数制及其转换
- 格式:ppt
- 大小:240.50 KB
- 文档页数:38
一、常用数制及其相互转换在我们的日常生活中计数采用了多种记数制,比如:十进制,六十进制(六十秒为一分,六十分为一小时,即基数为60,运算规则是逢六十进一),……。
在计算机中常用到十进制数、二进制数、八进制数、十六进制数等,下面就这几种在计算机中常用的数制来介绍一下。
1.十进制数我们平时数数采用的是十进制数,这种数据是由十个不同的数字0、1、2、3、4、5、6、7、8、9任意组合构成,其特点是逢十进一。
任何一个十进制数均可拆分成由各位数字与其对应的权的乘积的总和。
例如:???这里的10为基数,各位数对应的权是以10为基数的整数次幂。
为了和其它的数制区别开来,我们在十进制数的外面加括号,且在其右下方加注10。
2.二进制数在计算机中,由于其物理特性(只有两种状态:有电、无电)的原因,所以在计算机的物理设备中获取、存储、传递、加工信息时只能采用二进制数。
二进制数是由两个数字0、1任意组合构成的,其特点是逢二进一。
例如:1001,这里不读一千零一,而是读作:一零零一或幺零零幺。
为了与其它的数制的数区别开来,我们在二进制数的外面加括号,且在其右下方加注2,或者在其后标B。
任何一个二进制数亦可拆分成由各位数字与其对应的权的乘积的总和。
其整数部分的权由低向高依次是:1、2、4、8、16、32、64、128、……,其小数部分的权由高向低依次是:0.5、0.25、0.125、0.0625、……。
二进制数也有其运算规则:加法:0+0=0????0+1=1???1+0=1????1+1=10乘法:0×0=0????0×1=0????1×0=0????1×1=1二进制数与十进制数如何转换:(1)二进制数—→十进制数对于较小的二进制数:对于较大的二进制数:方法1:各位上的数乘权求和??例如:(101101)2=1×25+0×24+1×23+1×22+0×21+1×20=45(1100.1101)2=1×23+1×22+0×21+0×20+1×2-1+1×2-2+0×2-3+1×2-4=12.8125方法2:任何一个二进制数可转化成若干个100…0?的数相加的总和??例如:(101101)2=(100000)2+(1000)2+(100)2+(1)2而这种100…00形式的二进制数与十进制数有如下关联:1后有n个0,则这个二进数所对应的十进制数为2n。
数制及其相互转换1、各类数制定义(1)二进制数:0或1表示:11011B (11011)2(2)十进制数:0~9表示:74D (74)10(3)八进制数:0~7表示:13O (13)8(4)十六进制数:0~9、A 、B、C、 D 、E 、F 表示:1E4H (1E4)162(3331)基数2)位权按位权展开式相加所得的结果.例: (11011)2(1E4)16102( 215)10=( D7 )16①整数部分: 除2/16方法:1位对3位0+0=0 0+1=1 1+0=1 1+1=10方法:3位对1位(以小数点为中心,不足3位左右对应补0)例如: ( 00 1 101 110 111. 110)2方法:4位对1位(类似二进制转换八进制,以小数点为中心,不足4位左右对应补0)例如: ( 00 11 0111 0111. 1100)2= (377. C)16数据单位1、位(bit):0或12、字节(Byte):1B= 8b4、字(W ord)字符编码1、ASCII码A)8 B)A C)a D)Z大写字母A 的ASCII码为(65)10(2)国标码例如:“啊”字的国标码为3021H求值:“啊”区位码为1601D,求“啊”的国标码①将区码、位码分别转换为十六进制16 1616 1 00 116D=10H01D=01H②将区码和位码十位进制数合在一起写 1001H③区位码H+2020H=国标码1001H+2020H=3021H(3)机内码机内码=国标码+8080H(4)汉字输入码(5)汉字的字形码16*16=256b/1B =8b/256/8占用32个字节24*24 32*32。
数的转换与转化数学是一门广泛应用于日常生活和各个学科领域的学科。
在实际应用中,我们常常需要进行数的转换和转化。
本文将探讨一些常见的数的转换和转化方法,并介绍一些数的转换和转化在实际生活中的应用。
一、数制的转换数制是用来表示数的一种方法。
常见的数制有十进制、二进制、八进制和十六进制等。
在不同的数制中,数的表示方式和基数不同,因此需要进行数制的转换。
1. 十进制转二进制十进制转二进制是将十进制数转换为二进制数的过程。
其方法是将十进制数不断除以2,并将余数倒排组成二进制数。
例如,将十进制数13转换为二进制数的过程如下:13÷2=6余16÷2=3余03÷2=1余11÷2=0余1将上述余数倒排,得到二进制数1101,即为十进制数13的二进制表示。
2. 二进制转十进制二进制转十进制是将二进制数转换为十进制数的过程。
其方法是将二进制数从最低位开始,逐位乘以2的幂,再求和。
例如,将二进制数1011转换为十进制数的过程如下:1×2^3 + 0×2^2 + 1×2^1 + 1×2^0 = 8 + 0 + 2 + 1 = 11将上述计算得到的和就是二进制数1011的十进制表示。
二、单位的转换单位的转换是将一种物理量表示方式转换为另一种物理量表示方式的过程。
在日常生活中,我们经常需要进行单位的转换,以满足不同情境下的需求。
1. 长度单位的转换长度单位常见的转换关系有米(m)、厘米(cm)和英寸(inch)。
其转换关系如下:1 m = 100 cm1 inch ≈ 2.54 cm例如,将10英寸转换为厘米的过程如下:10 inch × 2.54 cm/inch = 25.4 cm2. 温度单位的转换温度单位常见的转换关系有摄氏度(℃)和华氏度(℉)。
其转换关系如下:℉ = ℃ × 9/5 + 32℃ = (℉ - 32) × 5/9例如,将华氏度转换为摄氏度的过程如下:℉ = 100 ℃ × 9/5 + 32 = 212 ℉三、数的转化数的转化是指将某种数值转换为另一种数值的过程。
§ 数制及其转换由于计算机采用二进制,而人们熟悉的是十进制,所以我们从分析数制入手,从而进一步了解、掌握计算机中所采用的各种数据的表示方法。
一.数制由十进制记数法抽象推理,可得到任意的R进制的表示规律:(1)R进制(基数R为大于1的任意正整数):数码个数R个,分别为1、2、…R-1;(2)一个数据中相邻两数码的左边一个单位是右边一个单位的R 倍;(3)每个数位计满R 向高位进位(逢R 进位);(4)R 进制表示的一个数的实际值为每一个位上的实际值的总和:其中R 为基数,i为位序号,Di 代表第i位上的一个数据符,可以是0到R-1符号中的任意一个,Ri 代表第i 位的位权,-K 和m-1分别是该数的最低位和在高位的位序号(N=k+m)。
(5)按权展开:二.计算机中常用的几种数制1.二进制(Binary) R=2,数符为0,1;逢二进一;二进制数的主要特点有:(1)实现简单:每个数位可用任意具有两个不同稳定状态的器件来表示。
如晶体管的导通与截止、电压的高与低、灯的亮与灭等均可存储、传送“0”和“1”。
(2)二进制的算术运算法则简单加法: 0+0=00+1=1+0=1 1+1=10 乘法: 0*0=0*1=1*0=0 1*1=1 例: 10101+111=100011101-110=111 1011*101=110111 101101÷110=111(余11)(3)可利用逻辑代数对二进制数进行逻辑运算逻辑与(AND):0∧0=0∧1=1∧0=0 1∧1=1 逻辑或(OR):0∨0=0 0∨1=1∨0=1∨1=1 逻辑非(NOT):逻辑异或(XOR):0⊕0=1⊕1=0 1⊕0=0⊕1=12.八进制(Octal)由于二进制数据的基R较小,所以二进制数据的书写和阅读不方便,为此,在小型机中引入了八进制。
八进制的基R=8=23,有数码0、1、2、3、4、5、6、7,并且每个数码正好对应三位二进制数,所以八进制能很好地反映二进制。
常用数制及其相互转换1.十进制数有十个不同数字0—9,并且“逢十进一”。
对于任意一个十进制数,都可以表示成按权展开的多项式。
如:1804=1╳103+8╳102+0╳101+4╳10048.25=4╳101+8╳100+2╳10-1+5╳10-2十进制中,个、十、百、千,┄┄各位的权,分别为100、101、102、103,┄┄。
10被称为基数。
2.二进制数有二个不同数字:0和1,并且“逢二进一”。
基数是2,各数位的权是基数的整数次幂。
整数部分各数位的权从最低位开始依次是20、21、22、23、24、┄┄,小数部分各数位的权从最高位开始依次是2-1、2-2、2-3、┄┄。
二进制数的表示:如(1101)2,将二进制数用小括号括起来,右下角加个2。
问:二进制数的按权展开形式如何表示?(1101)2=1╳23+1╳22+0╳21+1╳20二进制数运算规则:0+0=0 0+1=1 1+0=1 1+1=100╳0=0 0╳1=0 1╳0=0 1╳1=13、二进制数与十进制数的相互转换(1)二进制数转换成十进制数(按权展开求和)。
例1:把(1101.01)2转换成十进制数(1011.01)2=(1×23+0×22+1×21+1×20+0×2-1+1×2-2)10=(8+0+2+1+0+0.25)10=(11.25)10二进制数转十进制数,是将二进制数按权展开求和。
(2)十进制数转换成二进制数(除以2反序取余)。
例2:把(89)10转换成二进制数(89)10=(1011001)22 89 余数2 44 (1)2 22 02 11 02 5 (1)2 2 (1)2 1 00 (1)十进制数转二进制数,是将十进制数除以2,除完为止,然后反序取余数。
即最先得到的余数作为最低位。
4、八进制数基数为8,有八个数字0—7,运算规则是“逢八进一”。
(1)十进制数转八进制数:除以8反序取余例:(215)10=(?)88 215 余数8 26 (7)8 3 (2)0 (3)所以(215)10=(327)8(2)八进制数转十进制数:按权展开求和例:(327)8=(?)10(327)8=3╳82+2╳81+7╳80=(215)10(3)八进制数转二进制数方法一:将八进制数转十进制数,再将十进制数转二进制数。