人教版八年级数学下册18.1.1《平行四边形性质的简单应用》教案设计
- 格式:docx
- 大小:59.67 KB
- 文档页数:5
人教版数学八年级下册教学设计 18.1.1《平行四边形的性质》一. 教材分析1.1 《平行四边形的性质》是人教版数学八年级下册第18章的内容,本节课主要让学生掌握平行四边形的性质。
内容包括:平行四边形的定义、平行四边形的性质定理、平行四边形的判定定理等。
本节课内容是学生学习几何知识的重要基础,对于培养学生空间想象能力和逻辑思维能力具有重要作用。
二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质、四边形的分类等基础知识,具备了一定的空间想象能力和逻辑思维能力。
但部分学生对于平行四边形的性质和判定定理的理解和运用仍存在困难,需要通过本节课的学习进一步巩固。
三. 教学目标1.知识与技能:使学生掌握平行四边形的性质,能够熟练运用平行四边形的性质解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:平行四边形的性质及其应用。
2.难点:平行四边形的判定定理的理解和运用。
五. 教学方法1.情境教学法:通过生活实例引入平行四边形的性质,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、猜想、验证,培养学生的空间想象能力和逻辑思维能力。
3.小组合作学习:学生分组讨论,共同探究平行四边形的性质,培养学生的团队合作意识。
4.归纳总结法:引导学生总结平行四边形的性质,加深学生对知识的理解。
六. 教学准备1.教学PPT:制作含有生活实例、图片、动画等多媒体素材的PPT,直观展示平行四边形的性质。
2.教学卡片:准备平行四边形的性质定理和判定定理的卡片,方便学生学习和巩固。
3.练习题:挑选适合的练习题,用于巩固学生对平行四边形性质的理解。
七. 教学过程1.导入(5分钟)利用生活实例引入平行四边形的性质,如教室里的门窗、篮球场的篮板等,引导学生关注平行四边形在生活中的应用。
18.1.1平行四边形的性质一、学情分析:1.学生心理特征:初二的学生思维活跃,求知欲强,对实验、猜想、探索性的问题充满好奇。
2.学生认知基础:学生在小学阶段已对平行四边形有了初步的认识,具备了一定的认知基础。
3.学生活动经验基础:学生在七年级学习三角形时,已利用简单的推理方法解决问题,所以有了一定的推理能力.二、教材分析:1、内容地位:从知识体系上看,本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路. 从知识运用上看,平行四边形在实际生活中的应用非常广泛.2、重点、难点:(1).重点:平行四边形性质的探究和应用。
:(2)难点:平行四边形的性质定理的证明及应用。
3、教学目标:(1)、理解平行四边形的概念,了解四边形的不稳定性。
(2)、探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等。
(3)、经历平行四边形性质的探索过程,既培养学生合作探究的意识又培养学生由合情推理到演绎推理的逻辑思维,提高学生的几何语言表达能力。
三、教法学法分析:1、教法分析:定理推导上采用引导探索法:设置疑问并引导学生通过观察-猜想-论证-应用等环节探索本节课的学习内容;利用自制的教具,计算机等电教媒体,增大教学容量和直观性,提高教学质量和效率。
2、学法分析:体验“测量→猜想→验证→归纳→应用”的学习过程,自主参与知识的发生,发展和形成的过程,掌握知识。
四、教学过程:(一)、创设情境,导入新课1、阅读课本P71本章的导图及导入语。
教师:小学阶段,我们已经认识了平行四边形,平行四边形是我们常见的一种图形,它具有十分和谐的对称美,它是什么样的对称图形呢?它具有哪些基本性质?又如何识别平行四边形呢? 今天,我们来学习平行四边形的性质。
(板书课题:18.1平行四边形的性质)(设计说明:本章导图及导入语,使学生在学习前对本章的要学习内容有所了解。
你能总结出平行四边形的定义吗?(一)平行四边形的定义和表示方法:(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.例如:如图,平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.(二)认一认:1.平行四边形相对的边称为对边,相邻的边称为邻边;如图,线段与是ABCD的对边;线段与是ABCD的邻边。
2.平行四边形相对的角称为对角,相邻的角称为邻角。
如图,与是ABCD的对角;与是ABCD的邻角。
3.平行四边形不相邻的两个顶点连成的线段叫平行四边形的对角线.如图,线段、是ABCD的两条对角线。
二、观察发现、探究性质1.量一量:请同学们用直尺,量角器等工具度量手中平行四边形的边和角,并记录下数据,猜想平行四边形有什么性质?2.猜一猜:如图,由平行四边形的定义,我们已经知道平行四边形的有什么性质?除此之外,根据刚才的测量结果,猜想平行四边形的边和角还有什么性质呢?3.剪一剪:老师拿出事先准备好的平行四边形,沿对角线剪开,让同学们观察,能否得到平行四边形的边和角的性质?4.证一证:已知:如图,在ABCD求证:AB=CD,BC=DA;∠B=∠D,∠A=∠C.5.从上面的探究中,归纳平行四边形的性质:(1)平行四边形的两组对边分别平行且相等(2)平行四边形的两组对角边分别相等几何语言:∵四边形ABCD是平行四边形∴ AB∥CD,AD∥BC.(平行四边形的对边平行)AB=CD, AD=BC (平行四边形的对边相等)∠A= ∠C, ∠B= ∠D (平行四边形的对角相等) 或 在ABCD 中AB ∥CD ,AD ∥BC . (平行四边形的对边平行) AB=CD, AD=BC (平行四边形的对边相等) ∠A= ∠C, ∠B= ∠D (平行四边形的对角相等)三、例题解析,运用新知例1 在平行四边形ABCD 中,DE ⊥AB ,BF ⊥CD ,垂足分别是E 和F ,求证:AE=CF四、课堂练习,巩固新知 基础训练: 1.如图,在ABCD 中,(1)若∠A=130°,则∠B=______ 、∠C=______ 、∠D=______ (2)若∠A+ ∠C= 200°,则∠A=______ 、∠B=______ 2.如图,在ABCD 中,(1)若AB=1㎝,BC=2㎝,则ABCD 的周长=______(2)若AB=4㎝,ABCD 的周长为18㎝,则BC=_____变式训练:(1)若AB :BC=3:4,AB=6 ㎝,则BC=____,周长=_____ (2)若AB :BC=3:4,周长为14㎝,则CD=——,DA=——AEDBFC。
平行四边形的性质平行四边形是日常生活中一种常见的图形,在日常生活中平行四边形的相关知识有着非常广泛的用途。
借助对平行四边形性质的学习能够使学生对平行四边形产生新的认识,并在教师的引导下更好的应用本节所涉及的知识点。
一、创设情境,导入新课师:同学们,在日常生活中我们会遇到很多特殊的图形,平行四边形就是一种常见的图形,这种图形在生活中有着广泛的用途。
我这里有一个故事,与平行四边形有着密切的联系,大家可以看一下大屏幕(展示课件)。
这是一个分家产的故事,这位老人由于年龄大了,想要把自己一块平行四边形土地分给他的4个孩子,它使用画对角线的方式将这块土地分为4个部分。
尽管老人认为划分的非常公平,但是他的几个孩子都认为自己的那块地没有其他人多。
大家觉得老人划分土地的方式合理吗?有什么理由?大家可以互相讨论一下,稍后我们结合本节课的知识点来分析这一问题。
设计意图:在教学情境创设的过程中,巧妙的利用学生最感兴趣的故事来导入本节课的知识点,是学生结合自己预习的情况来展开对地块划分合理性的探讨,这不仅能够激发学生参与课堂教学的兴趣,也能使学生强化对本节课知识点应用的认知。
赋能路径:积极组织学生利用纸张来制作平行四边形,并模拟老人划分地块的方法,引导学生探讨验证面积相同的策略。
利用“录课”功能将纸盒“展开——折叠”的过程录制成微课,由学生自主观看,建立直观感受。
二、小组合作,探索新知1. 动手操作,初步感知师:请同学们拿出一张纸,制作一个平行四边形,然后按照老人划分地块的方式沿对角线折叠,大家观察一下折叠之后的平行四边形是由什么图形组成的?(展示拼一拼的课件,引导学生借助观察不同的三角型思考全等三角形拼接的图形与其它三角形拼接图形的不同,引导学生认识到只有全等的两个三角形一边重合才能拼接出平行四边形),在学生对平行四边形有了初步认识之后,使用标准的几何语言向学生介绍平行四边形的定义,并引导学生认识对边对角和对角线的概念,强化学生的理解和认知。
人教版数学八年级下册18.1.1《平行四边形的性质》教学设计1一. 教材分析《平行四边形的性质》是人教版数学八年级下册第18章第一节的内容,本节课主要让学生掌握平行四边形的性质,包括对边相等、对角相等、对边平行以及对角线互相平分。
这些性质是后续学习几何图形的重要基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在七年级时已经学习了矩形、菱形等特殊平行四边形的性质,对平行四边形有了初步的认识。
但大部分学生对于一般平行四边形的性质理解不够深入,容易与特殊平行四边形混淆。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索平行四边形的性质,提高他们的几何思维能力。
三. 教学目标1.知识与技能:使学生掌握平行四边形的性质,能够正确运用这些性质解决实际问题。
2.过程与方法:培养学生通过观察、操作、思考、交流等方法探索平行四边形性质的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探究、积极进取的精神。
四. 教学重难点1.重点:平行四边形的性质。
2.难点:如何引导学生探索平行四边形的性质,并正确运用这些性质解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究平行四边形的性质。
2.运用观察、操作、思考、交流等方法,培养学生的几何思维能力。
3.通过实例分析,使学生能够将理论知识应用于解决实际问题。
六. 教学准备1.准备一些平行四边形的图片,用于导入和举例说明。
2.准备一些平行四边形的模型或纸片,供学生操作和观察。
3.准备多媒体教学设备,用于展示问题和解答。
七. 教学过程1.导入(5分钟)教师展示一些平行四边形的图片,如教室的黑板、住宅区的楼房等,引导学生观察并提问:“你们认为平行四边形有哪些性质?”让学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师提出问题:“平行四边形有哪些性质?”让学生独立思考,然后进行小组讨论。
§18.1.3 平行四边形性质的应用教学过程:
探究已知:平行四边形ABCD。
求作:同时平分平行四边形面积和周长的直线。
并让学生到黑板上展示自己的作法,并对成立的理由进
行简单说明
(1)
(2)
(3)
提出问题,利用平行四边形
的性质予以解决,初步体会
分割方法的多样性
D
A
B C
D
A
B C
D
A
B C
1212
()2()2AM BN h
S JL h
NC MD h S LK h JL LK S S +=
=⋅+==⋅>∴>Q Q 又
因此不过点O 的直线一定不会平分平行四边形的周长和面积
板书 设计
§18.1.3平行四边形性质的应用
结论:过平行四边形对角线交 点的直线平分其面积和周长。
已知: 求证: 证明:。