第六章_铸造多晶硅
- 格式:ppt
- 大小:9.95 MB
- 文档页数:66
铸造多晶硅中杂质对少子寿命的影响对于太阳电池材料,勺子寿命是衡量材料性能的一个重要参数。
多晶硅锭中存在高密度的缺陷和高浓度的杂质(氧、碳以及过渡族金属铁等)。
有研究表明,相比于晶界和位错,氧、铁等主要的杂质元素对硅锭中少子寿命的影响更大。
氧是铸造多晶硅材料中最主要的杂质元素之一,间隙氧通常不显电学活性,对少子寿命没有影响。
但在晶体生长或热处理时,在不同温度氧会形成热施主、新施主、氧沉淀,氧沉淀会吸引铁等金属元素。
另外铁也被认为铸造多晶硅中最常见的有害杂质之一。
P型硅中,铁通常与硼结合成铁-硼对,铁一硼对在室温下能稳定存在,但在200℃下热处理或者强光照可以使铁一硼对分解而形成间隙铁离子和硼离子,由于间隙铁离子和铁一硼对少数载流子复合能力的不同,使得处理前后少子寿命值出现变化,从而可以建立起间隙铁浓度对应少子寿命值变化之间的关系。
杂质在铸造多晶硅硅锭中的分布,与该杂质在硅中的分凝系数K有关。
在铸造多晶硅锭料由底部向顶部逐渐凝固时,如果杂质的分凝系数K<1,则凝固过程中,固相中的杂质不断地被带到熔体中,出现杂质向底部集中,越接近底部浓度越大,相反,如果分凝系数K>1,则杂质集中在顶部,越接近顶部浓度越大。
氧主要集中在硅锭头部,其浓度呈现从硅锭底部向顶部逐渐降低的趋势。
可以认为分凝机制对于氧在熔体硅中的传递和分布起主要作用。
间隙铁分布为:头部和尾部浓度较高,中间部分浓度较低,且分布较为均匀。
这与仅由分凝机制决定的间隙铁浓度分布,特别是在底部处产生了较大偏离。
硅锭底部处出现了较大的间隙铁浓度,由于铁在硅中具有较大的扩散系数,所以这可能是硅锭底部凝固完成后的冷却过程中,铁由坩埚或者氮化硅保护层向其进行固相扩散的结果。
事实上硅锭的底部最先开始凝固,通常整个凝固过程将持续数十小时,硅锭底部将有较长时间处于高温状态,因而使得固相扩散的现象有可能发生。
固相扩散的程度与凝固后硅锭的冷却速率以及各温度下的铁的扩散系数有关。
多晶硅铸锭工艺流程首先是炉外气氛净化的工艺步骤。
炉外气氛净化是为了防止多晶硅制备过程中受到杂质的污染。
该步骤通常包括热氢气体的预净化、氢气和氩气混合气体的净化和净化后流经硅原料的高纯气流净化等过程,以确保多晶硅的高纯度。
接下来是硅熔炼的工艺步骤。
硅熔炼是将高纯度硅原料进行熔融,形成硅液的过程。
一般采用的炉型有电阻炉和感应炉。
原料硅经过预热后在熔炼炉中加热至熔点以上,形成熔融的硅液。
为了保证硅液的纯度,熔炼中要注意控制氧气含量以避免氧化,同时定期检测硅液中的杂质含量。
第三个步骤是硅液稀释。
硅液稀释是为了减少硅液的纯度,使其适用于铸锭成型。
主要通过向硅液中加入高纯度的硅原料稀释剂,将硅液的纯度降低到所需的水平。
稀释剂加入的量需要根据目标硅液纯度和成本来进行调整。
接下来是浇注成铸锭的工艺步骤。
稀释后的硅液通过铸锭机浇注进铸锭模具中,形成硅铸锭。
为了确保铸锭质量,需要控制浇注速度、温度和铸锭旋转速度等参数。
同时还要注意避免气泡和杂质的污染。
然后是退火的工艺步骤。
铸锭成型后需要进行退火处理,以消除内部应力和杂质的影响,提高硅材料的电学性能。
退火条件通常包括温度、气氛和时长的控制。
通过退火处理,硅铸锭的结晶结构得到优化,提高了电池和集成电路的性能。
最后是切割的工艺步骤。
硅铸锭经过退火处理后,需要进行切割成硅片。
切割通常采用线切割或磁力切割技术。
切割后的硅片可以用于制备太阳能电池或集成电路等应用。
综上所述,多晶硅铸锭工艺流程包括炉外气氛净化、硅熔炼、硅液稀释、浇注成铸锭、退火和切割等步骤。
每一步骤都需要严格控制工艺参数,以确保多晶硅的高纯度和铸锭的质量。
这些工艺步骤是制备高质量多晶硅铸锭的关键。
缺陷和杂质2023-11-09•铸造多晶硅太阳电池概述•铸造多晶硅的结构缺陷•铸造多晶硅中的杂质目录•铸造多晶硅结构缺陷和杂质的表征与检测方法•铸造多晶硅结构缺陷和杂质的控制与优化•展望与未来发展趋势01铸造多晶硅太阳电池概述铸造多晶硅太阳电池的制造工艺已经非常成熟,可以实现大规模生产。
制造工艺成熟转换效率较高制造成本较低铸造多晶硅太阳电池的转换效率较高,可以满足大部分应用需求。
铸造多晶硅太阳电池的制造成本较低,具有较好的经济性。
030201吸光层由多晶硅材料构成,能够吸收太阳光并将其转化为电能。
吸光层导电层由掺杂的多晶硅材料构成,能够将吸光层产生的电流导出并传输到外部电路中。
导电层背反射器用于将太阳光反射回吸光层,以增加光吸收效果。
背反射器导电层制备将掺杂的多晶硅材料通过热处理和加工等工艺制成导电层。
铸造多晶硅太阳电池的制造过程原材料准备制造铸造多晶硅太阳电池需要准备多晶硅材料、掺杂剂、反射器等原材料。
吸光层制备将多晶硅材料通过热处理和掺杂等工艺制成吸光层。
背反射器制备将反射器材料通过加工等工艺制成背反射器。
组装将吸光层、导电层和背反射器组装在一起,形成完整的铸造多晶硅太阳电池。
02铸造多晶硅的结构缺陷在铸造多晶硅中,晶界是常见的结构缺陷。
晶界是指不同晶粒之间的交界,通常会对材料的性能产生负面影响。
在太阳电池中,晶界会降低载流子的迁移率,导致光电转换效率下降。
晶界位错是指晶体结构中的原子排列错位。
在铸造多晶硅中,位错会破坏晶体结构的周期性,导致能带结构发生变化。
位错还会影响载流子的散射和复合,进一步降低太阳电池的性能。
位错铸造多晶硅中的晶界与位错杂质陷阱在铸造多晶硅中,杂质原子通常会聚集在晶界或位错等缺陷处。
这些杂质原子会捕获电子或空穴,形成杂质能级,从而影响载流子的迁移和复合过程。
杂质陷阱对太阳电池的光电转换效率产生负面影响。
热处理与杂质陷阱通过热处理可以部分消除杂质陷阱的影响。
在高温下,杂质原子有机会从缺陷处扩散出去,从而减少杂质陷阱的数量。
定向凝固制备铸造多晶硅的原理及应用综述摘要:阐述了介绍了定向凝固应用于硅材料的理论基础,论述了近年来定向凝固制备技术在杂质提纯和晶体生长的研究进展,提出了定向凝固制备铸造多晶硅研究现状和存在的问题。
展望今后的发展前景,认为新型的定向凝固技术制备出的硅锭在杂质含量、晶体结构方面均优于传统凝固技术,应积极改善定向凝固技术,以制备高品质的太阳能硅材料。
关键词定向凝固;铸造多晶硅;杂质和缺陷;转化效率晶体硅太阳能电池包括单晶电池和多晶电池2种,多晶电池的市场份额占到一半以上,商业化的多晶电池效率可以达到14%左右[1]。
实验条件下,多晶电池的最高转化效率达到20.30左右,多晶电池的效率虽然略低于单晶电池1%~2%,但多晶电池制造成本低、环境污染小,仍有很高的性价比和市场[2]。
近年来,由于技术改良、电池效率提高及生产成本下降等有利因素,因而大大促进了多晶电池应用技术的发展,也使业内专家学者给予了多晶电池制备技术更多研究和关注[3]。
影响多晶电池转换效率主要有2个方面:一是多晶硅铸锭的纯度,即使材料中含有少量的杂质,对电池的光电性能就有很大的影响[4];二是尽量减少材料中各种缺陷,多晶硅铸锭中的晶界、位错与杂质聚集成载流子复合中心,大大的降低了多晶电池效率。
由以上表述可知,要提高多晶电池的效率,必须围绕提高材料纯度和降低材料缺陷的技术进行研究,而定向凝固技术正是制备硅晶体材料的典型应用。
定向凝固技术开始只用于传统的高温合金研制,经过几十年的发展,它已经是一种成熟的材料制备技术[5]。
定向凝固技术在多晶硅铸造主要是控制晶体生长和杂质提纯2方面的应用。
定向凝固技术可以很好地控制组织的晶面取向,消除横向晶界,获得大晶粒或单晶组织,提高材料的力学性能[6]。
同时,定向凝固可生成按照一定晶面取向、排列整齐的晶体结构,由于分凝系数的不同,杂质凝聚于晶界和铸锭上方,对材料起到提纯作用。
1. 基本原理多晶硅铸锭实际上就是由定向排列的柱状晶体组合形成,形成的理论基础就是定向凝固原理。
第1篇一、引言多晶硅是光伏产业和半导体产业的重要原材料,广泛应用于太阳能电池、太阳能热利用、半导体器件等领域。
随着新能源产业的快速发展,对多晶硅的需求量日益增加。
本文将详细介绍多晶硅的生产工艺流程,旨在为相关企业和研究人员提供参考。
二、多晶硅生产工艺流程概述多晶硅的生产工艺流程主要包括以下几个阶段:原料处理、还原反应、熔融提纯、铸造、切割、清洗、包装等。
三、多晶硅生产工艺流程详解1. 原料处理多晶硅的生产原料主要是冶金级硅(Si),其含量在98%以上。
首先,将冶金级硅进行破碎、研磨等处理,使其达到一定的粒度要求。
2. 还原反应还原反应是多晶硅生产的关键环节,其主要目的是将冶金级硅中的杂质去除,得到高纯度的多晶硅。
还原反应分为以下几个步骤:(1)将处理后的冶金级硅加入还原炉中。
(2)在还原炉中通入还原剂,如碳、氢气等,与冶金级硅发生还原反应。
(3)在还原过程中,炉内温度保持在约1100℃左右,反应时间为几小时至几十小时。
(4)反应结束后,将还原炉内的物料进行冷却、破碎、研磨等处理。
3. 熔融提纯还原反应得到的粗多晶硅中仍含有一定的杂质,需要通过熔融提纯的方法进一步去除。
熔融提纯主要包括以下几个步骤:(1)将粗多晶硅加入熔融炉中。
(2)在熔融炉中通入提纯剂,如氢气、氯气等,与粗多晶硅发生反应,生成挥发性杂质。
(3)将挥发性杂质通过炉顶排气系统排出,实现提纯。
(4)提纯结束后,将熔融炉内的物料进行冷却、破碎、研磨等处理。
4. 铸造将提纯后的多晶硅熔体倒入铸造炉中,进行铸造。
铸造过程主要包括以下几个步骤:(1)将熔融的多晶硅倒入铸锭模具中。
(2)在铸锭模具中通入冷却水,使多晶硅迅速凝固。
(3)待多晶硅凝固后,将铸锭模具从熔融炉中取出,得到多晶硅铸锭。
5. 切割将多晶硅铸锭切割成所需尺寸的硅片。
切割过程主要包括以下几个步骤:(1)将多晶硅铸锭放置在切割机上。
(2)在切割机上安装切割刀片,将多晶硅铸锭切割成硅片。
铸造多晶硅的书
引言
铸造多晶硅是一项重要的工艺,它在太阳能电池、集成电路和半导体等领域都有广泛应用。
本书将详细介绍铸造多晶硅的原理、方法和应用,帮助读者深入了解这一技术。
第一章:多晶硅概述
1.1 多晶硅的定义和特性 1.2 多晶硅在工业中的应用
第二章:铸造多晶硅的原理
2.1 多晶硅的结构特点 2.2 铸造多晶硅的基本原理 2.3 影响铸造质量的因素
第三章:铸造多晶硅的方法
3.1 传统方法:Czochralski法 3.1.1 Czochralski法工艺流程 3.1.2 Czochralski法优缺点及改进措施
3.2 新兴方法:区熔法、浮区法等 3.2.1 区熔法工艺流程及优缺点 3.2.2 浮区法工艺流程及优缺点
第四章:铸造多晶硅设备与工艺参数控制
4.1 铸造多晶硅设备概述 4.2 温度控制 4.3 压力控制 4.4 搅拌控制
第五章:铸造多晶硅的质量控制与评估
5.1 多晶硅的质量评估指标 5.2 质量控制方法和流程 5.3 质量问题分析与解决
第六章:铸造多晶硅的应用领域
6.1 太阳能电池生产中的应用 6.2 集成电路生产中的应用 6.3 半导体材料研究中的应用
结论
本书详细介绍了铸造多晶硅的原理、方法和应用,希望读者通过学习本书,能够全面了解这一技术,并在实际工作中运用自如。
第六章硅材料加工20世纪90年代,太阳能光伏工业还是主要建立在单晶硅的基础上。
虽然单晶硅太阳电池的成本在不断下降,但是与常规电力相比还是缺乏竞争力,因此,不断降低成本是光伏界追求的目标。
自20世纪80年代以来,铸造多晶硅发明和应用增长迅速,80年代末期它仅占太阳电池材料的10%左右,而在1996年底它已占整个太阳电池材料的36%左右,1998年后,多晶硅电池占据第一位,首次超过了单晶硅电池,它以相对低成本、高效率的优势不断挤占单晶硅市场,成为最有竞争力的太阳电池材料之一。
21世纪初已占50%以上,成为最主要的太阳电池材料之一。
表6-1列出了单晶硅与多晶硅相关方面的比较[1-4]。
表6-1 单晶硅与多晶硅相关方面的比较单晶硅多晶硅制备方法直拉单晶法(CZ)铸造多晶法(mc)硅片大小100mm×100mm,125mm×125mm, 150mm×150mm100mm×100mm,150mm×150mm,210mm×210mm硅片电阻率(Ω·cm)1~30.5~2硅片厚度(um) 200~300 220~300 电池效率 15%~17% 14%~16%主要优点转换效率高、杂质浓度低、质量高材料利用率高、能耗小、成本低、尺寸较大主要缺点材料浪费大、能耗高、成本高、尺寸较小有晶界、晶粒、位错、微缺陷、较高杂质太阳电池产品需要高纯的原料,对于太阳电池要求硅材料的纯度至少是99.99998%,即我们所说的至少6个9,从二氧化硅到适用于制作太阳能电池用的硅片,需要经过漫长的生产工艺和过程[5-6]。
一般可大致分为:二氧化硅→冶金级硅→高纯三氯氢硅→高纯多晶硅原料→单晶硅棒或多晶硅锭→硅片→太阳电池→电池组件。
而单晶硅棒或多晶硅锭制成硅片是一个重要的过程,它对太阳能电池性能和效率有重要的影响[7-10]。
太阳电池用单晶硅片,一般有两种形状:一种是圆形,另一种是方形。