分支限界法求解装载问题实验总结(114)
- 格式:pdf
- 大小:174.83 KB
- 文档页数:8
用分支限界算法解装载问题详解一、实验目的1、理解分支限界法的概念,掌握分支限界法的基本要素。
2、掌握设计分支限界法的一般步骤,针对具体问题,能应用分支限界法求解二、实验内容1、问题描述:有一批共个集装箱要装上2艘载重量分别为C1和C2的轮船,其中集装箱i的重量为Wi,且w1+…+wn<= C1+ C2; 装载问题要求确定是否有一个合理的装载方案可将这个集装箱装上这2艘轮船。
如果有,找出一种装载方案。
2、数据输入:文件输入或键盘输入。
3、要求:1)完成上述问题的队列式分支限界法解决问题,时间为1 次课。
2)独立完成实验及实验报告。
三、实验步骤1、理解方法思想和问题要求。
2、采用编程语言实现题目要求。
3、上机输入和调试自己所写的程序。
4、附程序主要代码:#include <bits/stdc++、h>using namespace std;class MaxHeapQNode{public: MaxHeapQNode*parent; int lchild; int weight; int lev;};structcmp{ bool operator()(MaxHeapQNode *&a, MaxHeapQNode *&b)const { return a->weight < b->weight; }};int n;int c;int bestw;int w[100];int bestx[100];voidInPut(){ scanf("%d %d", &n, &c); for(int i =1; i <= n;++i)scanf("%d", &w[i]);}voidAddAliveNode(priority_queue<MaxHeapQNode *,vector<MaxHeapQNode *>, cmp> &q, MaxHeapQNode *E, int wt, int i, int ch){ MaxHeapQNode *p = new MaxHeapQNode; p->parent = E; p->lchild = ch; p->weight = wt; p->lev = i +1; q、push(p);}voidMaxLoading(){ priority_queue<MaxHeapQNode *,vector<MaxHeapQNode *>, cmp > q; // 大顶堆 //定义剩余重量数组r int r[n +1]; r[n] = 0; for(int j = n-j)r[j] = r[j +1] + w[j +1]; int i =1; MaxHeapQNode *E; int Ew = 0; while(i != n +1){ if(Ew + w[i] <= c){ AddAliveNode(q, E, Ew + w[i] + r[i], i,1); } AddAliveNode(q, E, Ew + r[i], i, 0); //取下一节点 E = q、top(); q、pop(); i = E->lev; Ew = E->weight1]; } bestw = Ew; for(int j = n; j > 0;j){ bestx[j] = E->lchild; E = E->parent; }}void OutPut(){ printf("最优装载量为 %d\n", bestw); printf("装载的物品为 \n"); for(int i =1; i <= n; ++i)if(bestx[i] ==1)printf("%d ", i);}int main(){ InPut(); MaxLoading(); OutPut();}5、实验结果:4、装载问题实验分析:1、将wt<=c和Ew+r>=bestw作为限界判定。
实验五优先队列式分支限界法解装载问题09电信实验班I09660118 徐振飞一、实验题目实现书本P201所描述的优先队列式分支限界法解装载问题二、实验目的(1)掌握并运用分支限界法基本思想(2)运用优先队列式分支限界法实现装载问题(3)比较队列式分支限界法和优先队列式分支限界法的优缺点三、实验内容和原理(1)实验内容有一批共n个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i的重量为Wi,且∑=+≤niiccw121,要求确定是否有一个合理的装载方案可将这n个集装箱装上这2艘轮船。
如果有,请给出方案。
(2)实验原理解装载问题的优先队列式分支限界法用最大优先队列存储活结点表。
活结点x在优先队列中的优先级定义为从根结点到结点x的路径所相应的载重量再加上剩余集装箱的重量之和。
优先队列中优先级最大的活结点成为下一个扩展结点。
优先队列中活结点x的优先级为x.uweight。
以结点x为根的子树中所有结点相应的路径的载重量不超过x.uweight。
子集树中叶结点所相应的载重量与其优先级相同。
因此在优先队列式分支限界法中,一旦有一个叶结点成为当前扩展结点,则可以断言该叶结点所相应的解即为最优解,此时终止算法。
上述策略可以用两种不同方式来实现。
第一种方式在结点优先队列的每一个活结点中保存从解空间树的根结点到该活结点的路径,在算法确定了达到最优值的叶结点时,就在该叶结点处同时得到相应的最优解。
第二种方式在算法的搜索进程中保存当前已构造出的部分解空间树,在算法确定了达到最优值的叶结点时,就可以在解空间树中从该叶结点开始向根结点回溯,构造出相应的最优解。
在下面的算法中,采用第二种方式。
四、源程序import parator;import java.util.Iterator;import java.util.PriorityQueue;import java.util.Scanner;public class test5 {public void addLiveNode(PriorityQueue<HeapNode> H,bbnode E,int wt,boolean ch,int lev){bbnode b = new bbnode(E,ch);HeapNode N = new HeapNode(b, wt, lev);H.add(N);}public int maxLoading(int w[],int c,int n,boolean bestx[]){PriorityQueue<HeapNode> H = new PriorityQueue(1000,new comp());/*生成最大堆*/int[] r = new int[n+1];r[n] = 0;for(int j=n-1;j>0;j--){r[j] = r[j+1] + w[j+1];}int i = 1;bbnode E = new bbnode(null,false);int Ew = 0;while(i!=n+1){if(Ew+w[i]<=c){addLiveNode(H, E, Ew+w[i]+r[i], true, i+1);}addLiveNode(H, E, Ew+r[i], false, i+1);HeapNode N;N=H.poll();i = N.level;E = N.ptr;Ew = N.uweight - r[i-1];}//构造最优解for(int j=n;j>0;j--){bestx[j] = E.Lchild;E = E.parent;}return Ew;}public static void main(String[] args){System.out.println("请输入物品总数:");Scanner sc1 = new Scanner(System.in);int n = sc1.nextInt();int[] w = new int[n+1];System.out.println("请输入物品重量:");Scanner sc2 = new Scanner(System.in);for(int i=1;i<=n;i++){w[i] = sc2.nextInt();}System.out.println("请输入箱子重量:");Scanner sc3 = new Scanner(System.in);int c1 = sc3.nextInt();int c2 = sc3.nextInt();boolean[] bestx = new boolean[100];test5 t = new test5();//处理第一个箱子System.out.println("first:"+t.maxLoading(w, c1, n, bestx));System.out.print("可装重为:");int count = 0;for(int i=1;i<=n;i++){if(bestx[i]){count++;System.out.print(w[i]+" "); /*输出一个可行方案*/ }}System.out.println();/*处理第二个箱子*/int m = n - count;int[] ww = new int[m+1];int k = 1;for(int i=1;i<=n;i++){if(!bestx[i]){ww[k] = w[i];k++;bestx[i] = false;}}System.out.println();System.out.println("second:"+t.maxLoading(ww, c2, m, bestx));System.out.print("可装重为:");for(int i=1;i<=m;i++){if(bestx[i]){System.out.print(ww[i]+" "); /*输出一个可行方案*/ }}}}/*堆结点类*/class HeapNode{bbnode ptr;int uweight;int level;public HeapNode(){}public HeapNode(bbnode ptr,int uweight,int level){this.ptr = ptr;this.uweight = uweight;this.level = level;}public String toString(){return ""+this.uweight;}}class bbnode{bbnode parent;boolean Lchild;public bbnode(bbnode node,boolean ch){this.parent = node;this.Lchild = ch;}}//定义比较器类class comp implements Comparator<HeapNode>{@Overridepublic int compare(HeapNode o1, HeapNode o2) {int dif = o1.uweight-o2.uweight;if(dif>0){return -1;}else if(dif==0){return 0;}else{return 1;}}}五、实验结果和分析a.输入格式说明:(1)首先输入物品总数量(2)第二栏输入所有物品重量(3)第三栏输入2个箱子的重量b.输出格式说明:(1)首先输出first的字样,后面的数字表示第一个箱子所能装载的最大重量,紧接着的一行输出一种可以选择装载的方案(2)Second字样后面的数字表示第二个箱子所能装载的最大重量,紧接着的一行输出一种可行方案经过分析,上述结果正确。
算法——分⽀限界法(装载问题)对⽐回溯法回溯法的求解⽬标是找出解空间中满⾜约束条件的所有解,想必之下,分⽀限界法的求解⽬标则是找出满⾜约束条件的⼀个解,或是满⾜约束条件的解中找出使某⼀⽬标函数值达到极⼤或极⼩的解,即在某种意义下的最优解。
另外还有⼀个⾮常⼤的不同点就是,回溯法以深度优先的⽅式搜索解空间,⽽分⽀界限法则以⼴度优先的⽅式或以最⼩耗费优先的⽅式搜索解空间。
分⽀限界法的搜索策略在当前节点(扩展节点)处,先⽣成其所有的⼉⼦节点(分⽀),然后再从当前的活节点(当前节点的⼦节点)表中选择下⼀个扩展节点。
为了有效地选择下⼀个扩展节点,加速搜索的进程,在每⼀个活节点处,计算⼀个函数值(限界),并根据函数值,从当前活节点表中选择⼀个最有利的节点作为扩展节点,使搜索朝着解空间上有最优解的分⽀推进,以便尽快地找出⼀个最优解。
分⽀限界法解决了⼤量离散最优化的问题。
选择⽅法1.队列式(FIFO)分⽀限界法队列式分⽀限界法将活节点表组织成⼀个队列,并将队列的先进先出原则选取下⼀个节点为当前扩展节点。
2.优先队列式分⽀限界法优先队列式分⽀限界法将活节点表组织成⼀个优先队列,并将优先队列中规定的节点优先级选取优先级最⾼的下⼀个节点成为当前扩展节点。
如果选择这种选择⽅式,往往将数据排成最⼤堆或者最⼩堆来实现。
例⼦:装载问题有⼀批共n个集装箱要装上2艘载重量分别为c1,c2的轮船,其中集装箱i的重量为wi,且要求确定是否有⼀个合理的装载⽅案可将这n个集装箱装上这2艘轮船。
可证明,采⽤如下策略可以得到⼀个最优装载⽅案:先尽可能的将第⼀艘船装满,其次将剩余的集装箱装到第⼆艘船上。
代码如下://分⽀限界法解装载问题//⼦函数,将当前活节点加⼊队列template<class Type>void EnQueue(Queue<Type> &Q, Type wt, Type &bestw, int i, int n){if(i == n) //可⾏叶结点{if(wt>bestw) bestw = wt ;}else Q.Add(wt) ; //⾮叶结点}//装载问题先尽量将第⼀艘船装满//队列式分⽀限界法,返回最优载重量template<class Type>Type MaxLoading(Type w[],Type c,int n){//初始化数据Queue<Type> Q; //保存活节点的队列Q.Add(-1); //-1的标志是标识分层int i=1; //i表⽰当前扩展节点所在的层数Type Ew=0; //Ew表⽰当前扩展节点的重量Type bestw=0; //bestw表⽰当前最优载重量//搜索⼦集空间树while(true){if(Ew+w[i]<=c) //检查左⼉⼦EnQueue(Q,Ew+w[i],bestw,i,n); //将左⼉⼦添加到队列//将右⼉⼦添加到队列即表⽰不将当前货物装载在第⼀艘船EnQueue(Q,Ew,bestw,i,n);Q.Delete(Ew); //取下⼀个节点为扩展节点并将重量保存在Ewif(Ew==-1) //检查是否到了同层结束{if(Q.IsEmpty()) return bestw; //遍历完毕,返回最优值Q.Add(-1); //添加分层标志Q.Delete(Ew); //删除分层标志,进⼊下⼀层i++;}}}算法MaxLoading的计算时间和空间复杂度为O(2^n).上述算法可以改进,设r为剩余集装箱的重量,当Ew+r<=bestw的时候,可以将右⼦树剪去。
第1篇一、实验目的1. 理解并掌握分枝限界法的基本原理和实现方法。
2. 通过实际编程,运用分枝限界法解决实际问题。
3. 比较分析分枝限界法与其他搜索算法(如回溯法)的优缺点。
4. 增强算法设计能力和编程实践能力。
二、实验内容本次实验主要涉及以下内容:1. 分支限界法的基本概念和原理。
2. 分支限界法在单源最短路径问题中的应用。
3. 分支限界法的实现步骤和代码编写。
4. 分支限界法与其他搜索算法的对比分析。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发环境:PyCharm四、实验步骤1. 算法描述:分支限界法是一种用于解决组合优化问题的算法,其基本思想是在问题的解空间树中,按照一定的搜索策略,优先选择有潜力的节点进行扩展,从而减少搜索空间,提高搜索效率。
2. 程序代码:下面是使用Python实现的分支限界法解决单源最短路径问题的代码示例:```pythonimport heapqclass Node:def __init__(self, vertex, distance, parent): self.vertex = vertexself.distance = distanceself.parent = parentdef __lt__(self, other):return self.distance < other.distancedef branch_and_bound(graph, source):初始化优先队列和已访问节点集合open_set = []closed_set = set()添加源节点到优先队列heapq.heappush(open_set, Node(source, 0, None))主循环,直到找到最短路径while open_set:弹出优先队列中最小距离的节点current_node = heapq.heappop(open_set)检查是否已访问过该节点if current_node.vertex in closed_set:continue标记节点为已访问closed_set.add(current_node.vertex)如果当前节点为目标节点,则找到最短路径if current_node.vertex == target:path = []while current_node:path.append(current_node.vertex)current_node = current_node.parentreturn path[::-1]遍历当前节点的邻居节点for neighbor, weight in graph[current_node.vertex].items():if neighbor not in closed_set:计算新节点的距离distance = current_node.distance + weight添加新节点到优先队列heapq.heappush(open_set, Node(neighbor, distance, current_node))没有找到最短路径return None图的表示graph = {0: {1: 2, 2: 3},1: {2: 1, 3: 2},2: {3: 2},3: {1: 3}}源节点和目标节点source = 0target = 3执行分支限界法path = branch_and_bound(graph, source)print("最短路径为:", path)```3. 调试与测试:在编写代码过程中,注意检查数据结构的使用和算法逻辑的正确性。
旅⾏售货员问题(分⽀限界法)⼀、实验内容运⽤分⽀限界法解决0-1背包问题(或者旅⾏售货员问题、或者装载问题、或者批处理作业调度)使⽤优先队列式分⽀限界法来求解旅⾏售货员问题⼆、所⽤算法基本思想及复杂度分析1.算法基本思想分⽀限界法常以⼴度优先或以最⼩耗费有限的⽅式搜索问题的解空间树。
问题的解空间树是表⽰问题解空间的⼀棵有序树,常见的有⼦集树和排列树。
在搜索问题的解空间树时,分⽀限界法和回溯法的主要区别在于它们对当前扩展节点所采⽤的扩展⽅式不同。
在分⽀限界法中,每⼀个活结点只有⼀次机会成为扩展节点。
活结点⼀旦成为扩展节点,就⼀次性产⽣其所有⼉⼦节点。
在这些⼉⼦节点中,导致不可⾏解或导致⾮最优解的⼉⼦节点被舍弃,其余⼉⼦节点被加⼊活结点表中。
此后,从活结点表中取下⼀节点为当前扩展节点。
并重复上述节点扩展过程。
这个过程移⾄持续到找到所需的解或活结点表为空为⽌。
从活结点表中选择下⼀扩展节点的不同⽅式导致不同的分⽀限界法。
最常见的有以下两种⽅式:(1)队列式分⽀限界法队列式分⽀限界法将活结点表组织成⼀个队列,并按队列的先进先出原则选取下⼀个节点为当前扩展节点。
(2)优先队列式分⽀限界法优先队列式的分⽀限界法将活结点表组织成⼀个优先队列,并按优先队列中规定的节点优先级选取优先级最⾼的下⼀个节点成为当前扩展节点。
2.问题分析及算法设计问题分析:(1)解旅⾏售货员问题的优先队列式分⽀限界法⽤优先队列存储活结点表。
(2)活结点m在优先队列中的优先级定义为:活结点m对应的⼦树费⽤下界lcost。
(3)lcost=cc+rcost,其中,cc为当前结点费⽤,rcost为当前顶点最⼩出边费⽤加上剩余所有顶点的最⼩出边费⽤和。
(4)优先队列中优先级最⼤的活结点成为下⼀个扩展结点。
(5)排列树中叶结点所相应的载重量与其优先级(下界值)相同,即:叶结点所相应的回路的费⽤(bestc)等于⼦树费⽤下界lcost的值。
算法设计:(1)要找最⼩费⽤旅⾏售货员回路,选⽤最⼩堆表⽰活结点优先队列。
单元最短路径问题分支限界法标题:解密单元最短路径问题:深度探索分支限界法一、引言单元最短路径问题是图论中的一个经典问题,它在实际生活中有着广泛的应用。
而分支限界法则是解决这一问题的重要方法之一。
本文将深入探讨单元最短路径问题,并重点介绍分支限界法在解决该问题中的应用。
二、单元最短路径问题概述单元最短路径问题是指在一个加权有向图中,求出从一个指定起始顶点到其他所有顶点的最短路径。
这个问题可以用于交通规划、网络通信以及物流配送等领域。
在实际生活中,我们经常需要求解单元最短路径问题来优化路线或资源利用。
三、分支限界法介绍分支限界法是一种用于求解最优化问题的通用技术。
它通过不断地扩展候选解空间,并在搜索过程中剪枝,以获得最优解。
在解决单元最短路径问题中,分支限界法可以通过不断地搜索路径长度,并在搜索过程中淘汰一些非最优路径,从而高效地找到最短路径。
四、分支限界法在单元最短路径问题中的应用在实际应用中,我们可以将单元最短路径问题转化为一个树型图的搜索问题,在搜索过程中使用分支限界法来逐步缩小解空间。
通过递归地搜索各条路径,并不断更新最短路径的长度,我们可以最终找到起始顶点到其他所有顶点的最短路径。
分支限界法可以在搜索过程中灵活地调整搜索策略,从而有效地优化解的搜索过程。
五、个人观点和理解我个人认为,分支限界法作为一种智能化的搜索算法,在解决单元最短路径问题时具有独特的优势。
它可以根据实际问题的特点,灵活地调整搜索策略,以获得更高效的搜索结果。
分支限界法也可以在处理大规模数据时,通过剪枝等策略,节省搜索时间和空间成本。
六、总结和回顾通过本文的讨论,我们对单元最短路径问题和分支限界法有了更深入的理解。
分支限界法作为一种重要的搜索算法,在解决单元最短路径问题时发挥着重要作用。
我们希望读者可以通过本文的介绍,对这一话题有更全面、深刻和灵活的理解,以应用于实际问题中。
通过上述深度探索,我们对单元最短路径问题和分支限界法有了更清晰的认识。
货郎担问题分支与限界法货郎担问题是一个经典的优化问题,涉及到如何在给定负重限制下,选择携带的物品,使得总价值最大。
该问题有多种解决方法,其中分支与限界法是一种常用的方法。
以下是对分支与限界法的详细解释:一、问题的概述货郎担问题(Knapsack Problem)是一种组合优化问题,旨在确定给定一组物品,如何选择才能使得在满足负重限制的前提下获得最大的总价值。
这个问题在现实生活中有很多应用,如资源分配、时间安排、物流配送等。
二、分支与限界法分支与限界法是一种启发式搜索方法,用于求解复杂的组合优化问题。
货郎担问题可以通过构建状态树来表示,其中每个节点表示一种可能的物品组合,树的深度表示总重量,节点的价值表示该组合的总价值。
分支与限界法通过不断分支和剪枝来缩小状态树的搜索范围,从而提高求解效率。
1. 分支:在状态树的搜索过程中,每次将当前节点进行拆分,生成两个或多个子节点,每个子节点表示一种可能的物品组合。
分支的依据是选择哪种物品继续搜索,或者选择哪些物品组合起来作为一个整体进行搜索。
2. 限界:在分支过程中,对每个子节点设置一个界限值,用于判断是否需要继续搜索该子节点。
界限值的计算方法有多种,常见的有最大价值界限和最小重量界限。
最大价值界限是将当前节点的价值与子节点的价值进行比较,如果子节点的价值小于当前节点的价值,则剪枝该子节点。
最小重量界限是将当前节点的重量与子节点的重量进行比较,如果子节点的重量大于当前节点的重量,则剪枝该子节点。
3. 回溯:在搜索过程中,如果发现当前节点的总价值小于已找到的最优解,则回溯到上一个节点,继续搜索其他分支。
三、算法流程1. 初始化:设置根节点作为初始节点,将其加入到待搜索节点列表中。
2. 主循环:重复以下步骤直到待搜索节点列表为空:a. 从待搜索节点列表中取出一个节点;b. 如果该节点已经搜索过(即其总价值小于已找到的最优解),则跳过该节点;c. 否则,对该节点进行分支;d. 将分支生成的子节点加入到待搜索节点列表中;e. 如果该节点的总价值大于已找到的最优解,则更新最优解;f. 将该节点标记为已搜索;3. 输出最优解。
算法分析与设计2016/2017(2)实验题目装载问题5种解法学生姓名学生学号学生班级任课教师提交日期2017计算机科学与技术学目录一问题定义 (2)二解决方案 (2)1优先队列式分支限界法求解 (2)1。
3运行结果 (12)2队列式分支限界法求解 (12)2。
1算法分析 (12)2。
2代码 (13)2.3测试截图 (21)3回朔法-迭代 (21)3.1算法分析 (21)3。
2代码 (21)3.3测试截图 (25)4回朔法-递归 (25)4。
1算法分析 (25)4。
2代码 (25)4.3测试截图 (30)5贪心算法 (30)5.1算法分析 (30)5.2代码 (30)5。
3测试截图 (33)一问题定义有一批共有 n 个集装箱要装上两艘载重量分别为 c1 和 c2 的轮船,其中集装箱 i 的重量为 w[i],且重量之和小于(c1 + c2)。
装载问题要求确定是否存在一个合理的装载方案可将这 n 个集装箱装上这两艘轮船。
如果有,找出一种装载方案.二解决方案1优先队列式分支限界法求解1.1算法分析活结点x在优先队列中的优先级定义为从根结点到结点x的路径所相应的载重量再加上剩余集装箱的重量之和。
优先队列中优先级最大的活结点成为下一个扩展结点.以结点x为根的子树中所有结点相应的路径的载重量不超过它的优先级。
子集树中叶结点所相应的载重量与其优先级相同。
在优先队列式分支限界法中,一旦有一个叶结点成为当前扩展结点,则可以断言该叶结点所相应的解即为最优解。
此时可终止算法.1.2代码1。
2-1////MaxHeap.htemplate<class T〉class MaxHeap{public:MaxHeap(int MaxHeapSize = 10);~MaxHeap() {delete []heap;}int Size() const {return CurrentSize;}T Max(){ //查找if (CurrentSize == 0){throw OutOfBounds();}return heap[1];}MaxHeap<T>& Insert(const T&x); //增MaxHeap<T>& DeleteMax(T& x);//删void Initialize(T a[],int size, int ArraySize);private:int CurrentSize,MaxSize;T *heap;// element array};template<class T〉MaxHeap〈T〉::MaxHeap(int MaxHeapSize){// Max heap constructor。
算法设计装载问题的分支限界算法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!装载问题是一个经典的组合优化问题,也称为背包问题。
分支限界法实验报告引言分支限界法是一种解决组合优化问题的常用方法,该方法通过对问题空间进行分割,并使用上、下界进行限制,从而快速得到较优解。
在本次实验中,我们主要使用分支限界法解决旅行商问题(TSP),即给定一组城市和各城市之间的距离,求解经过所有城市且距离之和最小的路径。
实验目的本次实验的目的是通过编写程序,利用分支限界法求解旅行商问题,并分析算法的效率和求解结果的优劣。
实验过程问题模型我们使用邻接矩阵来表示城市之间的距离,并通过回溯法和分支限界法来求解最优解。
其中,回溯法用于生成所有可能的路径,而分支限界法则用于剪枝和获取最优解。
在分支限界法中,我们将问题抽象为一个树形结构,树的每个节点代表选择了某一条路径。
同时,我们定义一个上界来限制搜索的范围,并实时更新下界以筛选一些无效的路径。
通过不断剪枝和对路径进行排序,我们最终可以得到最优解。
算法实现我们使用Python语言实现了分支限界法求解旅行商问题的算法。
具体实施步骤如下:步骤1:生成邻接矩阵根据给定的城市和距离,我们首先生成一个邻接矩阵,用于表示各个城市之间的距离。
步骤2:初始化数据结构我们使用一个优先队列来保存当前搜索的路径,并将起始城市加入队列。
同时,我们定义一个全局变量来保存最优路径和当前最优路径的长度。
步骤3:搜索路径通过递归的方式,不断进行路径的搜索。
在搜索过程中,我们使用上、下界和分支限界来进行剪枝操作,并实时更新最优路径信息。
步骤4:输出结果最终,我们得到的最优路径就是旅行商问题的解。
我们将其输出,并统计算法的运行时间。
实验结果实验数据我们使用了一个包含20个城市的实例进行测试,城市之间距离的数据如下:城市距离-1 -2 101 - 3 15... ...19-20 12结果分析经过多次实验,我们得到了最优路径如下:1 -> 3 -> 10 -> 5 -> 17 ->2 -> 12 -> 11 -> 4 -> 9 -> 16 -> 6 -> 19 -> 18-> 13 -> 20 -> 15 -> 8 -> 7 -> 14 -> 1该路径的总距离为123,是经过所有城市且距离之和最小的路径。
算法分析与设计实验报告第 X次实验输出第1艘船的载重量输出第2艘船的载重量输出待装上轮船的集装箱的重量。
1代表对应集装箱装上轮船,0代表对应集装箱不装上轮船输出所有装上第1艘轮船的集装箱的重量。
输出是否可以将集装箱全部装上两艘轮船。
输出时间。
附录:完整代码#include "MaxHeap.h" #include <iostream>#include<cstdlib>#include<time.h>#include<iomanip>#include<stdlib.h> using namespace std; //定义集装箱的个数const int N = 4;class bbnode;/*============================================================================定义HeapNode类来存储最大堆中顶点的信息。
============================================================================*/ template<class Type>class HeapNode{template<class T>friend void AddLiveNode(MaxHeap<HeapNode<T>>& H,bbnode *E,T wt,bool ch,int lev);template<class Ty>friend Ty MaxLoading(Ty w[],Ty c,int n,int bestx[]);public:operator Type() const{return uweight;}private:bbnode *ptr; //指向活节点在子集树中相应节点的指针Type uweight; //活节点优先级(上界)int level; //活节点在子集树中所处的层序号};/*============================================================================定义bbnode类来定义子集空间树中的结点类型。
分支限界法之装载问题分支限界法之装载问题做IT就要做精英,至少4000/月吧?JAVAV工程师权威认证[上海央邦]学一送一,超值!【安博亚威】CCIE考试通过率第一!定向委培RHCA,通过考试年薪10WWindows高级工程师的培训地中国IT实验室收集整理佚名 2009-9-25 保存本文推荐给好友收藏本页欢迎进入C/C++编程社区论坛,与200万技术人员互动交流>>进入装载问题(分支限界)Dlg.cpp#include "Queue.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif/////////////////////////////////////////////////////////////////// //////////// CAboutDlg dialog used for App Aboutclass CAboutDlg : public CDialog{public:CAboutDlg();// Dialog Data//{{AFX_DATA(CAboutDlg)enum { IDD = IDD_ABOUTBOX };//}}AFX_DATA// ClassWizard generated virtual function overrides//{{AFX_VIRTUAL(CAboutDlg)protected:virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support//}}AFX_VIRTUAL// Implementationprotected://{{AFX_MSG(CAboutDlg)//}}AFX_MSGDECLARE_MESSAGE_MAP()};CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD){//{{AFX_DATA_INIT(CAboutDlg)//}}AFX_DATA_INIT}void CAboutDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CAboutDlg)//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)//{{AFX_MSG_MAP(CAboutDlg)// No message handlers//}}AFX_MSG_MAPEND_MESSAGE_MAP()/////////////////////////////////////////////////////////////////// //////////// CNewDlg dialogCNewDlg::CNewDlg(CWnd* pParent /*=NULL*/): CDialog(CNewDlg::IDD, pParent){//{{AFX_DATA_INIT(CNewDlg)m_num = _T("");//}}AFX_DATA_INIT// Note that LoadIcon does not require a subsequent DestroyIcon in Win32m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);}void CNewDlg::DoDataExchange(CDataExchange* pDX){CDialog::DoDataExchange(pDX);//{{AFX_DATA_MAP(CNewDlg)DDX_Text(pDX, IDC_EDIT_NUM, m_num);//}}AFX_DATA_MAP}BEGIN_MESSAGE_MAP(CNewDlg, CDialog)//{{AFX_MSG_MAP(CNewDlg)ON_WM_SYSCOMMAND()ON_WM_PAINT()ON_WM_QUERYDRAGICON()ON_BN_CLICKED(IDC_BTN_LOAD, OnBtnLoad) ON_BN_CLICKED(IDC_BTN_CLEAR, OnBtnClear)//}}AFX_MSG_MAPEND_MESSAGE_MAP()/////////////////////////////////////////////////////////////////// //////////// CNewDlg message handlersBOOL CNewDlg::OnInitDialog(){CDialog::OnInitDialog();// Add "About..." menu item to system menu.// IDM_ABOUTBOX must be in the system command range.ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);ASSERT(IDM_ABOUTBOX < 0xF000);CMenu* pSysMenu = GetSystemMenu(FALSE);if (pSysMenu != NULL){CString strAboutMenu;strAboutMenu.LoadString(IDS_ABOUTBOX); if (!strAboutMenu.IsEmpty()){pSysMenu->AppendMenu(MF_SEPARATOR);pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);}}// Set the icon for this dialog. The framework does this automatically// when the application's main window is not a dialogSetIcon(m_hIcon, TRUE); // Set big icon SetIcon(m_hIcon, FALSE); // Set small icon// TODO: Add extra initialization herenum=0;j=0;num_pri=0;boxmark_str="";m_num="";return TRUE; // return TRUE unless you set the focus to a control}void CNewDlg::OnSysCommand(UINT nID, LPARAM lParam) {if ((nID & 0xFFF0) == IDM_ABOUTBOX){CAboutDlg dlgAbout;dlgAbout.DoModal();}else{CDialog::OnSysCommand(nID, lParam);}}// If you add a minimize button to your dialog, you will need the code below // to draw the icon. For MFC applications using the document/view model, // this is automatically done for you by the framework.void CNewDlg::OnPaint(){if (IsIconic()){CPaintDC dc(this); // device context for paintingSendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);// Center icon in client rectangleint cxIcon = GetSystemMetrics(SM_CXICON);int cyIcon = GetSystemMetrics(SM_CYICON);CRect rect;GetClientRect(&rect);int x = (rect.Width() - cxIcon + 1) / 2; int y = (rect.Height() - cyIcon + 1) / 2;// Draw the icondc.DrawIcon(x, y, m_hIcon);}else{CDialog::OnPaint();}}// The system calls this to obtain the cursor to display while the user drags// the minimized window.HCURSOR CNewDlg::OnQueryDragIcon(){return (HCURSOR) m_hIcon;}void CNewDlg::EnQueue(Queue *p_obj, int wt, int &bestw,int i,int n){if(i==n){if(wt>bestw)bestw=wt;}else p_obj-> add(wt);}int CNewDlg::MaxLoading(){p_obj=new Queue(1000);p_obj->add(-1);int i=0;//重大修改int i=1;int Ew=0;bestw=0;while(true){if(Ew+w[i]<=c)// Ew=w[i]<=cEnQueue(p_obj,Ew+w[i],bestw,i,n);EnQueue(p_obj,Ew,bestw,i,n);Ew=p_obj-> Delete();if(Ew==-1){if(p_obj-> Isempty())return bestw;p_obj-> add(-1);Ew=p_obj-> Delete();i++;}}}void CNewDlg::OnBtnLoad(){// TODO: Add your control notification handler code here GetDlgItemText(IDC_EDIT_AMOUNT,str);//箱子的数目n=atoi(str);// int *ptr=new int [n];w=new int[n];GetDlgItemText(IDC_EDIT_NUM,m_num);int m=m_num.GetLength();p=new char[m+1];// strcpy(p,s_num);for(int i=0;i<m;i++)p[i]=m_num.GetAt(i);for( i=0;i<m;i++)if(p[i]!=44) // num=atom(s.GetAt(i));{p[i]-=48;num=p[i];num_pri=num_pri*10+num;// num=0;}else{// num=num/10;if(j<n){w[j]=num_pri;j++;num_pri=0;}// ss=w[j];}GetDlgItemText(IDC_EDIT_MAXLOAD,s_maxload);c=atoi(s_maxload);MaxLoading();ss.Format("%d",bestw); SetDlgItemT ext(IDC_EDIT_OUTPUT,"轮船的最大载重量是:"+ss);}void CNewDlg::OnBtnClear(){// TODO: Add your control notification handler code herenum=0;j=0;num_pri=0;c=0;n=0;GetDlgItemText(IDC_EDIT_NUM,m_num);if(m_num!=""){delete[]w;delete[]p;delete[]p_obj;}else{AfxMessageBox("没有输入有效字符!");}// m_num="";SetDlgItemT ext(IDC_EDIT_OUTPUT,""); SetDlgItemT ext(IDC_EDIT_AMOUNT,""); SetDlgItemT ext(IDC_EDIT_MAXLOAD,""); SetDlgItemT ext(IDC_EDIT_NUM,"");}。
分支与限界:货物装载问题课程名称:**************院系:************************学生姓名:******学号:************专业班级:***************************** 指导教师:*******2013年12月27日分支与限界:货物装载问题摘要:在现实生活中,我们会经常遇见货物装载问题,如何解决货物装载问题,获取利润的最大化,花费最少的而得到更多的东西,是人们一直都要考虑的问题。
在广泛的解决问题中,人们一般采用分支限界算法解决这样的问题。
分支限界法是由分支策略和限界策略两部分组成的。
分枝定界法是一个用途十分广泛的算法,运用这种算法的技巧性很强,不同类型的问题解法也各不相同。
该算法在具体执行时,把全部可行的解空间不断分割为越来越小的子集(称为分支),并为每个子集内的解的值计算一个下界或上界(称为定界)。
在每次分支后,对凡是界限超出已知可行解值那些子集不再做进一步分支。
这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围。
该算法在具体执行时,把全部可行的解空间不断分割为越来越小的子集(称为分支),并为每个子集内的解的值计算一个下界或上界(称为定界)。
在每次分支后,对凡是界限超出已知可行解值那些子集不再做进一步分支。
这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围。
分支策略体现在对问题空间是按广度优先的策略进行搜索,限界策略是为了加速搜索速度而采用启发信息剪枝的策略。
在分支限界法,经常采用的是分支搜索法,分支搜索法是一种在问题空间上进行搜索尝试的算法。
所谓分支是采用广度优先的策略,依次搜索E-结点的所有的分支,也就是所有的相邻结点。
和回溯法一样,在生成的节点中,抛弃那些不满足的约束条件的的结点,其余结点加入活结点表。
在分支搜索的算法中,人们经常会采用FIFO搜索和优先队列式搜索。
实验五分支限界算法的应用一、实验目的1.掌握分支限界算法的基本思想、技巧和效率分析方法。
2.熟练掌握用分支限界算法的基本步骤和算法框架,FIFO搜索,LIFO搜索,优先队列式搜索的思想。
3.学会利用分支限界算法解决实际问题。
二、算法问题描述批处理作业调度问题:n个作业{1, 2, …, n}要在两台机器上处理,每个作业必须先由机器1处理,然后再由机器2处理,机器1处理作业i所需时间为ai,机器2处理作业i所需时间为bi(1≤i≤n),批处理作业调度问题(batch-job scheduling problem)要求确定这n个作业的最优处理顺序,使得从第1个作业在机器1上处理开始,到最后一个作业在机器2上处理结束所需时间最少。
注意:由于要从n个作业的所有排列中找出具有最早完成时间的作业调度,所以,批处理作业调度问题的解空间是一棵排列树,并且要搜索整个解空间树才能确定最优解,因此,其时间性能是O(n!)。
在搜索过程中利用已得到的最短完成时间进行剪枝,才能够提高搜索速度。
三、算法设计批处理作业调度问题要从n个作业的所有排列中找出具有最小完成时间和的作业调度,所以如图,批处理作业调度问题的解空间是一颗排列树。
在作业调度问相应的排列空间树中,每一个节点E都对应于一个已安排的作业集。
以该节点为根的子树中所含叶节点的完成时间和可表示为:设|M|=r,且L是以节点E为根的子树中的叶节点,相应的作业调度为{pk,k=1,2,……n},其中pk是第k个安排的作业。
如果从节点E到叶节点L的路上,每一个作业pk在机器1上完成处理后都能立即在机器2上开始处理,即从pr+1开始,机器1没有空闲时间,则对于该叶节点L有:注:(n-k+1)t1pk,因为是完成时间和,所以,后续的(n-k+1)个作业完成时间和都得算上t1pk。
如果不能做到上面这一点,则s1只会增加,从而有:。
类似地,如果从节点E开始到节点L的路上,从作业pr+1开始,机器2没有空闲时间,则:同理可知,s2是的下界。