脉波整流;按器件的类型来分,有全控电流﹑半控电路﹑不可控电路;按交流电源的相数来分,有单相﹑三相和多相整流电路;按控制原理分为相控整流和高频整流等。
SIMULINK是MATLAB仿真工具之一,其主要功能是实现动态系统建模﹑仿真与分析。
关键字:SIMULINK;单相桥式全波可控整流Abstract:Many types of rectifier,according to the rectification of the voltage wavefrom to the sub,a half-wave rectifier,full-wave rectifier;according to the rectification of the output voltage pulse to a few hours, 3 pulse, and spread to more than 6clock pulse rectifier; according to the device The sub-type, control the whole circuit, control circuit and a half , uncontrollable circuit; according to the phase of the AC power to a few points, there are single-phase, multi-phase and three-phase rectifier; controlled by the principle rectifier and phased into high Rectifier frequency,and so on.MATLAB simulation tool developed by one of its main functions is achieve dynamic systems modeling, simulation and analysis.Keyword:SIMULINK; single-phase full-wave controlled rectifier一、单相桥式全控整流电路图如上图,晶闸管Vt1和Vt4 组成一对桥臂,晶闸管Vt2和Vt3组成另一对桥臂。
用simulink对三相桥式全控整流电路进行仿真研究姓名:刘佰兰学校:中山大学学号:09382014 专业:自动化摘要:三相桥式全控整流电路在现代电力电子技术中具有很重要的作用和很广泛的应用。
这里结合全控整流电路理论基础,采用Matlab的仿真工具Simulink对三相桥式全控整流电路的进行仿真,对输出参数进行仿真及验证,进一步了解三相桥式全控整流电路的工作原理。
关键词:simulink 三相桥式全控整流仿真一、研究背景随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路。
三相全控整流电路的整流负载容量较大,输出直流电压脉动较小,是目前应用最为广泛的整流电路。
它是由半波整流电路发展而来的。
由一组共阴极的三相半波可控整流电路和一组共阳极接法的晶闸管串联而成。
六个晶闸管分别由按一定规律的脉冲触发导通,来实现对三相交流电的整流,当改变晶闸管的触发角时,相应的输出电压平均值也会改变,从而得到不同的输出。
由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。
Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
二、三相桥式全控整流电路工作原理1.三相桥式全控整流电路特性分析图1是电路接线图。
三相桥式全控整流电路图是应用最为广泛的整流电路,其电路图如下:图1在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。
密级:公开科学技术学院NANCHANG UNIVERSITY COLLEGE OFSCIENCE AND TECHNOLOGY学士学位论文THESIS OF BACHELOR(2008—2012年)题目基于MATLAB的整流电路仿真分析学科部:专业:班级:学号:学生姓名:指导教师:起讫日期:目录摘要 (Ⅰ)Abstract (Ⅱ)第一章三相桥式全控整流电路的仿真 01.1 电路的构成及工作特点 01.2 建模及仿真 (1)1.3参数设置及仿真 (2)1.4 故障分析 (3)1.5 小结 (4)第二章基于MATLAB的单相桥式整流电路仿真分析 (5)2.1单相桥式半控整流电路 (5)2.2 单相桥式半控整流电路带纯电阻性负载情况 (7)2.3 单相桥式全控整流电路 (12)2.4 单相桥式全控整流电路带纯电阻性负载情况 (14)2.5 单相桥式全控整流电路带电阻电感性负载情况 (16)结论 (18)参考文献: (19)致谢 (20)基于MATLAB的整流电路仿真分析专业:学号:姓名:指导老师:摘要:随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
常用的整流电路有三相桥式全控整流电路和单相桥式可控电路。
由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。
Matlab提供的可视化仿真工具Simulink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析。
对单相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究,既进一步加深了三相桥式全控整流电路和单相桥式可控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
关键词:三相桥式全控整流电路,单相桥式半控整流,单相桥式全控整流,建模,仿真MATLAB-based simulation analysis of the rectifier circuitAbstract:With the social production and scientific and technological development, the rectifier circuit in the automatic control system, measurement system and generator excitation system, and other fields increasingly widespread. Commonly used three-phase bridge rectifier circuit with full-controlled single-phase bridge rectifier circuit and control circuit. As the rectifier circuit involves the exchange of signals, DC signals and trigger signals, including thyristors, capacitors, inductors, resistors and other components, using conventional circuit analysis method appeared to be quite complicated, high-pressure situations is difficult to experiments carried out smoothly. Matlab provides a visual simulation tool Simtlink circuit simulation model can be directly set up, free to change simulation parameters and immediately available to any of the simulation results, intuitive, eliminating the need for further programming steps. In this paper, Simulink full control of three-phase bridge rectifier circuit model, for different control angle, the bridge under fault conditions were simulated analysis. Controlled single-phase bridge rectifier circuit parameters and the different nature of the work load of the comparative analysis and research, both to further deepen the three-phase full-controlled bridge rectifier circuit and controlled single-phase bridge rectifier circuit theory, while for modern power electronics experiment experimental teaching lay a good foundation.Keywords:Fully-controlled, three-phase, bridge, rectifier, circuit, single-phase, half-controlled rectifier bridge, single-phase full-controlled bridge, rectifier modeling, simulation第一章三相桥式全控整流电路的仿真随着社会生产和科学技术的发展,整流电路在自动控制系统、测量系统和发电机励磁系统等领域的应用日益广泛。
常用的三相整流电路有三相桥式不可控整流电路、三相桥式半控整流电路和三相桥式全控整流电路,由于整流电路涉及到交流信号、直流信号以及触发信号,同时包含晶闸管、电容、电感、电阻等多种元件,采用常规电路分析方法显得相当繁琐,高压情况下实验也难顺利进行。
Matlab提供的可视化仿真工具Simtlink可直接建立电路仿真模型,随意改变仿真参数,并且立即可得到任意的仿真结果,直观性强,进一步省去了编程的步骤。
本文利用Simulink对三相桥式全控整流电路进行建模,对不同控制角、桥故障情况下进行了仿真分析,既进一步加深了三相桥式全控整流电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。
1.1 电路的构成及工作特点三相桥式全控整流电路原理图如图1所示。
三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。
图1 三相桥式全控整流电路原理图其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。
宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。
接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形是6个线电压的包络线。
所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。
同理,三相半波整流电路称为3脉动整流电路。
α>0时,Ud的波形出现缺口,随着α角的增大,缺口增大,输出电压平均值降低。
当α=2π/3时,输出电压为零,所以电阻性负载时,α的移相范围是O~2π/3;当O≤α≤π/3时,电流连续,每个晶闸管导通2π/3;当π/3≤α≤2π/3时,电流断续,个晶闸管导通小于2π/3。
23α=π/3是电阻性负载电流连续和断续的分界点。
1.2 建模及仿真根据三相桥式全控整流电路的原理可以利用Simulink内的模块建立仿真模型如图2所示。
设置三个交流电压源Va,Vb,Vc相位角依次相差120°,得到整流桥的三相电源。
用6个Thyristor构成整流桥,实现交流电压到直流电压的转换。
6个pulse generator产生整流桥的触发脉冲,且从上到下分别给1~6号晶闸管触发脉冲。
图2 三相桥式全控整流电路仿真模型1.3参数设置及仿真三相电源的相位互差120°,交流峰值电压为l00 V,频率为50 Hz。
晶闸管的参数为:Rn=0.001 Ω,Lon=0.000 1 H,Vf=0 V,Rs=50 Ω,Cs=250×10-9。
负载电阻性设R=45 Ω,电感性负载设L=1 H。
脉冲发生器脉冲宽度设置为脉宽的50 %,脉冲高度为5 V,脉冲周期为0.016 7 s,脉冲移相角随着控制角的变化对“相位角延迟”进行设置。
根据三相桥式全控整流电路的原理图,对不同的触发角α会影响输出电压进行仿真,负载为阻感特性。
从以上仿真波形图可知改变不同的控制角,输出电压在发生不同的变化。
(1)当触发角α=0°时的输出电压波形如图3所示。
图3 触发角α=0°时的输出电压波形图(2)当触发角α=60°时的输出电压波形如图4所示。
图4 触发角α=60°时的输出电压波形图(3)当触发角α=90°时的输出电压波形如图5所示。
图5 触发角α=90°时的输出电压波形图1.4 故障分析由于高压强电流的情况,整流电路晶闸管很容易出现故障。
假设以下情况对故障现象进行仿真分析,当α=30°,负载为阻感性时,仿真分析故障产生的波形情况。