导数与函数的极值、最值考点与题型归纳
- 格式:docx
- 大小:83.01 KB
- 文档页数:16
导数与函数的极值、最值考点与题型归纳考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由.[解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2),因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0, 函数f (x )单调递增. 因此函数f (x )有两个极值点.③当a <0时,Δ>0,由g (-1)=1>0, 可得x 1<-1<x 2.当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 所以函数f (x )有一个极值点.综上所述,当a <0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a >89时,函数f (x )有两个极值点.考法(二) 已知函数的极值点的个数求参数[例3] 已知函数g (x )=ln x -mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.[解] 因为g (x )=ln x -mx +mx,所以g ′(x )=1x -m -mx 2=-mx 2-x +m x 2(x >0),令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎨⎧h (0)>0,12m >0,h ⎝⎛⎭⎫12m <0,解得0<m <12.所以m 的取值范围为⎝⎛⎭⎫0,12. 考法(三) 已知函数的极值求参数[例4] (2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. [解] (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞. 考点二 利用导数研究函数的最值[典例精析]已知函数f (x )=ln xx -1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m,2m ]上的最大值.[解] (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln x x 2, 由⎩⎪⎨⎪⎧f ′(x )>0,x >0,得 0<x <e ;由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e.所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e 2时,函数f (x )在区间[m,2m ]上单调递增,所以f (x )max =f (2m )=ln (2m )2m-1;②当m <e <2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e,2m )上单调递减,所以f (x )max =f (e)=ln e e -1=1e-1; ③当m ≥e 时,函数f (x )在区间[m,2m ]上单调递减, 所以f (x )max =f (m )=ln mm-1. 综上所述,当0<m ≤e 2时,f (x )max =ln (2m )2m -1;当e 2<m <e 时,f (x )max =1e -1; 当m ≥e 时,f (x )max =ln mm-1. [题组训练]1.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-3322.已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值. (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值.解:(1)因为f (x )=ln x +ax 2+bx ,所以f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +b ,因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值, 所以f ′(1)=1+2a +b =0,又a =1,所以b =-3,则f ′(x )=2x 2-3x +1x ,令f ′(x )=0,得x 1=12,x 2=1.当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:所以f (x )的单调递增区间为⎝⎛⎭⎫0,12,(1,+∞),单调递减区间为⎝⎛⎭⎫12,1. (2)由(1)知f ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x(x >0),令f ′(x )=0,得x 1=1,x 2=12a, 因为f (x )在x =1处取得极值,所以x 2=12a≠x 1=1.①当a <0,即12a <0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减,所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2. ②当a >0,即x 2=12a>0时,若12a <1,f (x )在⎝⎛⎭⎫0,12a ,[1,e]上单调递增,在⎣⎡⎭⎫12a ,1上单调递减,所以最大值可能在x =12a 或x =e 处取得,而f ⎝⎛⎭⎫12a =ln 12a +a ⎝⎛⎭⎫12a 2-(2a +1)·12a =ln 12a -14a-1<0, 令f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2. 若1<12a <e ,f (x )在区间(0,1),⎣⎡⎦⎤12a ,e 上单调递增,在⎣⎡⎭⎫1,12a 上单调递减, 所以最大值可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 令f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1<x 2=12a <e 矛盾.若x 2=12a ≥e ,f (x )在区间(0,1)上单调递增,在(1,e]上单调递减,所以最大值可能在x =1处取得,而f (1)=ln 1+a -(2a +1)<0,矛盾.综上所述,a =1e -2或a =-2.考点三 利用导数求解函数极值和最值的综合问题[典例精析](2019·贵阳模拟)已知函数f (x )=ln x +12x 2-ax +a (a ∈R).(1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥ e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.[解] (1)∵f ′(x )=1x+x -a (x >0),又f (x )在(0,+∞)上单调递增,∴恒有f ′(x )≥0, 即1x +x -a ≥0恒成立,∴a ≤⎝⎛⎭⎫x +1x min , 而x +1x≥2x ·1x=2,当且仅当x =1时取“=”,∴a ≤2. 即函数f (x )在(0,+∞)上为单调递增函数时,a 的取值范围是(-∞,2]. (2)∵f (x )在x =x 1和x =x 2处取得极值, 且f ′(x )=1x +x -a =x 2-ax +1x (x >0),∴x 1,x 2是方程x 2-ax +1=0的两个实根, 由根与系数的关系得x 1+x 2=a ,x 1x 2=1,∴f (x 2)-f (x 1)=ln x 2x 1+12(x 22-x 21)-a (x 2-x 1)=ln x 2x 1-12(x 22-x 21)=ln x 2x 1-12(x 22-x 21)1x 1x 2=ln x 2x 1-12⎝⎛⎭⎫x 2x 1-x 1x 2, 设t =x 2x 1(t ≥ e),令h (t )=ln t -12⎝⎛⎭⎫t -1t (t ≥ e), 则h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0,∴h (t )在[e ,+∞)上是减函数, ∴h (t )≤h (e)=12⎝⎛⎭⎫1- e +ee ,故f (x 2)-f (x 1) 的最大值为12⎝⎛⎭⎫1- e +ee .[题组训练]已知函数f (x )=ax 2+bx +ce x (a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -c e x.令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f (-3)=9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者. 而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.[课时跟踪检测]A 级1.函数f (x )=x e -x ,x ∈[0,4]的最小值为( ) A .0 B.1e C.4e4 D.2e2 解析:选A f ′(x )=1-xex ,当x ∈[0,1)时,f ′(x )>0,f (x )单调递增, 当x ∈(1,4]时,f ′(x )<0,f (x )单调递减,因为f (0)=0,f (4)=4e 4>0,所以当x =0时,f (x )有最小值,且最小值为0.2.若函数f (x )=a e x -sin x 在x =0处有极值,则a 的值为( ) A .-1 B .0 C .1D .e解析:选C f ′(x )=a e x -cos x ,若函数f (x )=a e x -sin x 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意,故选C.3.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( ) A .15 B .16 C .17D .18解析:选D 因为x =2是函数f (x )=x 3-3ax +2的极小值点,所以f ′(2)=12-3a =0,解得a =4,所以函数f (x )的解析式为f (x )=x 3-12x +2,f ′(x )=3x 2-12,由f ′(x )=0,得x =±2,故函数f (x )在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时,函数f (x )取得极大值f (-2)=18.4.(2019·合肥模拟)已知函数f (x )=x 3+bx 2+cx 的大致图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.163解析:选C 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,则x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两个不同的实数根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83. 5.(2019·泉州质检)已知直线y =a 分别与函数y =e x+1和y = x -1交于A ,B 两点,则A ,B 之间的最短距离是( )A.3-ln 22B.5-ln 22C.3+ln 22D.5+ln 22解析:选D 由y =e x +1得x =ln y -1,由y =x -1得x =y 2+1,所以设h (y )=|AB |=y 2+1-(ln y -1)=y 2-ln y +2,h ′(y )=2y -1y =2⎝⎛⎭⎫y -22⎝⎛⎭⎫y +22y (y >0),当0<y <22时,h ′(y )<0;当y >22时,h ′(y )>0,即函数h (y )在区间⎝⎛⎭⎫0,22上单调递减,在区间⎝⎛⎭⎫22,+∞上单调递增,所以h (y )min =h ⎝⎛⎭⎫22=⎝⎛⎭⎫222-ln 22+2=5+ln 22.6.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:f ′(x )=3x 2-3a 2=3(x +a )(x -a ), 由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数f (x )单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数f (x )单调递增, ∴f (x )的极大值为f (-a ),极小值为f (a ).∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0, 解得a >22. ∴a 的取值范围是⎝⎛⎭⎫22,+∞. 答案:⎝⎛⎭⎫22,+∞7.(2019·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________.解析:由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a ,当0<x <1a 时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝⎛⎭⎫1a =-ln a -1=-1,解得a =1. 答案:18.(2018·内江一模)已知函数f (x )=a sin x +b cos x (a ,b ∈R),曲线y =f (x )在点⎝⎛⎭⎫π3,f ⎝⎛⎭⎫π3处的切线方程为y =x -π3.(1)求a ,b 的值;(2)求函数g (x )=f ⎝⎛⎭⎫x +π3x 在⎝⎛⎦⎤0,π2上的最小值.解:(1)由切线方程知,当x =π3时,y =0,∴f ⎝⎛⎭⎫π3=32a +12b =0. ∵f ′(x )=a cos x -b sin x ,∴由切线方程知,f ′⎝⎛⎭⎫π3=12a -32b =1, ∴a =12,b =-32.(2) 由(1)知,f (x )=12sin x -32cos x =sin ⎝⎛⎭⎫x -π3, ∴函数g (x )=sin x x ⎝⎛⎭⎫0<x ≤π2,g ′(x )=x cos x -sin x x 2.设u (x )=x cos x -sin x ⎝⎛⎭⎫0≤x ≤π2,则u ′(x )=-x sin x <0,故u (x )在⎣⎡⎦⎤0,π2上单调递减.∴u (x )<u (0)=0,∴g (x )在⎝⎛⎦⎤0,π2上单调递减.∴函数g (x )在 ⎝⎛⎦⎤0,π2上的最小值为g ⎝⎛⎭⎫π2=2π. 9.已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2=ax -1x 2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a ,无极大值. (2)不存在,理由如下:由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增. ①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎣⎡⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a =0,即ln a =1,解得a =e ,而1e≤a <1,故不满足条件.③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e =0,即a =-1e ,而0<a <1e,故不满足条件.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.B 级1.(2019·郑州质检)若函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( )A .a =3,b =-3或a =-4,b =11B .a =-4,b =-3或a =-4,b =11C .a =-4,b =11D .以上都不对解析:选C 由题意,f ′(x )=3x 2-2ax -b , 则f ′(1)=0,即2a +b =3.①f (1)=1-a -b +a 2=10,即a 2-a -b =9.②联立①②,解得⎩⎪⎨⎪⎧ a =-4,b =11或⎩⎪⎨⎪⎧a =3,b =-3.经检验⎩⎪⎨⎪⎧a =3,b =-3不符合题意,舍去.故选C.2.(2019·唐山联考)若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(a -1,a +1)内存在极值,则实数a 的取值范围是________.解析:由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=2x -12x =4x 2-12x,令f ′(x )=0,得x =12⎝⎛⎭⎫x =-12舍去, 则由已知得⎩⎨⎧a -1≥0,a -1<12,a +1>12,解得1≤a <32.答案:⎣⎡⎭⎫1,32 3.(2019·德州质检)已知函数f (x )=-13x 3+x 在(a,10-a 2)上有最大值,则实数a 的取值范围是________.解析:由f ′(x )=-x 2+1,知f (x )在(-∞,-1)上单调递减,在[-1,1]上单调递增,在(1,+∞)上单调递减,故函数f (x )在(a,10-a 2)上存在最大值的条件为⎩⎪⎨⎪⎧a <1,10-a 2>1,f (1)≥f (a ),其中f (1)≥f (a ),即为-13+1≥-13a 3+a ,整理得a 3-3a +2≥0,即a 3-1-3a +3≥0, 即(a -1)(a 2+a +1)-3(a -1)≥0,即(a -1)(a 2+a -2)≥0,即(a -1)2(a +2)≥0, 即⎩⎪⎨⎪⎧a <1,10-a 2>1,(a -1)2(a +2)≥0,解得-2≤a <1.答案:[-2,1)4.已知函数f (x )是R 上的可导函数,f (x )的导函数f ′(x )的图象如图,则下列结论正确的是( )A .a ,c 分别是极大值点和极小值点B .b ,c 分别是极大值点和极小值点C .f (x )在区间(a ,c )上是增函数D .f (x )在区间(b ,c )上是减函数解析:选C 由极值点的定义可知,a 是极小值点,无极大值点;由导函数的图象可知,函数f (x )在区间(a ,+∞)上是增函数,故选C.5.如图,在半径为103的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其中A ,B 在直径上,C ,D 在圆周上,将所截得的矩形铁皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁与拼接损耗),记圆柱形罐子的体积为V ,设AD =x ,则V max =________.解析:设圆柱形罐子的底面半径为r , 由题意得AB =2(103)2-x 2=2πr ,所以r =300-x 2π, 所以V =πr 2x =π⎝⎛⎭⎪⎫300-x 2π2x =1π(-x 3+300x )(0<x <103),故V ′=-3π(x 2-100)=-3π(x +10)(x -10)(0<x <103). 令V ′=0,得x =10(负值舍去), 则V ′,V 随x 的变化情况如下表:x (0,10) 10 (10,103)V ′ +0 -V极大值所以当x =10时,V 取得极大值,也是最大值, 所以V max =2 000π.答案:2 000π6.已知函数f (x )=ln(x +1)-ax 2+x(x +1)2,其中a 为常数.(1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝⎛⎭⎫1+1x +1x ln(1+x )的最大值. 解:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3,①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,则f (x )在(-1,2a -3),(0,+∞)上单调递增, 当2a -3<x <0时,f ′(x )<0,则f (x )在(2a -3,0)上单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即a >32时,当-1<x <0或x >2a -3时,f ′(x )>0, 则f (x )在(-1,0),(2a -3,+∞)上单调递增,当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.(2)∵g (x )=⎝⎛⎭⎫x +1x ln(1+x )-x ln x =g ⎝⎛⎭⎫1x , ∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值.令h (x )=g ′(x )=⎝⎛⎭⎫1-1x 2ln(1+x )+⎝⎛⎭⎫x +1x ·11+x -(ln x +1)=⎝⎛⎭⎫1-1x 2ln(1+x )-ln x +1x -21+x, 则h ′(x )=2x 3⎣⎢⎡⎦⎥⎤ln (1+x )-2x 2+x (x +1)2.由(1)可知当a=2时,f(x)在(0,1]上单调递减,∴f(x)<f(0)=0,∴h′(x)<0,从而h(x)在(0,1]上单调递减,∴h(x)≥h(1)=0,∴g(x)在(0,1]上单调递增,∴g(x)≤g(1)=2ln 2,∴g(x)的最大值为2ln 2.。
《导数与函数的极值、最值》知识清单一、导数的概念导数是微积分中的重要概念,它描述了函数在某一点处的变化率。
对于函数 y = f(x),其在点 x = x₀处的导数定义为:f'(x₀) = limₕ→₀ f(x₀+ h) f(x₀) / h导数的几何意义是函数曲线在该点处的切线斜率。
如果导数存在,则函数在该点处可导。
二、函数的极值1、极值的定义函数在某区间内的极大值和极小值统称为极值。
极大值是指在该区间内比其附近的函数值都大的函数值;极小值则是指在该区间内比其附近的函数值都小的函数值。
2、极值点的判别方法(1)导数为零的点:若函数 f(x) 在点 x₀处可导,且 f'(x₀) = 0,则 x₀可能是极值点。
(2)导数不存在的点:函数在某些点处导数不存在,但也可能是极值点。
3、第一导数判别法设函数 f(x) 在点 x₀的某个邻域内可导,且 f'(x₀) = 0。
(1)如果当 x < x₀时,f'(x) > 0;当 x > x₀时,f'(x) < 0,则 f(x) 在 x₀处取得极大值。
(2)如果当 x < x₀时,f'(x) < 0;当 x > x₀时,f'(x) > 0,则 f(x) 在 x₀处取得极小值。
4、第二导数判别法设函数 f(x) 在点 x₀处具有二阶导数,且 f'(x₀) = 0,f''(x₀) ≠ 0。
(1)若 f''(x₀) < 0,则函数 f(x) 在 x₀处取得极大值。
(2)若 f''(x₀) > 0,则函数 f(x) 在 x₀处取得极小值。
三、函数的最值1、最值的定义函数在某个区间内的最大值和最小值分别称为函数在该区间内的最值。
2、求最值的步骤(1)求函数在给定区间内的导数。
(2)找出导数为零的点和导数不存在的点。
(3)计算这些点以及区间端点处的函数值。
(4)比较这些函数值,最大的即为最大值,最小的即为最小值。
导数与函数的极值、最值考纲解读 1.以基本初等函数为背景,求函数的极值或极值点;2.求基本初等函数在闭区间上的最值;3.利用极值、最值、研究不等关系或求参数范围.[基础梳理]1.函数的极值与导数的关系 (1)函数的极小值与极小值点:若函数f (x )在点x =a 处的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫作函数的极小值点,f (a )叫作函数的极小值.(2)函数的极大值与极大值点:若函数f (x )在点x =b 处的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0,而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫作函数的极大值点,f (b )叫作函数的极大值.2.函数的最值与导数的关系 (1)函数f (x )在[a ,b ]上有最值的条件:如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y =f (x )在[a ,b ]上的最大(小)值的步骤: ①求函数y =f (x )在(a ,b )内的极值.②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.[三基自测]1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个答案:A2.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是( )A .-173B .-103C .-4D .-643答案:A3.设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 答案:D4.f (x )=x +cos x ,x ∈⎣⎡⎦⎤0,π2的值域为________. 答案:⎣⎡⎦⎤1,π2 5.(2017·高考全国卷Ⅰ改编)函数y =x 2+1x 的极小值点为__________.答案:x =132[考点例题]考点一 利用导数求函数极值问题|易错突破[例1] (1)设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( ) A .a <-1 B .a >-1 C .a >-1eD .a <-1e(2)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( ) A .11或18 B .11 C .18D .17或18(3)设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ),求f (x )的极值.[解析] (1)∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x <-1.选A.(2)∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,f ′(x )=3x 2+2ax +b ,即⎩⎪⎨⎪⎧ 1+a +b +a 2=10,3+2a +b =0,解得⎩⎪⎨⎪⎧ a =-3,b =3,或⎩⎪⎨⎪⎧a =4,b =-11. 而当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2,x ∈(-∞,1),f ′(x )>0,x ∈(1,+∞),f ′(x )>0,故舍去.∴f (x )=x 3+4x 2-11x +16,∴f (2)=18.选C. (3)f ′(x )=x -(a +1)+a x=x 2-(a +1)x +a x =(x -1)(x -a )x.①当0<a <1时,若x ∈(0,a ),f ′(x )>0, 函数f (x )单调递增;若x ∈(a,1),f ′(x )<0,函数f (x )单调递减; 若x ∈(1,+∞),f ′(x )>0,函数f (x )单调递增. 此时x =a 是f (x )的极大值点,x =1是f (x )的极小值点, 函数f (x )的极大值是f (a )=-12a 2+a ln a ,极小值是f (1)=-12.②当a =1时,f ′(x )=(x -1)2x>0,所以函数f (x )在定义域(0,+∞)内单调递增, 此时f (x )没有极值点,故无极值.③当a >1时,若x ∈(0,1),f ′(x )>0,函数f (x )单调递增; 若x ∈(1,a ),f ′(x )<0,函数f (x )单调递减; 若x ∈(a ,+∞),f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点, 函数f (x )的极大值是f (1)=-12,极小值是f (a )=-12a 2+a ln a .综上,当0<a <1时,f (x )的极大值是-12a 2+a ln a ,极小值是-12;当a =1时,f (x )没有极值;当a >1时,f (x )的极大值是-12,极小值是-12a 2+a ln a .[答案] (1)A (2)C [易错提醒][纠错训练]1.已知函数f (x )=ax 3-2x 2+x +c 在R 上有极值点,则a 的取值范围是( ) A.⎝⎛⎭⎫0,43 B .(-∞,0) C.⎣⎡⎭⎫0,43 D.⎝⎛⎭⎫-∞,43 解析:由f (x )=ax 3-2x 2+x +c ,得f ′(x )=3ax 2-4x +1,要使f (x )=ax 3-2x 2+x +c 在R 上有极值点,需使f ′(x )=3ax 2-4x +1的值在R 上有正有负.①当a =0时,f ′(x )=-4x +1,显然满足条件;②当a ≠0时,可得⎩⎪⎨⎪⎧a ≠0,(-4)2-4·3a ·1>0,解得a <0或0<a <43. 综上所述,a 的取值范围是⎝⎛⎭⎫-∞,43.故选D. 答案:D2.函数f (x )=x 3+3ax 2+3[(a +2)x +1]有极大值又有极小值,则a 的取值范围是________. 解析:∵f (x )=x 3+3ax 2+3[(a +2)x +1], ∴f ′(x )=3x 2+6ax +3(a +2).令3x 2+6ax +3(a +2)=0,即x 2+2ax +a +2=0. ∵函数f (x )有极大值和极小值,∴方程x 2+2ax +a +2=0有两个不相等的实根. 即Δ=4a 2-4a -8>0,∴a >2或a <-1. 答案:a >2或a <-13.设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解析:对f (x )求导得f ′(x )=e x·1+ax 2-2ax(1+ax 2)2.*(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合*,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合*与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.考点二 利用导数求函数的最值|模型突破[例2] 设函数f (x )=(x -1)e x -kx 2(k ∈R ). (1)当k =1时,求函数f (x )的单调区间; (2)当k =1时,求f (x )在[0,2]上的最值. [解析] (1)当k =1时,f (x )=(x -1)e x -x 2, f ′(x )=e x +(x -1)e x -2x =x (e x -2). 由f ′(x )=0,解得x 1=0,x 2=ln 2>0. 由f ′(x )>0,得x <0或x >ln 2. 由f ′(x )<0,得0<x <ln 2.所以函数f (x )的单调增区间为(-∞,0)和(ln 2,+∞), 单调减区间为(0,ln 2).(2)由(1)可知x =0和x =ln 2是f (x )的极值点, 且0∈[0,2],ln 2∈[0,2],f (0)=-1,f (ln 2)=(ln 2-1)·e ln 2-(ln 2)2 =2(ln 2-1)-(ln 2)2,由(1)可知f (0)=f (1)=-1, 在(ln 2,+∞)上f (x )为增函数, ∴f (2)>f (1)>f (ln 2), ∴f (x )的最大值为f (2)=e 2-4.f (x )的最小值为f (ln 2)=2ln 2-2-(ln 2)2. [模型解法][高考类题](2017·高考全国卷Ⅲ)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明f (x )≤-34a-2. 解析:(1)f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x .若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)单调递增.若a <0,则当x ∈⎝⎛⎭⎫0,-12a 时,f ′(x )>0;当x ∈⎝⎛⎭⎫-12a ,+∞时,f ′(x )<0.故f (x )在⎝⎛⎭⎫0,-12a 单调递增,在⎝⎛⎭⎫-12a ,+∞单调递减.(2)证明:由(1)知,当a <0时,f (x )在x =-12a 取得最大值,最大值为f ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a -1-14a. 所以f (x )≤-34a -2等价于ln ⎝⎛⎭⎫-12a -1-14a ≤-34a -2,即ln ⎝⎛⎭⎫-12a +12a +1≤0. 设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0; 当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)单调递增,在(1,+∞)单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0. 所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝⎛⎭⎫-12a +12a +1≤0, 即f (x )≤-34a-2.[真题感悟]1.(2015·高考全国卷Ⅰ)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1 B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1 解析: 由题意可知存在唯一的整数x 0,使得e x 0(2x 0-1)<ax 0-a ,设g (x )=e x (2x -1),h (x )=ax -a ,由g ′(x )=e x (2x +1)可知g (x )在⎝⎛⎭⎫-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,作出g (x )与h (x )的大致图象如图所示,故⎩⎪⎨⎪⎧h (0)>g (0)h (-1)≤g (-1),即⎩⎪⎨⎪⎧a <1-2a ≤-3e ,所以32e ≤a <1,故选D. 答案:D2.(2017·高考全国卷Ⅱ)若x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极小值为( )A .-1B .-2e -3 C .5e -3D .1解析:因为f (x )=(x 2+ax -1)e x -1,所以f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=[x 2+(a +2)x +a -1]e x -1.因为x =-2是函数f (x )=(x 2+ax -1)e x-1的极值点,所以-2是x 2+(a +2)x+a -1=0的根,所以a =-1,f ′(x )=(x 2+x -2)e x -1=(x +2)(x -1)e x -1.令f ′(x )>0,解得x <-2或x >1,令f ′(x )<0,解得-2<x <1,所以f (x )在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x =1时,f (x )取得极小值,且f (x )极小值=f (1)=-1,选择A.答案:A。
利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。
导数函数与函数极最值【典例1】【陕西省渭南市2019届高三二模】已知函数()f x x=. (Ⅰ)求函数()f x 的极值;(Ⅰ)若0m n >>,且n m m n =,求证:2mn e >. 【思路引导】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可求出函数()f x 的极值;(Ⅰ)得到()()f m f n =,根据函数的单调性问题转化为证明2e m e n >>,即证()22ln ln n n n n e -<,令()()222ln 2ln 1G x e x x x x x e =-+<<,根据函数的单调性证明即可.【详解】 (Ⅰ)()ln x f x x =()f x ∴的定义域为()0,∞+且()21ln xf x x-'= 令()0f x '>,得0x e <<;令()0f x '<,得x e >()f x ∴在()0,e 上单调递增,在(),e +∞上单调递减∴函数()f x 的极大值为()ln 1e f e e e==,无极小值 (Ⅰ)0m n >>,n m m n = ln ln n m m n ∴=l ln n m m nn∴=,即()()f m f n = 由(Ⅰ)知()f x 在()0,e 上单调递增,在(),e +∞上单调递减且()10f =,则1n e m <<<要证2mn e >,即证2em e n >>,即证()2e f m f n ⎛⎫< ⎪⎝⎭,即证()2e f n f n ⎛⎫< ⎪⎝⎭即证()22ln ln n n n n e-< 由于1n e <<,即0ln 1n <<,即证222ln 2ln e n n n n <- 令()()222ln 2ln 1G x e x x x x x e =-+<<则()()()()()2242ln 2ln 12ln 1e x e x e e G x x x x x x x x x x x x x +-⎛⎫'=-++=-+-=+- ⎪⎝⎭1x e << ()0G x '∴>恒成立 ()G x ∴在()1,e 递增 ()()0G x G e ∴<=在()1,x e ∈恒成立2mn e ∴>【典例2】【2019年甘肃省兰州市高考数学一诊】已知函数f (x )=13x 312-(a 2+a+2)x 2+a 2(a+2)x ,a ∈R .(1)当a=-1时,求函数y=f (x )的单调区间; (2)求函数y=f (x )的极值点. 【思路引导】(1)先求解导数,利用导数取值的正负可得单调区间; (2)先求解导数,结合导数零点情况判断函数极值点的情况. 【详解】(1)当a=-1时,()321f x x x x 3=-+.∵()f x '=x 2-2x+1=(x -1)2≥0, 故函数在R 内为增函数,单调递增区间为(-∞,+∞).(2)∵()f x '=x 2-(a 2+a+2)x+a 2(a+2)=(x -a 2)[x -(a+2)],①当a=-1或a=2时,a 2=a+2,∵()f x '≥0恒成立,函数为增函数,无极值;②当a <-1或a >2时,a 2>a+2,可得当x ∈(-∞,a+2)时,()f x '>0,函数为增函数;当x ∈(a+2,a 2)时,()f x '<0,函数为减函数; 当x ∈(a 2,+∞)时,()f x '>0,函数为增函数.当x=a+2时,函数有极大值f (a+2),当x=a 2时,函数有极小值f (a 2). ③当-1<a <2时,a 2<a+2.可得当x ∈(-∞,a 2)时,()f x '>0,函数为增函数; 当x ∈(a 2,a+2)时,()f x '<0,函数为减函数; 当x ∈(a+2,+∞)时,()f x '>0,函数为增函数.当x=a+2时,函数有极小值f (a+2);当x=a 2时,函数有极大值f (a 2).综上可得:当a=-1或a=2时,函数无极值点;当a <-1或a >2时,函数有极大值点a+2,函数有极小值点a 2;当-1<a <2时,函数有极大值点a 2,函数有极小值点a+2. 【典例3】【广东省2019年汕头市普通高考第一次模拟】已知21()ln 2x f x x ae x =+-. (1)设12x =是()f x 的极值点,求实数a 的值,并求()f x 的单调区间: (2)0a >时,求证:()12f x >.【思路引导】(1)由题意,求得函数的导数()1xf x x ae x '=+-,由12x =是函数()f x的极值点,解得2a e=,又由102f ⎛⎫=⎪⎭'⎝,进而得到函数的单调区间; (2)由(1),进而得到函数()f x 的单调性和最小值()()20000min 011ln 2f x f x x x x x ==+--,令()211ln ,(01)2g x x x x x x=+--<<,利用导数求得()g x 在()0,1上的单调性,即可作出证明. 【详解】(1)由题意,函数()f x 的定义域为()0,+∞, 又由()1xf x x ae x '=+-,且12x =是函数()f x 的极值点,所以12112022f ae ⎛⎫=+'-= ⎪⎝⎭,解得a =,又0a >时,在()0,+∞上,()f x '是增函数,且102f ⎛⎫= ⎪⎭'⎝, 所以()0f x '>,得12x >,()0f x '<,得102x <<, 所以函数()f x 的单调递增区间为1,2⎛⎫+∞⎪⎝⎭,单调递减区间为10,2⎛⎫⎪⎝⎭. (2)由(1)知因为0a >,在()0,+∞上,()1xf x x ae x'=+-是增函数, 又()1110f ae '=+->(且当自变量x 逐渐趋向于0时,()f x '趋向于-∞), 所以,()00,1x ∃∈,使得()00f x '=,所以00010x x ae x +-=,即0001x ae x x =-, 在()00,x x ∈上,()0f x '<,函数()f x 是减函数, 在()0,x x ∈+∞上,()0f x '>,函数()f x 是增函数, 所以,当0x x =时,()f x 取得极小值,也是最小值, 所以()()022*******min 0111ln ln ,(01)22x f x f x x ae x x x x x x ==+-=+--<<, 令()211ln ,(01)2g x x x x x x=+--<<, 则()()2211111xg x x x x x x+=---=--',当()0,1x ∈时,()0g x '<,函数()g x 单调递减,所以()()112g x g >=, 即()()min 12f x f x ≥>成立, 【典例4】【湖南省怀化市2019届高三3月第一次模拟】设函数21()ln 2f x ax bx x =--. (1)若1x =是()f x 的极大值点,求a 的取值范围;(2)当0a =,1b =-时,方程22()x mf x =(其中0m >)有唯一实数解,求m 的值.【思路引导】(1)由题意,求得函数的导数得到()()()11ax x f x x-+'-=,分类讨论得到函数的单调性和极值,即可求解实数a 的取值范围;(2)因为方程()22mf x x =有唯一实数解,即22ln 20x m x mx --=有唯一实数解,设()22ln 2g x x m x mx =--,利用导数()g x ',令()0g x '=,得20x mx m --=,由此入手即可求解实数m 的值. 【详解】(1)由题意,函数()f x 的定义域为()0,+∞,则导数为()1f x ax b x-'=- 由()10f =,得1b a =-,∴()()()1111ax x f x ax a x x-+-=-+-=' ①若0a ≥,由()0f x '=,得1x =.当01x <<时,()0f x '>,此时()f x 单调递增; 当1x >时,()0f x '<,此时()f x 单调递减. 所以1x =是()f x 的极大值点②若0a <,由()0f x '=,得1x =,或1x a=-. 因为1x =是()f x 的极大值点,所以11a->,解得10a -<< 综合①②:a 的取值范围是1a >-(2)因为方程()22mf x x =有唯一实数解,所以22ln 20x m x mx --=有唯一实数解设()22ln 2g x x m x mx =--,则()2222x mx mg x x--'=,令()0g x '=,即20x mx m --=.因为0m >,0x >,所以10x =<(舍去),2x =当()20,x x ∈时,()0g x '<,()g x 在()20,x 上单调递减,当()2,x x ∈+∞时,()0g x '>,()g x 在()2,x +∞单调递增 当2x x =时,()0g x '=,()g x 取最小值()2g x则()()2200g x g x ⎧=⎪⎨='⎪⎩,即22222222200x mlnx mx x mx m ⎧--=⎨--=⎩, 所以222ln 0m x mx m +-=,因为0m >,所以222ln 10x x +-=(*) 设函数()2ln 1h x x x =+-,因为当0x >时,()h x 是增函数,所以()0h x =至多有一解因为()10h =,所以方程(*)的解为21x =1=,解得12m = 【典例5】【福建省三明市2020届模拟】已知函数2()ln 2a f x x x x x =--()a R ∈. (1)若曲线()y f x =在e x =处切线的斜率为1-,求此切线方程;(2)若()f x 有两个极值点12,x x ,求a 的取值范围,并证明:1212x x x x >+. 【思路引导】(1)()y f x =在x e =处切线的斜率为1-,即()'1f e =-,得出2a e=,计算f(e),即可出结论 (2)①()f x 有两个极值点12,x x ,得()'ln f x x ax =-=0有两个不同的根,即ln xa x= 有两个不同的根,令()ln xg x x=,利用导数求其范围,则实数a 的范围可求;()f x 有两个极值点12,x x ,1122ln x -ax =0ln x -ax =0⎧⎨⎩利用()g x 在(e,+∞)递减,()122122ln x +x ln x x +x x <a =()1212ln x x x +x =,即可证明 【详解】(1)∵()'ln f x x ax =-,∴()'1f e =-,解得2a e=, ∴,故切点为, 所以曲线在处的切线方程为.(2)()'ln f x x ax =-,令()'ln f x x ax =-=0,得ln xa x=. 令()ln x g x x=,则()21ln 'xg x x -=,且当时,;当时,;时,. 令,得,且当时,;当时,.故在递增,在递减,所以.所以当时,有一个极值点; 时,有两个极值点; 当时,没有极值点.综上,的取值范围是.(方法不同,酌情给分) 因为是的两个极值点,所以1122ln x -ax =0ln x -ax =0⎧⎨⎩即1122ln x =ax ln x =ax ⎧⎨⎩…① 不妨设,则,,因为在递减,且,所以()122122ln x +x ln x x +x x <,即()1212ln x +x x +x a <…②. 由①可得()()1212ln x x x +x a =,即()1212ln x x x +x a =,由①,②得()()12121212ln x +x ln x x x +x x +x <,所以1212x x x +x >.【典例6】【河南省十所名校2019届高三尖子生第二次联合考试】已知函数()2()ln f x x a x =+. (1)当0a =时,求函数()f x 的最小值; (2)若()f x 在区间21,e ⎡⎫+∞⎪⎢⎣⎭上有两个极值点()1212,x x x x <. (i )求实数a 的取值范围; (i i )求证:()22212f x e e-<<-. 【思路引导】(Ⅰ)求出()()'2ln 1f x x x =+,列表讨论()2ln f x x x =的单调性,问题得解.(Ⅰ)(i )由()f x 在区间21,e ⎡⎫+∞⎪⎢⎣⎭上有两个极值点转化成()()22ln 1'x x a f x x++=有两个零点,即()()22ln 1g x x x a =++有两个零点,求出()'g x ,讨论()g x 的单调性,问题得解.(ii )由()20g x =得()2222ln 1a x x =-+,将()2f x 转化成()()22222ln f x x x =-,由()g x 得单调性可得21x e ⎛∈ ⎝,讨论()()22222ln f x x x =-在21x e ⎛∈ ⎝的单调性即可得证. 【详解】解:(Ⅰ)当0a =时,()2ln f x x x =,()()'2ln 1f x x x =+,令()'0f x =,得x=()f x 的单调性如下表:易知()min 2f x e=-. (Ⅰ)(i )()()22ln 1'x x af x x++=.令()()22ln 1g x xx a =++,则()()'4ln 1g x x x =+.令()'0g x =,得1x e=. ()g x 的单调性如下表:()f x 在区间21,e ⎛⎫+∞⎪⎝⎭上有两个极值点,即()g x 在区间21,e ⎛⎫+∞ ⎪⎝⎭上有两个零点, 结合()g x 的单调性可知,210g e ⎛⎫>⎪⎝⎭且10g e ⎛⎫< ⎪⎝⎭,即430a e ->且210a e -<.所以4231a e e <<,即a 的取值范围是4231,e e ⎛⎫⎪⎝⎭. (ii )由(i )知()()222202ln 1g x a x x =⇒=-+,所以()()()2222222ln 2ln f x x a x x x =+=-.又210g e ⎛⎫>⎪⎝⎭,10g e ⎛⎫< ⎪⎝⎭,0g a =>,结合()g x 的单调性可知,21x e ⎛∈ ⎝. 令()()22ln x x x ϕ=-,则()()'4ln ln 1x x x x ϕ=-+.当1xe ⎛∈ ⎝时,ln 0x <,ln 10x +>,()'0x ϕ>, 所以()x ϕ在1e ⎛ ⎝上单调递增,而212e e ϕ⎛⎫=- ⎪⎝⎭,12e ϕ=-, 因此()22212f x e e-<<-. 【典例7】【湖北省黄冈市2019届高三八模模拟测试】已知函数ln ()xf x ax x=-,曲线(y f x =)在1x =处的切线经过点(2,1)-. (1)求实数a 的值;(2)设1b >,求()f x 在区间1[,]b b上的最大值和最小值. 【思路引导】(1)根据导数求出切线斜率为1a -,再利用()()1,1f 与()2,1-连线斜率为1a -构造出方程,求出结果;(2)由导函数可判断出()f x 在()0,1单调递增,在()1,+∞上单调递减;由此可得最大值为()1f ;再判断1f b ⎛⎫⎪⎝⎭与f b 的大小,较小的为最小值. 【详解】(1)()f x 的导函数为()221ln x ax f x x'--= ()10111a f a --⇒='=- 依题意,有()()11112f a --=--,即1112a a -+=-- 解得1a =(2)由(1)得()221ln x x f x x--'=当01x <<时,210x ->,ln 0x ->()0f x '∴>,故()f x 在()0,1上单调递增;当1x >时,210x -<,ln 0x -<()0f x '∴<,故()f x 在()1,+∞上单调递减()f x ∴在区间()0,1单调递增,在区间()1,+∞上单调递减101b b<<< ()f x ∴最大值为()11f =-. 设()()111ln h b f b f b b b b b b ⎛⎫⎛⎫=-=+-+⎪ ⎪⎝⎭⎝⎭,其中1b > 则()211ln 0h b b b ⎛⎫=-> ⎪⎝⎭' 故()h b 在区间()1,+∞单调递增当1b →时,()0h b → ()0h b ⇒> ()1f b f b ⎛⎫⇒>⎪⎝⎭故()f x 最小值11ln f b b b b ⎛⎫=-- ⎪⎝⎭1. 【安徽省合肥市2019届高三第一次教学质量检测】已知函数()()ln 1xf x e x =-+(e 为自然对数的底数).(Ⅰ)求函数()f x 的单调区间;(Ⅰ)若()()g x f x ax =-,a R ∈,试求函数()g x 极小值的最大值. 【思路引导】(I )计算()f x 导函数,构造函数()h x ,判定单调性,得到()f x 的单调性,即可。
考点18导数与函数的极值、最值(2种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.【知识点】1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值都小,f′(a)=0;而且在点x=a附近的左侧,右侧,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点处的函数值都大,f′(b)=0;而且在点x=b附近的左侧,右侧,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为,极小值和极大值统称为.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条的曲线,那么它必有最大值和最小值.(2)求函数y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)内的;②将函数y=f(x)的各极值与比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件【核心题型】题型一 利用导数求解函数的极值问题根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.命题点1 根据函数图象判断极值【例题1】(2024·四川广安·二模)已知函数()()1e xf x ax =+,给出下列4个图象:其中,可以作为函数()f x 的大致图象的个数为( )A .1B .2C .3D .4【变式1】(23-24高三上·黑龙江·阶段练习)如图是函数()y f x =的导函数()y f x ¢=的图象,下列结论正确的是( )A .()y f x =在=1x -处取得极大值B .1x =是函数()y f x =的极值点C .2x =-是函数()y f x =的极小值点D .函数()y f x =在区间()1,1-上单调递减【变式2】(2023·河北·模拟预测)函数4211()f x x x =-的大致图象是( )A . B .C .D .【变式3】(2024高三·全国·专题练习)已知函数f (x )的导函数f ′(x )的图象如图所示,则下列结论正确的是( )A .曲线y =f (x )在点(1,f (1))处的切线斜率小于零B .函数f (x )在区间(-1,1)上单调递增C .函数f (x )在x =1处取得极大值D .函数f (x )在区间(-3,3)内至多有两个零点命题点2 求已知函数的极值【例题2】(2024·宁夏银川·一模)若函数()2()2e xf x x ax =--在2x =-处取得极大值,则()f x 的极小值为( )A .26e -B .4e-C .22e -D .e-【变式1】(2023·全国·模拟预测)函数()2tan πf x x x =--在区间ππ,22æö-ç÷èø的极大值、极小值分别为( )A .π12+,π12-+B .π12-+,3π12-+C .3π12-,π12-+D .π12--,3π12-+【变式2】(多选)(2024·全国·模拟预测)已知2e ,0,()41,0,xx f x x x x x ì>ï=íï---£î则方程2()(3)()30f x k f x k -++=可能有( )个解.A .3B .4C .5D .6【变式3】(2024·辽宁鞍山·二模)()2e xf x x -=的极大值为 .命题点3 已知极值(点)求参数【例题3】(2024·全国·模拟预测)设12,x x 为函数()()()2f x x x x a =--(其中0a >)的两个不同的极值点,若不等式()()120f x f x +³成立,则实数a 的取值范围为( )A .[]1,4B .(]0,4C .()0,1D .()4,+¥【变式1】(2024·四川绵阳·三模)若函数()()21ln 02f x ax x b x a =-+¹有唯一极值点,则下列关系式一定成立的是()A .0,0a b ><B .0,0a b <>C .14ab <D .0ab >【变式2】(2024·辽宁·一模)已知函数()322f x x ax bx a =+++在=1x -处有极值8,则()1f 等于 .【变式3】(2024·全国·模拟预测)已知函数()()2ln 2f x x x ax a =-+-ÎR .(1)若()f x 的极值为-2,求a 的值;(2)若m ,n 是()f x 的两个不同的零点,求证:()0f m n m n ¢+++<.题型二 利用导数求函数最值求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.命题点1 不含参函数的最值【例题4】(2024·陕西·模拟预测)[]1,2x "Î,有22ln a x x x ³-+恒成立,则实数a 的取值范围为( )A .[)e,+¥B .[)1,+¥C .e ,2éö+¥÷êëøD .[)2e,+¥【变式1】(2024·四川·模拟预测)已知 ()()22ln f x x x a x x =-+-,若存在(]0,e 0x Î,使得()00f x £成立,则实数a 的取值范围是.【变式2】(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道12,l l 相交于点O ,一根长度为8的直杆AB 的两端点,A B 分别在12,l l 上滑动(,A B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP AB ^,则OAP △面积的取值范围是 .【变式3】(2024·全国·模拟预测)已知函数()ln f x x =.(1)求函数()()f xg x x=的最值.(2)证明:()2431e 3e e 044xx x x f x ---->(其中e 为自然对数的底数).命题点2 含参函数的最值【例题5】(2024·四川成都·模拟预测)已知函数21()e (R)2(1)xf x x bx a b a =--Î+,没有极值点,则1ba +的最大值为( )A B .e 2C .eD .2e 2【变式1】(23-24高三下·重庆·阶段练习)若过点(),a b 可以作曲线ln y x =的两条切线,则( )A .ln b a>B .ln b a<C .0a <D .e ab >【变式2】.(2024·全国·模拟预测)函数()()()2ln 1f x x x ax =++-只有3个零点1x ,2x ,3x ()1233x x x <<<,则2a x +的取值范围是 .【变式3】(2024·北京海淀·一模)已知函数12()e a x f x x -=.(1)求()f x 的单调区间;(2)若函数2()()e ,(0,)g x f x a x -=+Î+¥存在最大值,求a 的取值范围.【课后强化】基础保分练一、单选题1.(2023·广西·模拟预测)函数()3f x x ax =+在1x =处取得极小值,则极小值为( )A .1B .2C .2-D .1-2.(2024·四川凉山·二模)若()sin cos 1f x x x x =+-,π,π2x éùÎ-êúëû,则函数()f x 的零点个数为( )A .0B .1C .2D .33.(2024·黑龙江哈尔滨·一模)在同一平面直角坐标系内,函数()y f x =及其导函数()y f x =¢的图象如图所示,已知两图象有且仅有一个公共点,其坐标为()0,1,则( )A .函数()e xy f x =×的最大值为1B .函数()e xy f x =×的最小值为1C .函数()exf x y =的最大值为1D .函数()e xf x y =的最小值为14.(2024·陕西安康·模拟预测)已知函数()2e e 2x xf x a b x =++有2个极值点,则( )A .2016b a <<B .0b >C .4a b <D .2b a>5.(2024·全国·模拟预测)已知函数()()sin cos e xa f x x x x +=+在()0,π上恰有两个极值点,则实数a 的取值范围是( )A .π4e æöç÷ç÷èøB .()π,e-¥C .()π0,eD .π4e ,ö÷÷ø+¥二、多选题6.(2024·全国·模拟预测)已知函数()e xbf x a x=+在定义域内既存在极大值点又存在极小值点,则( )A .0ab > B .24e b a £C .24e 0a b ->D .对于任意非零实数a ,总存在实数b 满足题意7.(2024·湖北武汉·模拟预测)已知各项都是正数的数列{}n a 的前n 项和为n S ,且122n n na S a =+,则下列结论正确的是( )A .当()*m n m n >ÎN ,时,m na a >B .212n n n S S S +++<C .数列{}2n S 是等差数列D .1ln n nS n S -³三、填空题8.(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段,CE DF 与分别以,OC OD 为直径的半圆弧组成)表示一条步道.其中的点,C D 是线段AB 上的动点,点O 为线段,AB CD 的中点,点,E F 在以AB 为直径的半圆弧上,且,OCE ÐODF Ð均为直角.若1AB =百米,则此步道的最大长度为百米.9.(2023·江西赣州·模拟预测)当0x =时,函数()e x f x a bx -=+取得极小值1,则a b +=.四、解答题10.(2023·河南洛阳·一模)已知函数()211122f x x x =++.(1)求()f x 的图像在点()()22f ,处的切线方程;(2)求()f x 在1,22éùêúëû上的值域.11.(2024·上海静安·二模)已知R k Î,记()x x f x a k a -=+×(0a >且1a ¹).(1)当e a =(e 是自然对数的底)时,试讨论函数()y f x =的单调性和最值;(2)试讨论函数()y f x =的奇偶性;(3)拓展与探究:① 当k 在什么范围取值时,函数()y f x =的图象在x 轴上存在对称中心?请说明理由;②请提出函数()y f x =的一个新性质,并用数学符号语言表达出来.(不必证明)综合提升练一、单选题1.(2024·全国·模拟预测)若函数()()1ln 1f x x x ax =+-+是()0,¥+上的增函数,则实数a 的取值范围是( )A .(],2ln 2-¥B .(]0,2ln 2C .(],2-¥D .(]0,22.(2024·陕西渭南·模拟预测)已知函数()e x f x x a =+在区间[]0,1上的最小值为1,则实数a 的值为( )A .-2B .2C .-1D .13.(23-24高三下·内蒙古赤峰·开学考试)已知函数()ln f x x x ax =-有极值e -,则=a ( )A .1B .2C .eD .34.(2024·广东佛山·二模)若函数()24ln bf x a x x x =++(0a ¹)既有极大值也有极小值,则下列结论一定正确的是( )A .a<0B .0b <C .1ab >-D .0a b +>5.(2023·甘肃兰州·一模)已知函数()2e ln 2xx f x x =+-的极值点为1x ,函数()ln 2x h x x =的最大值为2x ,则( )A .12x x >B .21x x >C .12x x ³D .21x x ³6.(2024·全国·模拟预测)记函数()y f x =的导函数为y ¢,y ¢的导函数为y ¢¢,则曲线()y f x =的曲率()3221y K y ¢¢=éù+ëû¢.则曲线ln y x =的曲率的极值点为( )ABCD7.(2024·北京朝阳·一模)已知n 个大于2的实数12,,,n x x x ×××,对任意()1,2,,i x i n =×××,存在2i y ³满足i i y x <,且i i y x i i x y =,则使得12115n n x x x x -++×××+£成立的最大正整数n 为( )A .14B .16C .21D .238.(2023·河南洛阳·模拟预测)已知函数()f x 及其导函数()f x ¢的定义域均为R ,且()()()22e ,00x f x f x x f ¢-==,则()f x ( )A .有一个极小值点,一个极大值点B .有两个极小值点,一个极大值点C .最多有一个极小值点,无极大值点D .最多有一个极大值点,无极小值点二、多选题9.(2023·全国·模拟预测)对函数()f x ,()g x 公共定义域内的任意x ,若存在常数M ÎR ,使得()()f x g x M -£恒成立,则称()f x 和()g x 是M -伴侣函数,则下列说法正确的是( )A .存在常数M ÎR ,使得()()2log 5f x x =与()125log g x x=是M -伴侣函数B .存在常数M ÎR ,使得()13x f x +=与()13x g x -=是M -伴侣函数C .()ln f x x =与()2g x x =+是1-伴侣函数D .若()()f x g x ¢¢=,则存在常数M ÎR ,使得()f x 与()g x 是M -伴侣函数10.(2024·全国·模拟预测)已知函数()()2e =++xf x ax bx c 的极小值点为0,极大值点为()0m m >,且极大值为0,则( )A .2m =B .4b a=C .存在0x ÎR ,使得()00f x >D .直线3y a =与曲线()y f x =有3个交点11.(2024·全国·模拟预测)已知函数()()2ln e e x f x a b a x =+-,其中e 为自然对数的底数,则( )A .若()f x 为减函数,则()00f <B .若()f x 存在极值,则e 1b a >C .若()10f =,则ln2b >D .若()0f x ³,则b a³三、填空题12.(2022·广西·模拟预测)已知函数()21xx x f x e++=,则()f x 的极小值为 .13.(2023·广东汕头·一模)函数()36f x ax x =-的一个极值点为1,则()f x 的极大值是 .14.(2024·上海闵行·二模)对于任意的12x x ÎR 、,且20x >,不等式1122e ln x x x x a -+->恒成立,则实数a 的取值范围为 .四、解答题15.(2024·安徽·二模)已知函数2()103(1)ln f x x x f x ¢=-+.(1)求函数()f x 在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间和极值.16.(2024·海南·模拟预测)已知函数()2ln 1,f x x a x a =-+ÎR .(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当0a >时,若函数()f x 有最小值2,求a 的值.17.(2024·陕西西安·模拟预测)已知函数ln 1()ex f x x =-.(1)求()f x 的最大值;(2)证明:当0x >时,()e x f x x <.18.(2024·福建·模拟预测)已知函数()ln f x a x bx =-在()()1,1f 处的切线在y 轴上的截距为2-.(1)求a 的值;(2)若()f x 有且仅有两个零点,求b 的取值范围.19.(2024·全国·模拟预测)已知函数()()21e 2e 22xx f x a ax =+--.(1)若曲线()y f x =在30,2a æö-ç÷èø处的切线方程为4210ax y ++=,求a 的值及()f x 的单调区间.(2)若()f x 的极大值为()ln2f ,求a 的取值范围.(3)当0a =时,求证:()2535e ln 22x f x x x x +->+.拓展冲刺练一、单选题1.(2023·湖南衡阳·模拟预测)若曲线()(0)kf x k x=<与()e x g x =有三条公切线,则k 的取值范围为( )A .1,0e æö-ç÷èøB .1,eæö-¥-ç÷èøC .2,0e æö-ç÷èøD .2,e æö-¥-ç÷èø2.(2023·河南·三模)已知函数2()ln f x x x =,则下列结论正确的是( )A .()f x 在=x 12e -B .()f x 在x =e2C .()f x 在=x 12e -D .()f x 在x =e 23.(2023·湖北·模拟预测)设函数3()22f x x x =-,若正实数a 使得存在三个两两不同的实数b ,c ,d 满足(,())a f a ,(,())b f b ,(,())c f c ,(,())d f d 恰好为一个矩形的四个顶点,则a 的取值范围为( )A .10,2æùçúèûB .1,12éùêúëûC .æçèD .ùúû4.(2024·湖北·二模)已知函数()1e e e x x xaxf x x +=++(e 为自然对数的底数).则下列说法正确的是( )A .函数()f x 的定义域为RB .若函数()f x 在()()0,0P f 处的切线与坐标轴围成的三角形的面积为2e 2e 2-,则1a =C .当1a =时,()f x m =可能有三个零点D .当1a =时,函数的极小值大于极大值二、多选题5.(2023·安徽·一模)已知函数()()3R f x x x x =-Î,则( )A .()f x 是奇函数B .()f x 的单调递增区间为,æ-¥ççè和ö¥÷÷ø+C .()f xD .()f x 的极值点为,æççè6.(2024·浙江杭州·二模)过点()2,0P 的直线与抛物线C :24y x =交于,A B 两点.抛物线C 在点A 处的切线与直线2x =-交于点N ,作NM AP ^交AB 于点M ,则( )A .直线NB 与抛物线C 有2个公共点B .直线MN 恒过定点C .点M 的轨迹方程是()()22110x y x -+=¹D .3MN AB的最小值为三、填空题7.(2024·全国·模拟预测)函数()()2ln ln f x x k x x k =-++在定义域内为增函数,则实数k的取值范围为 .8.(2023·江苏淮安·模拟预测)已知函数()2ln f x x ax =-有三个零点,则a 的取值范围是 .四、解答题9.(23-24高三下·山东菏泽·阶段练习)已知函数()()21e x f x x ax =--,R a Î.(1)当e2a =时,求()f x 的单调区间;(2)若方程()0f x a +=有三个不同的实根,求a 的取值范围.10.(2024·山西吕梁·二模)已知函数()()2ln 20a f x a x x a x =--¹.(1)当1a =时,求()f x 的单调区间和极值;(2)求()f x 在区间(]0,1上的最大值.。
专题六《导数》讲义6.3导数与函数的极值、最值知识梳理.极值与最值1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.题型一. 极值、最值的概念1.函数y=x sin x+cos x的一个极小值点为()A.x=−π2B.x=π2C.x=πD.x=3π22.(2017·全国2)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1B.﹣2e﹣3C.5e﹣3D.1 3.(2013·全国2)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(﹣∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0 )=04.已知函数f (x )=x 3+ax 2﹣4x +5在x =﹣2处取极值(a ∈R ). (1)求f (x )的解析式;(2)求函数f (x )在[﹣3,3]上的最大值.题型二.已知极值、最值求参 考点1.利用二次函数根的分布1.若函数f (x )=x 3﹣3bx +b 在区间(0,1)内有极小值,则b 的取值范围是( ) A .(﹣∞,1)B .(0,1)C .(1,+∞)D .(﹣1,0)2.已知函数f (x )=13x 3−12ax 2+x 在区间(12,3)上既有极大值又有极小值,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞)C .(2,52)D .(2,103)考点2.参变分离3.若函数f (x )=x 33−a 2x 2+x +1在区间(12,3)上有极值点,则实数a 的取值范围是( ) A .(2,52)B .[2,52)C .(2,103) D .[2,103)4.已知函数f(x)=e xx 2+2klnx −kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( ) A .(−∞,e 24] B .(−∞,e 2]C .(0,2]D .[2,+∞)考点3.分类讨论5.已知函数f (x )=ax −1x −(a +1)lnx +1在(0,1]上的最大值为3,则实数a = . 6.已知函数f(x)=(12x 2−ax)lnx −12x 2+32ax .(1)讨论函数f (x )的极值点;(2)若f (x )极大值大于1,求a 的取值范围.7.已知函数f (x )=lnx −a x(a ∈R ) (1)求函数f (x )的单调增区间;(2)若函数f (x )在[1,e ]上的最小值为32,求a 的值.考点4.初探隐零点——设而不求,虚设零点8.(2013·湖北)已知a为常数,函数f(x)=x(lnx﹣ax)有两个极值点x1,x2(x1<x2)()A.f(x1)>0,f(x2)>−12B.f(x1)<0,f(x2)<−12C.f(x1)>0,f(x2)<−12D.f(x1)<0,f(x2)>−129.已知f(x)=(x﹣1)2+alnx在(14,+∞)上恰有两个极值点x1,x2,且x1<x2,则f(x1)x2的取值范围为()A.(−3,12−ln2)B.(12−ln2,1)C.(−∞,12−ln2)D.(12−ln2,34−ln2)10.(2017·全国2)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.课后作业.极值、最值1.若函数f (x )=(x 2+ax +3)e x 在(0,+∞)内有且仅有一个极值点,则实数a 的取值范围是( ) A .(﹣∞,﹣2)B .(﹣∞,﹣2]C .(﹣∞,﹣3)D .(﹣∞,﹣3]2.已知函数f(x)=xe x −13ax 3−12ax 2有三个极值点,则a 的取值范围是( ) A .(0,e )B .(0,1e)C .(e ,+∞)D .(1e,+∞)3.已知f (x )=e x ,g (x )=lnx ,若f (t )=g (s ),则当s ﹣t 取得最小值时,f (t )所在区间是( ) A .(ln 2,1)B .(12,ln 2)C .(13,1e)D .(1e,12)4.已知函数f (x )=lnx +x 2﹣ax +a (a >0)有两个极值点x 1、x 2(x 1<x 2),则f (x 1)+f (x 2)的最大值为( ) A .﹣1﹣ln 2B .1﹣ln 2C .2﹣ln 2D .3﹣ln 25.已知函数f(x)=lnx +12ax 2+x ,a ∈R . (1)求函数f (x )的单调区间;(2)是否存在实数a ,使得函数f (x )的极值大于0?若存在,求a 的取值范围;若不存在,请说明理由.。
【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】类型一利用导数研究函数的极值使用情景:一般函数类型解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步求方程'()0f x =的根;第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值.例1 已知函数x xx f ln 1)(+=,求函数()f x 的极值. 【答案】极小值为1,无极大值.【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在处有极值10,则等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】试卷分析:b ax x x f ++='23)(2,⎩⎨⎧=+++=++∴1010232a b a b a ⎩⎨⎧-==⇒⎩⎨⎧=----=⇒114012232b a a a a b 或⎩⎨⎧=-=33b a .当⎩⎨⎧=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.当⎩⎨⎧-==114b a 时,)1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,311(<'-∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意.所以⎩⎨⎧-==114b a .181622168)2(=+-+=∴f .故选C .考点:函数的单调性与极值.【变式演练2】设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值围为( )A .()1,0-B .()1,-+∞C .()0,+∞D .()(),10,-∞-+∞【答案】B 【解读】考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2131)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】试卷分析:因为x m x m x x f )1(2)1(2131)(23-++-=, 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f)1(2)1(2131)(23-++-=在)4,0(上无极值,而()20,4∈,所以只有12m -=,3m =时,()f x 在R 上单调,才合题意,故答案为3.考点:1、利用导数研究函数的极值;2、利用导数研究函数的单调性.【变式演练4】已知等比数列{}n a 的前n 项和为12n n S k -=+,则32()21f x x kx x =--+的极大值为( )A .2B .52C .3D .72【答案】B 【解读】考点:1、等比数列的性质;2、利用导数研究函数的单调性及极值.【变式演练5】设函数32()(1)f x x a x ax =+++有两个不同的极值点1x ,2x ,且对不等式12()()0f x f x +≤恒成立,则实数a 的取值围是.【答案】1(,1],22⎡⎤-∞-⎢⎥⎣⎦【解读】试卷分析:因为12()()0f x f x +≤,故得不等式()()()332212121210x x a x x a x x ++++++≤,即()()()()()221212121212123120x x x x x x a x x x x a x x ⎡⎤⎡⎤++-+++-++≤⎣⎦⎣⎦,由于()()2'321f x x a x a =+++,令()'0f x =得方程()23210x a x a +++=,因()2410a a ∆=-+> , 故()12122133x x a a x x ⎧+=-+⎪⎪⎨⎪=⎪⎩,代入前面不等式,并化简得()1a +()22520a a -+≥,解不等式得1a ≤-或122a ≤≤,因此, 当1a ≤-或122a ≤≤时, 不等式()()120f x f x +≤成立,故答案为1(,1],22⎡⎤-∞-⎢⎥⎣⎦.考点:1、利用导数研究函数的极值点;2、韦达定理及高次不等式的解法.【变式演练6】已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-, 则实数a 的取值围是. 【答案】32a << 【解读】考点:导数与极值.类型二 求函数在闭区间上的最值使用情景:一般函数类型解题模板:第一步 求出函数()f x 在开区间(,)a b 所有极值点;第二步 计算函数()f x 在极值点和端点的函数值;第三步 比较其大小关系,其中最大的一个为最大值,最小的一个为最小值.例2若函数()2x f x e x mx =+-,在点()()1,1f 处的斜率为1e +. (1)数m 的值;(2)求函数()f x 在区间[]1,1-上的最大值. 【答案】(1)1m =;(2)()max f x e =. 【解读】试卷分析:(1)由(1)1f e '=-解之即可;(2)()21x f x e x '=+-为递增函数且()()1110,130f e f e -''=+>-=-<,所以在区间(1,1)-上存在0x 使0()0f x '=,所以函数在区间0[1,]x -上单调递减,在区间0[,1]x 上单调递增,所以()()(){}max max 1,1f x f f =-,求之即可.试卷解读: (1)()2x f x e x m '=+-,∴()12f e m '=+-,即21e m e +-=+,解得1m =; 实数m 的值为1;(2)()21x f x e x '=+-为递增函数,∴()()1110,130f e f e -''=+>-=-<, 存在[]01,1x ∈-,使得()00f x '=,所以()()(){}max max 1,1f x f f =-,()()112,1f e f e --=+=,∴()()max 1f x f e ==考点:1.导数的几何意义;2.导数与函数的单调性、最值.【名师点睛】本题考查导数的几何意义、导数与函数的单调性、最值等问题,属中档题;导数的几何意义是拇年高考的必考容,考查题型有选择题、填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题,常有以下几个命题角度:已知切点求切线方程、已知切线方程(或斜率)求切点或曲线方程、已知曲线求切线倾斜角的围. 【变式演练7】已知xe x xf 1)(+=. (1)求函数)(x f y =最值;(2)若))(()(2121x x x f x f ≠=,求证:021>+x x .【答案】(1))(x f 取最大值1)0()(max -==f x f ,无最小值;(2)详见解读. 【解读】试卷解读:(1)对)(x f 求导可得x xx x e xe e x e xf -=+-='2)1()(, 令0)(=-='xe xx f 得x=0. 当)0,(-∞∈x 时,0)(>'x f ,函数)(x f 单调递增;当),0(+∞∈x 时,0)(<'x f ,函数)(x f 单调递减, 当x=0时,)(x f 取最大值1)0()(max -==f x f ,无最小值. (2)不妨设21x x <,由(1)得当)0,(-∞∈x 时,0)(>'x f ,函数)(x f 单调递增; 当),0(+∞∈x 时,0)(<'x f ,函数)(x f 单调递减, 若)()(21x f x f =,则210x x <<,考点:1.导数与函数的最值;2.导数与不等式的证明. 【变式演练7】已知函数()ln f x x x =,2()2g x x ax =-+-. (Ⅰ)求函数()f x 在[,2](0)t t t +>上的最小值;(Ⅱ)若函数()()y f x g x =+有两个不同的极值点1212,()x x x x <且21ln 2x x ->,数a 的取值围.【答案】(Ⅰ)min 110()1ln ,t e e f x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,;(Ⅱ)2ln 2ln 2ln()133a >--.【解读】试卷分析:(Ⅰ)由'()ln 10f x x =+=,得极值点为1x e =,分情况讨论10t e <<及1t e≥时,函数)(x f 的最小值;(Ⅱ)当函数()()y f x g x =+有两个不同的极值点,即'ln 210y x x a =-++=有两个不同的实根1212,()x x x x <,问题等价于直线y a =与函数()ln 21G x x x =-+-的图象有两个不同的交点,由)(x G 单调性结合函数图象可知当min 1()()ln 22a G x G >==时,12,x x 存在,且21x x -的值随着a 的增大而增大,而当21ln 2x x -=时,由题意1122ln 210ln 210x x a x x a -++=⎧⎨-++=⎩,214x x ∴=代入上述方程可得2144ln 23x x ==,此时实数a 的取值围为2ln 2ln 2ln()133a >--.试卷解读:(Ⅰ)由'()ln 10f x x =+=,可得1x e=,∴①10t e <<时,函数()f x 在1(,)t e 上单调递减,在1(,2)t e+上单调递增,∴函数()f x 在[,2](0)t t t +>上的最小值为11()f e e=-,②当1t e≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ∴==,min110()1ln ,t e ef x t t t e ⎧-<<⎪⎪∴=⎨⎪≥⎪⎩,;两式相减可得1122ln2()2ln 2x x x x =-=- 214x x ∴=代入上述方程可得2144ln 23x x ==,此时2ln 2ln 2ln()133a =--,所以,实数a 的取值围为2ln 2ln 2ln()133a >--;考点:导数的应用.【变式演练8】设函数()ln 1f x x =+. (1)已知函数()()2131424F x f x x x =+-+,求()F x 的极值; (2)已知函数()()()()2210G x f x ax a x a a =+-++>,若存在实数()2,3m ∈,使得当(]0,x m ∈时,函数()G x 的最大值为()G m ,数a 的取值围.【答案】(1)极大值为0,极小值为3ln 24-;(2)()1ln 2,-+∞.【解读】()(),'F x F x 随x 的变化如下表:x ()0,11()1,22()2,+∞()'F x + 0 - 0+ ()F x3ln 24-当1x =时,函数()F x 取得极大值()10F =。
导数与函数的极值、最值考点与题型归纳考点一 利用导数研究函数的极值考法(一) 已知函数的解析式求函数的极值点个数或极值[例1] 已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数),求函数f (x )的极值.[解] 由f (x )=x -1+a e x ,得f ′(x )=1-aex .①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a ,当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0,所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值.[例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由.[解] f ′(x )=1x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1).令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞).①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤89时,Δ≤0,g (x )≥0,f ′(x )≥0,函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >89时,Δ>0,设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2),因为x 1+x 2=-12,所以x 1<-14,x 2>-14.由g (-1)=1>0,可得-1<x 1<-14.所以当x ∈(-1,x 1)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 1,x 2)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; 当x ∈(x 2,+∞)时,g (x )>0,f ′(x )>0, 函数f (x )单调递增. 因此函数f (x )有两个极值点.③当a <0时,Δ>0,由g (-1)=1>0, 可得x 1<-1<x 2.当x ∈(-1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; 当x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 所以函数f (x )有一个极值点.综上所述,当a <0时,函数f (x )有一个极值点; 当0≤a ≤89时,函数f (x )无极值点;当a >89时,函数f (x )有两个极值点.考法(二) 已知函数的极值点的个数求参数[例3] 已知函数g (x )=ln x -mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.[解] 因为g (x )=ln x -mx +mx,所以g ′(x )=1x -m -mx 2=-mx 2-x +m x 2(x >0),令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎨⎧h (0)>0,12m >0,h ⎝⎛⎭⎫12m <0,解得0<m <12.所以m 的取值范围为⎝⎛⎭⎫0,12. 考法(三) 已知函数的极值求参数[例4] (2018·北京高考)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. [解] (1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x . 所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝⎛⎭⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝⎛⎭⎫12,+∞. 考点二 利用导数研究函数的最值[典例精析]已知函数f (x )=ln xx -1.(1)求函数f (x )的单调区间;(2)设m >0,求函数f (x )在区间[m,2m ]上的最大值.[解] (1)因为函数f (x )的定义域为(0,+∞),且f ′(x )=1-ln x x 2, 由⎩⎪⎨⎪⎧f ′(x )>0,x >0,得 0<x <e ;由⎩⎪⎨⎪⎧f ′(x )<0,x >0,得x >e.所以函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞).(2)①当⎩⎪⎨⎪⎧2m ≤e ,m >0,即0<m ≤e 2时,函数f (x )在区间[m,2m ]上单调递增,所以f (x )max =f (2m )=ln (2m )2m-1;②当m <e <2m ,即e2<m <e 时,函数f (x )在区间(m ,e)上单调递增,在(e,2m )上单调递减,所以f (x )max =f (e)=ln e e -1=1e-1; ③当m ≥e 时,函数f (x )在区间[m,2m ]上单调递减, 所以f (x )max =f (m )=ln mm-1. 综上所述,当0<m ≤e 2时,f (x )max =ln (2m )2m -1;当e 2<m <e 时,f (x )max =1e -1; 当m ≥e 时,f (x )max =ln mm-1. [题组训练]1.(2018·全国卷Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-3322.已知函数f (x )=ln x +ax 2+bx (其中a ,b 为常数且a ≠0)在x =1处取得极值. (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,e]上的最大值为1,求a 的值.解:(1)因为f (x )=ln x +ax 2+bx ,所以f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +b ,因为函数f (x )=ln x +ax 2+bx 在x =1处取得极值, 所以f ′(1)=1+2a +b =0,又a =1,所以b =-3,则f ′(x )=2x 2-3x +1x ,令f ′(x )=0,得x 1=12,x 2=1.当x 变化时,f ′(x ),f (x )随x 的变化情况如下表:所以f (x )的单调递增区间为⎝⎛⎭⎫0,12,(1,+∞),单调递减区间为⎝⎛⎭⎫12,1. (2)由(1)知f ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x(x >0),令f ′(x )=0,得x 1=1,x 2=12a, 因为f (x )在x =1处取得极值,所以x 2=12a≠x 1=1.①当a <0,即12a <0时,f (x )在(0,1)上单调递增,在(1,e]上单调递减,所以f (x )在区间(0,e]上的最大值为f (1),令f (1)=1,解得a =-2. ②当a >0,即x 2=12a>0时,若12a <1,f (x )在⎝⎛⎭⎫0,12a ,[1,e]上单调递增,在⎣⎡⎭⎫12a ,1上单调递减,所以最大值可能在x =12a 或x =e 处取得,而f ⎝⎛⎭⎫12a =ln 12a +a ⎝⎛⎭⎫12a 2-(2a +1)·12a =ln 12a -14a-1<0, 令f (e)=ln e +a e 2-(2a +1)e =1,解得a =1e -2. 若1<12a <e ,f (x )在区间(0,1),⎣⎡⎦⎤12a ,e 上单调递增,在⎣⎡⎭⎫1,12a 上单调递减, 所以最大值可能在x =1或x =e 处取得, 而f (1)=ln 1+a -(2a +1)<0, 令f (e)=ln e +a e 2-(2a +1)e =1, 解得a =1e -2,与1<x 2=12a <e 矛盾.若x 2=12a ≥e ,f (x )在区间(0,1)上单调递增,在(1,e]上单调递减,所以最大值可能在x =1处取得,而f (1)=ln 1+a -(2a +1)<0,矛盾.综上所述,a =1e -2或a =-2.考点三 利用导数求解函数极值和最值的综合问题[典例精析](2019·贵阳模拟)已知函数f (x )=ln x +12x 2-ax +a (a ∈R).(1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥ e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.[解] (1)∵f ′(x )=1x+x -a (x >0),又f (x )在(0,+∞)上单调递增,∴恒有f ′(x )≥0, 即1x +x -a ≥0恒成立,∴a ≤⎝⎛⎭⎫x +1x min , 而x +1x≥2x ·1x=2,当且仅当x =1时取“=”,∴a ≤2. 即函数f (x )在(0,+∞)上为单调递增函数时,a 的取值范围是(-∞,2]. (2)∵f (x )在x =x 1和x =x 2处取得极值, 且f ′(x )=1x +x -a =x 2-ax +1x (x >0),∴x 1,x 2是方程x 2-ax +1=0的两个实根, 由根与系数的关系得x 1+x 2=a ,x 1x 2=1,∴f (x 2)-f (x 1)=ln x 2x 1+12(x 22-x 21)-a (x 2-x 1)=ln x 2x 1-12(x 22-x 21)=ln x 2x 1-12(x 22-x 21)1x 1x 2=ln x 2x 1-12⎝⎛⎭⎫x 2x 1-x 1x 2, 设t =x 2x 1(t ≥ e),令h (t )=ln t -12⎝⎛⎭⎫t -1t (t ≥ e), 则h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-(t -1)22t 2<0,∴h (t )在[e ,+∞)上是减函数, ∴h (t )≤h (e)=12⎝⎛⎭⎫1- e +ee ,故f (x 2)-f (x 1) 的最大值为12⎝⎛⎭⎫1- e +ee .[题组训练]已知函数f (x )=ax 2+bx +ce x (a >0)的导函数f ′(x )的两个零点为-3和0.(1)求f (x )的单调区间;(2)若f (x )的极小值为-e 3,求f (x )在区间[-5,+∞)上的最大值. 解:(1)f ′(x )=(2ax +b )e x -(ax 2+bx +c )e x(e x )2=-ax 2+(2a -b )x +b -c e x.令g (x )=-ax 2+(2a -b )x +b -c ,因为e x >0,所以f ′(x )的零点就是g (x )=-ax 2+(2a -b )x +b -c 的零点,且f ′(x )与g (x )符号相同.又因为a >0,所以当-3<x <0时,g (x )>0,即f ′(x )>0, 当x <-3或x >0时,g (x )<0,即f ′(x )<0,所以f (x )的单调递增区间是(-3,0),单调递减区间是(-∞,-3),(0,+∞). (2)由(1)知,x =-3是f (x )的极小值点,所以有⎩⎪⎨⎪⎧f (-3)=9a -3b +c e -3=-e 3,g (0)=b -c =0,g (-3)=-9a -3(2a -b )+b -c =0,解得a =1,b =5,c =5,所以f (x )=x 2+5x +5e x .由(1)可知当x =0时f (x )取得极大值f (0)=5,故f (x )在区间[-5,+∞)上的最大值取f (-5)和f (0)中的最大者. 而f (-5)=5e -5=5e 5>5=f (0),所以函数f (x )在区间[-5,+∞)上的最大值是5e 5.[课时跟踪检测]A 级1.函数f (x )=x e -x ,x ∈[0,4]的最小值为( ) A .0 B.1e C.4e4 D.2e2 解析:选A f ′(x )=1-xex ,当x ∈[0,1)时,f ′(x )>0,f (x )单调递增, 当x ∈(1,4]时,f ′(x )<0,f (x )单调递减,因为f (0)=0,f (4)=4e 4>0,所以当x =0时,f (x )有最小值,且最小值为0.2.若函数f (x )=a e x -sin x 在x =0处有极值,则a 的值为( ) A .-1 B .0 C .1D .e解析:选C f ′(x )=a e x -cos x ,若函数f (x )=a e x -sin x 在x =0处有极值,则f ′(0)=a -1=0,解得a =1,经检验a =1符合题意,故选C.3.已知x =2是函数f (x )=x 3-3ax +2的极小值点,那么函数f (x )的极大值为( ) A .15 B .16 C .17D .18解析:选D 因为x =2是函数f (x )=x 3-3ax +2的极小值点,所以f ′(2)=12-3a =0,解得a =4,所以函数f (x )的解析式为f (x )=x 3-12x +2,f ′(x )=3x 2-12,由f ′(x )=0,得x =±2,故函数f (x )在(-2,2)上是减函数,在(-∞,-2),(2,+∞)上是增函数,由此可知当x =-2时,函数f (x )取得极大值f (-2)=18.4.(2019·合肥模拟)已知函数f (x )=x 3+bx 2+cx 的大致图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.163解析:选C 由图象可知f (x )的图象过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2,则x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两个不同的实数根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83. 5.(2019·泉州质检)已知直线y =a 分别与函数y =e x+1和y = x -1交于A ,B 两点,则A ,B 之间的最短距离是( )A.3-ln 22B.5-ln 22C.3+ln 22D.5+ln 22解析:选D 由y =e x +1得x =ln y -1,由y =x -1得x =y 2+1,所以设h (y )=|AB |=y 2+1-(ln y -1)=y 2-ln y +2,h ′(y )=2y -1y =2⎝⎛⎭⎫y -22⎝⎛⎭⎫y +22y (y >0),当0<y <22时,h ′(y )<0;当y >22时,h ′(y )>0,即函数h (y )在区间⎝⎛⎭⎫0,22上单调递减,在区间⎝⎛⎭⎫22,+∞上单调递增,所以h (y )min =h ⎝⎛⎭⎫22=⎝⎛⎭⎫222-ln 22+2=5+ln 22.6.若函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.解析:f ′(x )=3x 2-3a 2=3(x +a )(x -a ), 由f ′(x )=0得x =±a ,当-a <x <a 时,f ′(x )<0,函数f (x )单调递减; 当x >a 或x <-a 时,f ′(x )>0,函数f (x )单调递增, ∴f (x )的极大值为f (-a ),极小值为f (a ).∴f (-a )=-a 3+3a 3+a >0且f (a )=a 3-3a 3+a <0, 解得a >22. ∴a 的取值范围是⎝⎛⎭⎫22,+∞. 答案:⎝⎛⎭⎫22,+∞7.(2019·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________.解析:由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a ,当0<x <1a 时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝⎛⎭⎫1a =-ln a -1=-1,解得a =1. 答案:18.(2018·内江一模)已知函数f (x )=a sin x +b cos x (a ,b ∈R),曲线y =f (x )在点⎝⎛⎭⎫π3,f ⎝⎛⎭⎫π3处的切线方程为y =x -π3.(1)求a ,b 的值;(2)求函数g (x )=f ⎝⎛⎭⎫x +π3x 在⎝⎛⎦⎤0,π2上的最小值.解:(1)由切线方程知,当x =π3时,y =0,∴f ⎝⎛⎭⎫π3=32a +12b =0. ∵f ′(x )=a cos x -b sin x ,∴由切线方程知,f ′⎝⎛⎭⎫π3=12a -32b =1, ∴a =12,b =-32.(2) 由(1)知,f (x )=12sin x -32cos x =sin ⎝⎛⎭⎫x -π3, ∴函数g (x )=sin x x ⎝⎛⎭⎫0<x ≤π2,g ′(x )=x cos x -sin x x 2.设u (x )=x cos x -sin x ⎝⎛⎭⎫0≤x ≤π2,则u ′(x )=-x sin x <0,故u (x )在⎣⎡⎦⎤0,π2上单调递减.∴u (x )<u (0)=0,∴g (x )在⎝⎛⎦⎤0,π2上单调递减.∴函数g (x )在 ⎝⎛⎦⎤0,π2上的最小值为g ⎝⎛⎭⎫π2=2π. 9.已知函数f (x )=a ln x +1x (a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.解:由题意,知函数的定义域为{x |x >0},f ′(x )=a x -1x 2=ax -1x 2(a >0).(1)由f ′(x )>0,解得x >1a,所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a,所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a ,无极大值. (2)不存在,理由如下:由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增. ①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数,故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件.②若1<1a ≤e ,即1e ≤a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎣⎡⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a +a =a -a ln a =0,即ln a =1,解得a =e ,而1e≤a <1,故不满足条件.③若1a >e ,即0<a <1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e =a +1e =0,即a =-1e ,而0<a <1e,故不满足条件.综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.B 级1.(2019·郑州质检)若函数f (x )=x 3-ax 2-bx +a 2在x =1时有极值10,则a ,b 的值为( )A .a =3,b =-3或a =-4,b =11B .a =-4,b =-3或a =-4,b =11C .a =-4,b =11D .以上都不对解析:选C 由题意,f ′(x )=3x 2-2ax -b , 则f ′(1)=0,即2a +b =3.①f (1)=1-a -b +a 2=10,即a 2-a -b =9.②联立①②,解得⎩⎪⎨⎪⎧ a =-4,b =11或⎩⎪⎨⎪⎧a =3,b =-3.经检验⎩⎪⎨⎪⎧a =3,b =-3不符合题意,舍去.故选C.2.(2019·唐山联考)若函数f (x )=x 2-12ln x +1在其定义域内的一个子区间(a -1,a +1)内存在极值,则实数a 的取值范围是________.解析:由题意,得函数f (x )的定义域为(0,+∞),f ′(x )=2x -12x =4x 2-12x,令f ′(x )=0,得x =12⎝⎛⎭⎫x =-12舍去, 则由已知得⎩⎨⎧a -1≥0,a -1<12,a +1>12,解得1≤a <32.答案:⎣⎡⎭⎫1,32 3.(2019·德州质检)已知函数f (x )=-13x 3+x 在(a,10-a 2)上有最大值,则实数a 的取值范围是________.解析:由f ′(x )=-x 2+1,知f (x )在(-∞,-1)上单调递减,在[-1,1]上单调递增,在(1,+∞)上单调递减,故函数f (x )在(a,10-a 2)上存在最大值的条件为⎩⎪⎨⎪⎧a <1,10-a 2>1,f (1)≥f (a ),其中f (1)≥f (a ),即为-13+1≥-13a 3+a ,整理得a 3-3a +2≥0,即a 3-1-3a +3≥0, 即(a -1)(a 2+a +1)-3(a -1)≥0,即(a -1)(a 2+a -2)≥0,即(a -1)2(a +2)≥0, 即⎩⎪⎨⎪⎧a <1,10-a 2>1,(a -1)2(a +2)≥0,解得-2≤a <1.答案:[-2,1)4.已知函数f (x )是R 上的可导函数,f (x )的导函数f ′(x )的图象如图,则下列结论正确的是( )A .a ,c 分别是极大值点和极小值点B .b ,c 分别是极大值点和极小值点C .f (x )在区间(a ,c )上是增函数D .f (x )在区间(b ,c )上是减函数解析:选C 由极值点的定义可知,a 是极小值点,无极大值点;由导函数的图象可知,函数f (x )在区间(a ,+∞)上是增函数,故选C.5.如图,在半径为103的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其中A ,B 在直径上,C ,D 在圆周上,将所截得的矩形铁皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁与拼接损耗),记圆柱形罐子的体积为V ,设AD =x ,则V max =________.解析:设圆柱形罐子的底面半径为r , 由题意得AB =2(103)2-x 2=2πr ,所以r =300-x 2π, 所以V =πr 2x =π⎝⎛⎭⎪⎫300-x 2π2x =1π(-x 3+300x )(0<x <103),故V ′=-3π(x 2-100)=-3π(x +10)(x -10)(0<x <103). 令V ′=0,得x =10(负值舍去), 则V ′,V 随x 的变化情况如下表:x (0,10) 10 (10,103)V ′ +0 -V极大值所以当x =10时,V 取得极大值,也是最大值, 所以V max =2 000π.答案:2 000π6.已知函数f (x )=ln(x +1)-ax 2+x(x +1)2,其中a 为常数.(1)当1<a ≤2时,讨论f (x )的单调性;(2)当x >0时,求g (x )=x ln ⎝⎛⎭⎫1+1x +1x ln(1+x )的最大值. 解:(1)函数f (x )的定义域为(-1,+∞),f ′(x )=x (x -2a +3)(x +1)3,①当-1<2a -3<0,即1<a <32时,当-1<x <2a -3或x >0时,f ′(x )>0,则f (x )在(-1,2a -3),(0,+∞)上单调递增, 当2a -3<x <0时,f ′(x )<0,则f (x )在(2a -3,0)上单调递减.②当2a -3=0,即a =32时,f ′(x )≥0,则f (x )在(-1,+∞)上单调递增.③当2a -3>0,即a >32时,当-1<x <0或x >2a -3时,f ′(x )>0, 则f (x )在(-1,0),(2a -3,+∞)上单调递增,当0<x <2a -3时,f ′(x )<0,则f (x )在(0,2a -3)上单调递减.综上,当1<a <32时,f (x )在(-1,2a -3),(0,+∞)上单调递增,在(2a -3,0)上单调递减;当a =32时,f (x )在(-1,+∞)上单调递增;当32<a ≤2时,f (x )在(-1,0),(2a -3,+∞)上单调递增,在(0,2a -3)上单调递减.(2)∵g (x )=⎝⎛⎭⎫x +1x ln(1+x )-x ln x =g ⎝⎛⎭⎫1x , ∴g (x )在(0,+∞)上的最大值等价于g (x )在(0,1]上的最大值.令h (x )=g ′(x )=⎝⎛⎭⎫1-1x 2ln(1+x )+⎝⎛⎭⎫x +1x ·11+x -(ln x +1)=⎝⎛⎭⎫1-1x 2ln(1+x )-ln x +1x -21+x, 则h ′(x )=2x 3⎣⎢⎡⎦⎥⎤ln (1+x )-2x 2+x (x +1)2.由(1)可知当a=2时,f(x)在(0,1]上单调递减,∴f(x)<f(0)=0,∴h′(x)<0,从而h(x)在(0,1]上单调递减,∴h(x)≥h(1)=0,∴g(x)在(0,1]上单调递增,∴g(x)≤g(1)=2ln 2,∴g(x)的最大值为2ln 2.。