第六章 空间解析几何要求与练习(含答案)
- 格式:doc
- 大小:436.50 KB
- 文档页数:5
空间解析几何习题习题0—11.在空间直角坐标系中,画出下列各点:)2,1,2(),4,3,0(),4,0,0(-。
2.求点),,(c b a 关于(1)各坐标面,(2)各坐标轴,(3)坐标原点的对称点的坐标。
3.自点),,(0000z y x P 分别作各坐标面和各坐标轴的垂线,写出各垂足的坐标。
4.一边长为a 的立方体放置在xOy 面上,其底面的中心在坐标原点,底面的顶点在x 轴和y 轴上,求它各顶点的坐标。
5.求点)5,3,4(-P 到各坐标轴的距离。
6.在yOz 面上,求与三个已知点)2,1,3(A ,)2,2,4(--B 和)1,5,0(C 等距离的点。
7.证明:以三点)9,1,4(A ,)6,1,10(-B ,)3,4,2(C 为顶点的三角形是等腰三角形。
习题0—21.设向量a 与x 同和y 轴的夹角相等,而与z 同的夹角是前者的两倍,求向量a 的方向余弦。
2.设向量的方向余弦分别满足下列条件,试问这些向量与坐标轴、坐标面的关系如何?(1)0cos =α;(2)1cos =β;(3)0cos cos ==βα3.分别求出向量)5,3,2(),1,1,1(-==b a 及)2,1,2(--=c 的模,并写出单位向量000,,c b a 。
4.设向量)1,0,0(),0,1,0(),0,0,1(===k j i ,证明k j i ,,两两正交。
习题0—31.设b a ,为非零向量,问它们分别满足什么条件时,下列等式成立?(1)||||b a b a -=+;(2)||||b ba a =。
2.设c b a v c b a u -+=+-=3,2,试用c b a ,,表示v u 32-。
3.在A B C ?中,设M ,N ,P 分别为BC ,CA AB 的中点,试用AB CA BC ===c b a ,,表示向量AM ,N B ,CP 。
4.设MB AM =,证明:对任意一点O ,有)(21+=。
1. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程.39.02=+-z y3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等.7.)51,1,57(.5.已知:→→-AB prj D C B A CD,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( )A .4B .1C .21D .2 7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D .重合 9.直线37423zy x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内 10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( )A .5B .61 C .51 D .81 5.D 7.D 8.B 9.A 10.A .3.当m=_____________时,532+-与m 23-+互相垂直.4.设++=2,22+-=,243+-=,则)(b a p r j c += .4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.3.34-=m ; 4.2919 9.332212--=+=-x y x ; 10.曲线1422=+z y 绕z 轴旋转而成.1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=,则=⨯⨯)(( ) A .8 B .10 C .{}1,1,0-- D .{}21,1,23.若==-+=,则14//236( ) A .)4612(-+± B .)612(+± C .)412(-± D .)46(-± 4.若ϕ与,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( ) A .6π B .2π C .3π D .4π6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( ) A .2π B .6π C .3π D .4π 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223 B .553 C .453 D .229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A .30o B .60o C .90oD .65arcsin1.D 3.A 4.C 6.C 8.A 9.D7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点. 3.确定k 值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.5.求以向量i k k j j i +++,,为棱的平行六面体的体积.7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________. 9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z yx z 在y z 面上的投影方程______________.1.设32+-=,+=2,++-=,则与+是否平行__________.1.不平行7.33222±=++z y x ; 8.25102-=-z x ;9.双叶双曲面; 10.⎩⎨⎧==+--++02342222x z y z yz y练习题选参考答案1.两非零向量→a 、→b 垂直,则有0=⋅→→b a 或0Pr =→→a j b;平行则有0=⨯→→b a 或→→=b a λ或两向量对应坐标成比例。
习 题 6-11.在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A -(1,1,1),B -(1,1,1),C --(1,1,1).D --解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.2.求点(,,)M x y z 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于x O y 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.3.已知点(,,)A a b c ,求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标).解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a . 4.过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.5.求点(2,5,4)P -到原点、各坐标轴和各坐标面的距离.解:到原点的距离为到x 到y 轴的距离为到z 6.求证以1(4,3,1)M 、2(7,1,2)M 、3(5,2,3)M 三点为顶点的三角形是一个等腰三角形.证明:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.7.在yOz 坐标面上,求与三个点(3,1,2),(4,2,2),(0,5,1)A B C ---等距离的点的坐标.解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.8.在z 轴上求与点(4,1,7)A -,点(3,5,2)B -等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z , 两边平方得914=z ,故所求点为)914,0,0(.习 题 6-21.若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.2.求起点为(1,2,1)A ,终点为(19,18,1)B --的向量AB −−→与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--,12AB −−→-={10,10,0} 3.求平行于(1,1,1)a =的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a . 4.求λ使向量(,1,5)λ=a 与向量(2,10,50)=b 平行.解:由b a //得5051012==λ得51=λ. 5.求与向量(1,5,6)=a 平行,模为10的向量b 的坐标表达式.解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b . 6.已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b . 解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.7.已知两点A 、(3,0,4)B ,求向量AB −−→的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 222αβγ===-,从而π3α=,3π4β=,2π3γ=. 8.设向量的方向角为α、β、γ.若已知π3α=,2π3β=.求γ.解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.9.设23=++m i j k ,23=+-n i j k ,34=-+p i j k ,求向量23=+-a m n p 在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.10.(1,1,2)=a ,(0,1,0)=b ,(0,0,1)=c ,求 (1)⋅a b ,⋅a c ,⋅b c ;(2)⨯a a ,⨯a b ,⨯a c ,⨯b c . 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b . 0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯. 11.(1,0,0)=a ,(2,2,1)=b ,求⋅a b ,⨯a b 及a 与b 的夹角余弦.解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==. 12.已知π5,2,(,)3∧===a b a b ,求23-a b . 解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴23-=ab 13.证明下列问题:(1)证明向量(1,0,1)=a 与向量(-1,1,1)=b 垂直;证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. (2)证明向量c 与向量()()⋅-⋅a c b b c a 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .14.求点M 的向径OM −−→与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α, 22cos ==β,21cos ==γ. 3π=∴α, 4π=β, 3π=γ.15.求与a =i +j +k 平行且满足1⋅=a x 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .16.求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z xyzij kc a b a a a b b b 324112=--i j k =105+j k ,22||10=c 0||=c c c ∴=.⎫±+⎪⎭j 17.求以点(1,-1,2)A 、(5,-6,2)B 和(1,3,-1)C 为顶点的三角形的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD18.已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b19.证明:如果=0a +b+c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a .同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b . 其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.20.已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b ; (2)()()+⨯+a b b c ; (3)()⨯⋅a b c ; (4)⨯⨯a b c .解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k . (2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i j k--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、求下列各平面的方程:(1)过点()3,2,10M 且以{}1,2,2=n 为法向量的平面; (2)过三点()()()01,0,0,1,0,0,0,1C B A 的平面;(3)过点()1,0,0且与平面1243=++z y x 平行的平面; (4)通过x 轴和点(4, -3, -1)的平面;(5)过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面. (6)过原点及点)1,1,1(,且与平面8x y z -+=垂直的平面; 解(1):平面的点法式方程为()()()032212=-+-+-z y x .(2)设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .(3)依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .(4)平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.(5)},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得: .0632=-++z y x(6)设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=2、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程. 解: 设平面为,1=++cz b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a == 化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.3、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x .(2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为:132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.4、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx5、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.6、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面;(2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面; (4)使直线13241zy x =+=-与平面0153=+-+z y lx 平行; (5)使直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即:⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l =-.(4)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (5)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l . 7、求平面011=-+y x 与083=+x 的夹角;解:设011=-+y x 与083=+x 的夹角为θ,则cos θ==∴ 4πθ=.8、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角.解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1).又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.9、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即 0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==.10、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ;(3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直.(3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===. 12、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .13、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-.14、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .15、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面:(1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .习 题 6—41、一动点移动时,与)0,0,4(A 及xOy 面等距离,求该动点的轨迹方程. 解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4(0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .2、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为:21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .3、求下列旋转曲面的方程:(1)将yOz 坐标面上的抛物线22y z =绕z 旋转一周所生成的旋转曲面; 解:222x y z +=(旋转抛物面) .(2)将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周所生成的旋转曲面.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .4、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.5、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形?(1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围.解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成;(4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.8、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线;(2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.9、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.10、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .11、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.12 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .13、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.14、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .15、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z16、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x xz y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x (2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.本章复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,jb =,)(j ic +-=,则空所流动与飞机飞行速度的关系k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ).(A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-. 解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π2=2,=⋅b a b a cos()a,b π2=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c)2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解:(1)}2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P .3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b 都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2: }1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 设所求平面π为 ()054x y z x z λ+=++-+,即(1)5(1)40x y z λλλ+++-+=,其法向量为(1,5,1)λλ=+-n ,由题意知所求平面π与平面01284=+--z y x 垂直,故1(1)458(1)0λλ+-⨯--=,解得3λ=,则所求平面π的方程为012254=+-+z y x .另外,容易验证40x z -+=不是所求的平面方程.7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为pz n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y=+与222()z x y =-+所围立体在xOy 平面上的投影(图略).本章复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即=a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ,即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪= 由①得2x z = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫ ⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kj i b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线2220x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩.同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2=--.则所求平面的点法式方程为 1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=.解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(1)式得,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(1x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)λλλ⋅=++-++=n s , 得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程. 解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x . 解法2: 用一般式,即先求出过L 的两个平面,将其方程联立便得L 的方程. 直线L 在过点A 且平行于平面1π的平面2π上,平面2π的方程为0)1()0(4)3(3=----+z y x ,即01043=+--z y x ,直线L 又在过点A 及直线1L 的平面3π上,平面3π的法向量可取为1211312AB ⨯=-=-+--i j ks i j k ,故平面3π的方程为0)1()0()3(=---++-z y x ,即02=++-z y x ,于是所求直线方程为{34100,20.x y z x y z --+=-++=13、求直线1l :⎩⎨⎧=+=-+321z x z y x 与直线2l :1-==z y x 的公垂线的方程解: 2L 的方向向量]1,1,1[2=l 而1L 的方向向量k j i k j i l231021111--=-=于是公垂线l 的方向向量k j i kj i l l l4311123121+--=--=⨯=,过1l 与l 的平面π的法向量k j i kj il l n62184312311---=----=⨯=.也可取法向量]3,1,9[=n,以1=z 代入1L 方程,可得1l 上的点]1,1,1(1M ,于是平面π方程0)1(3)1()1(9=-+-+-z y x ,即01339=-++z y x再求2L 与π的交点P ,2L 的参数方程为t x =,t y =,t z +=1,代入上述平面方程,得: 013)1(39=-+++t t t ,1310=t ,再代回2l 的参数方程得1310=x ,1310=y ,1323=z ,于是P()132313101310,,,兼顾公垂线l 的方向向量]4,3,1[--=l,于是可产生公垂线l 的方程为431132313101310-=--=--z y x .14、求点)1,`1,2(0-M 到直线l :⎩⎨⎧=+-+=-+-032012z y x z y x 的距离d .解法1:直线l 的方向向量为121[0,2,4]121=-=-i j ks ,在l 上任取一点)2,0,1(-M ,则0(3,1,1)M M −−→=-,0M M −−→⨯s 311(2,12,6)024=-=-i j k,故0⨯=M M s,又=s ,d 0⨯==M M ss解法2:将直线l 的方程由一般式化为标准式得42201-==+z y x ,故过点0M 与直线l 垂直的平面π的方程为0)1(4)1(2=-++z y , 即 012=-+z y ,直线l 的参数式方程为:1-=x ,t y =,22+=t z ,将上式代入平面π的方程,得:01)22(2=-++t t ,解得:53-=t ,所以直线l 的交点为()5453,,1--N 2,于是点0M 到直线l 的距离为。
第六章-空间解析⼏何要求与练习(含答案)第六章要求与练习⼀、学习要求1、理解空间直⾓坐标系,理解向量的概念及其表⽰.2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平⾏的条件.掌握单位向量、⽅向数与⽅向余弦、向量的坐标表达式,以及⽤坐标表达式进⾏向量运算的⽅法.3、掌握平⾯⽅程和直线⽅程及其求法,会利⽤平⾯、直线的相互关系(平⾏、垂直、相交等)解决有关问题.7、了解空间曲线在坐标平⾯上的投影,会求其⽅程.⼆、练习1、⼀向量起点为A (2,-2,5),终点为B (-1,6,7),求(1)AB 分别在x 轴、y 轴上的投影,以及在z 轴上的分向量;(2)AB 的模;(3)AB 的⽅向余弦;(4)AB ⽅向上的单位向量.解:(1)()3,8,2AB =-,AB 分别在x 轴的投影为-3,在y 轴上的投影为8,在z 轴上的分向量2k ;(2)AB =;(3)AB;(4)AB 382)i j k -++. 2、设向量a 和b 夹⾓为60o ,且||5a =,||8b =,求||a b +,||a b -.解:()2220||||||2||||cos60a b a b a b a b +=+=++=()2220||||||2||||cos60a b a ba b a b -=-=+-=7.3、已知向量{2,2,1}a =,{8,4,1}b =-,求(1)平⾏于向量a 的单位向量;(2)向量b 的⽅向余弦.解(1)2223a =+=平⾏于向量a 的单位向量221{,,}333±;(2)2849b =+=,向量b 的⽅向余弦为:841,,999-.4、⼀向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标.解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求(1)垂直于a 和b 的单位向量;(2)向量a 在b 上的投影;(3)以a 、b 为边的平⾏四边形的⾯积以及夹⾓余弦. 解(1)()6,1,10,137c a b c =?=--=,06,1,10)c ±--;(2)()cos ,17a b a b a b==;(3)()sin ,137S a b a b a b =?=?=()4cos ,1751a b =; 6、设0a b c ++=,||3a =,||2b =,||4c =,求a b b c c a ++. 解:()222220a b ca b c a b b c c a ++=+++++=,所以a b b c c a ++=29/2-;7、求参数k ,使得平⾯29x ky z +-=分别适合下列条件:(1)经过点(5,4,6)--;(2)与平⾯2433x y z ++=垂直;(3)与平⾯230x y z -+=成4π的⾓;(4)与原点相距3个单位;解:7、(1)2;(2)1;(3)2±;(4)2±; 8、已知平⾯平⾏于y 轴,且过点(1,5,1)P -和(3,2,1)Q -,求平⾯的⽅程.解:设平⾯⽅程为:0Ax By D ++=,将(1,5,1)P -和(3,2,1)Q -代⼊求得1,1, 2.A B D ===-该平⾯⽅程为:20x z +-=.9、已知平⾯过(0,0,0)O 、(1,0,1)A 、(2,1,0)B 三点,求该平⾯⽅程.解:设平⾯⽅程为:0Ax By Cz ++=,将(1,0,1)A 、(2,1,0)B 代⼊平⾯⽅程得,1,2,1,A B C ==-=-,该平⾯⽅程为20x y z --=.10、求过点(1,2,1)M ,且垂直于已知两平⾯0x y +=与510y z +-=的平⾯⽅程. 解:两平⾯的法向量为:()()121,1,0,0,5,1n n ==,所⽰平⾯的法向量为:()()()121,1,00,5,11,1,5n n n =?=?=-,则所⽰的平⾯⽅程为:540x y z -+-=.11、把直线124x y z x y z -+=??++=?化为对称式⽅程及参数⽅程.解:两平⾯的法向量为:()()121,1,1,2,1,1n n =-=,则直线的⽅向向量为:()()()121,1,12,1,12,1,3s n n =?=-?=-,取直线上⼀点为:(1,1,1),则直线对称式⽅程为:111,213x y z t ---===-参数⽅程为:12113x ty t z t=-??=+??=+?.解⼆:若取点为:(0,-3/2,5/2) ,则直线对称式⽅程为:3/25/2213x y z --==- ,参数⽅程为:2,3/2,35/2x t y t z t =-=+=+.12、求过点(0,2,4)且与平⾯21x z +=及32y z -=都平⾏的直线⽅程.解:两平⾯的法向量为:()()121,2,2,0,1,3n n ==-,则直线的⽅向向量为:()()()111,2,20,1,32,3,1s n n =?=?-=-,则直线⽅程为:24231x y z t --===-,或2234x ty t z t =-??=+??=+?13、⼀直线过点(2,3,4)A -且和y 轴垂直相交,求其⽅程.解:过点(2,3,4)A -的直线与y 轴垂直相交的交点为(0,-3,0),直线的⽅向向量为:(2,0,4),所以直线⽅程为:231204x y z -++==,即302124y x z +=??-+=. 14.将xoz 坐标⾯上的抛物线x z 52=绕x 轴旋转⼀周,求所⽣成的旋转曲⾯的⽅程。
空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。
1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。
一、计算题与证明题1.已知, , , 并且. 计算.1||=a 4||=b 5||=c 0=++c b a a c c b b a ⨯+⨯+⨯解:因为, , , 并且1||=a 4||=b 5||=c 0=++c b a 所以与同向,且与反向a b b a +c 因此,,0=⨯b a 0=⨯c b 0=⨯a c 所以0=⨯+⨯+⨯a c c b b a 2.已知, , 求.3||=⋅b a 4||=⨯b a ||||b a ⋅解:(1)3cos ||=⋅=⋅θb a b a(2)4sin ||=⋅=⨯θb a b a 得()222)1(+()252=⋅b a 所以5=⋅b a 4.已知向量与共线, 且满足, 求向量的坐标.x )2,5,1(,-a 3=⋅x ax 解:设的坐标为,又x ()z y x ,,()2,5,1-=a 则 (1)325=-+=⋅z y x x a 又与共线,则x a 0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i 所以()()()05252222=-+++--y x x z z y 即 (2)010*********22=-++++xy xz yz z y x 又与共线,与夹角为或x a x a 0π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax 整理得(3)103222=++z y x 联立解出向量的坐标为()()()321、、x ⎪⎭⎫⎝⎛-51,21,1016.已知点, 求线段的中垂面的方程.)7,8,3(A )3,2,1(--B AB 解:因为,()7,8,3A )3,2,1(--B 中垂面上的点到的距离相等,设动点坐标为,则由得AB B A 、()z y x M ,,MB MA =()()()()()()222222321783++-++=-+-+-z y x z y x 化简得027532=-++z y x 这就是线段的中垂面的方程。
1.解析几何产生的背景是什么?在那个时期哪些问题导致了人们对运用代数方法处理几何问题的兴趣?解析几何的实际背景更多的是来自对变量数学的需求.文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代.机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题.在数学上就需要研究求曲线的切线问题.所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学.作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了.2、笛卡尔研究解析几何的出发点是什么?他又是怎么得到解析几何思想的?答:笛卡儿对数学方法的深入研究,是他断定数学可以有效地应用到其他科学上去。
他分析了古代已有的几何学和当时已经定型的代数学的优缺点,批评希腊几何过于抽象,并且过多地依靠图形,而代数则使人受到某些规则和公式的约束.他提出“寻求另外一种包含这两门科学的好处而没有他们的缺点的方法。
”当他看到代数具有作为一门普遍的科学方法的潜力,便着手把代数用到几何上去。
在《几何学》一书中,他仿造韦达的方法,用代数来解决几何作图的问题,比希腊人有了明显进展。
(在变量的理解和应用上。
希腊人无法处理三个以上变量的乘积.而笛卡儿是从纯数学方面考虑,所以可以处理三个以上的变量的乘积。
)笛卡儿之所以能创立解析几何,主要是他勇于探索,勤于思考.运用科学方法的必然结果。
3。
阐述费马的主要数学成就。
(1)对解析几何的贡献费马独立于勒奈·笛卡儿发现了解析几何的基本原理。
1629年以前,费马便着手重写公元前三世纪古希腊几何学家阿波罗尼奥斯失传的《平面轨迹》一书。
练习题选参考答案1.两非零向量→a 、→b 垂直,则有0=⋅→→b a 或0Pr =→→a j b;平行则有0=⨯→→b a 或→→=ba λ或两向量对应坐标成比例。
2.若→→→→++=k j i a 863,2=→b ,则与→a ,x 轴均垂直的向量⎭⎬⎫⎩⎨⎧±=→56580 ,,b 。
3.曲线⎪⎩⎪⎨⎧=+-=-+4)2(4)2(2222y x z x 在yoz 面上的投影曲线方程为:⎪⎩⎪⎨⎧=+-±=+±044422x y z ,投影柱面方程为:44422+-±=+±y z 。
4.xoz 面上的曲线19422=-z x 分别绕x 轴和z 轴旋转所成旋转曲面方程为:1994222=--z y x ,1944222=-+z y x 。
5.已知{}4,0,3-=→a ,{}14,2,5--=→b ,则两向量所成夹角的角平分线上的单位向量为0000a bc a b →→→→→+⎧==-⎨⎩+。
6.以点A )0,0,2(,B )0,3,0(,C )6,0,0(,D )8,3,2(为顶点的四面体的体积V=14830602032)61=--=⋅⨯→→→AD AC AB (。
二 计算1.求点P )2,6,3(-关于直线L:⎩⎨⎧=+--=-+042201z y x z y 的对称点坐标。
解:直线L 的方向向量k j i kj i n n s 2212211021-+=--=⨯=→→→,取直线上的定点),,011(-,将其化为参数式:⎪⎩⎪⎨⎧-=+=+-=t z t y t x 2211 过点P 与直线L 垂直的平面为:0)2(2)6(2)3(=+--+-z y x ,01922=--+z y x ,将直线的参数式代入垂面方程有2=t ,从而点P 在直线L 上的投影坐标(直线与垂面的交点)为),,451(-, 设点P 关于直线L 的对称点坐标为)z y x ,,(,则有:422526123-=+-=+=+zy x ,,,解之:641-==-=z y x ,, 2.设直线L 过点M )1,3,2(-且其与y 轴相交,与直线01121:1zy x L =-=+垂直,求该直线方程。
空间解析几何练习题1. 求点),,(c b a M 分别关于(1)xz 坐标面(2)x 轴(3)原点 对称点的坐标. 2. 设 )2,,3(x A -与)4,2,1(-B 两点间的距离为29,试求x . 3. 证明 )3,2,1(A )5,1,3(B )3,4,2(C 是一个直角三角形的三个顶点.4. 设ABC ∆的三边=,=,=,三边的中点依次为D ,E ,F ,试用向量表示 ,,,并证明:=++ .5. 已知:k j i a 2+-=,k j i b -+=3求b a 32+,b a 32-.6. 已知:向量与x 轴,y 轴间的夹角分别为060=α,0120=β求该向量与z 轴间的夹角γ.7. 设向量的模是5,它与x 轴的夹角为4π,求向量在x 轴上的投影. 8. 已知:空间中的三点)2,1,0(-A ,)5,3,1(-B ,)2,1,3(--C 计算:32-,4+.9. 设{}1,0,2-=a ,{}2,2,1--=b 试求b a -,b a 52+,b a +3. 10. 设:{}1,2,2-=,试求与a 同方向的单位向量.11. 设:253++=,742--=,45-+=,-+=34试求(1)在y 轴上的投影;(2)在x 轴和z 轴上的分向量;(3 .12. 证明:22)()(-=-⋅+.13. 设:{}1,0,3-=a ,{}3,1,2--=b 求⋅,∧⋅)(. 14. 设→→→→-+=k j x i a 2,→→→→+-=k j i b 23且→→⊥b a 求x15. 设{}2,1,0-=,{}1,1,2-=求与和都垂直的单位向量.16. 已知:空间中的三点)0,1,1(A ,)3,1,2(-B ,)2,1,2(-C 求ABC ∆的面积.17. (1)设∥求⋅ (21==求⋅18. 3=5=,试确定常数k 使k +,k -相互垂直.19. 设向量与互相垂直,∧⋅)(c a 3π=,∧⋅)(c b 6π=1=2=3=+.20. 设:53+-=,32+--=求b a ⋅21. 设:k j i a --=63,k j i b 54-+=求(1)a a ⋅;(2))3()23(-⋅+;(3)a 与b 的夹角.22. 设:∧⋅)(6π=1=3=. 23. 设:{}2,1,1-=a ,{}1,2,1--=,试求:(1)b a ⋅;(2)b a ⨯;(3)∧⋅)cos(.24. 3=26=72=,求b a ⋅.25. 设a 与b 相互垂直,3=4=,试求(1))()(b a b a -⨯+;(2))2()3(b a b a -⨯-.26. 设:0=++c b a 证明:a c c b b a ⨯=⨯=⨯27. 已知:-+=23,2+-=,求(1)b a ⨯;(2))32()2(-⨯+;(3)⨯+)((4)b i a +⨯. 28. 求与{}1,2,2=a {}6,10,8---=b 都垂直的单位向量.29. 已知:{}1,6,3--=a ,{}5,4,1-=b ,{}12,4,3-=c 求c b a b c a )()(⋅+⋅在向量上的投影.30. 设:d c b a ⨯=⨯,d b c a ⨯=⨯且c b ≠,d a ≠证明d a -与c b -必共线.31. 设:b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求非零向量a 与b 的夹角.32. 设:{}6,3,2-={}2,2,1--=向量在向量与423=,求向量的坐标.33. 4=3=,∧⋅)(b a 6π=求以2+和3-为边的平行四边形面积. 34. 求过点)1,2,7(0-P ,且以{}3,4,2-=为法向量的平面方程. 35. 过点)1,0,1(0-P 且平行于平面53=--z y x 的平面方程. 36. 过点)2,3,1(-M 且垂直于过点)1,2,2(-A 与)1,2,3(B 的平面方程. 37. 过点)2,1,3(-A ,)1,1,4(--B ,)2,0,2(C 的平面方程.38. 过点)1,1,2(0P 且平行于向量{}1,1,2=和{}3,2,3-=的平面方程.39. 过点M o (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程.40. 将平面方程 01832=+-+z y x 化为截距式方程,并指出在各坐标轴上的截距.41. 建立下列平面方程(1)过点(3-,1,2-)及z 轴;(2)过点A (3-,1,2-)和B (3,0,5)且平行于x 轴;(3)平行于x y 面,且过点A (3,1,5-);(4)过点P 1(1,5-,1)和P 2(3,2,2-)且垂直于x z 面.42. 求下列各对平面间的夹角(1),62=+-z y x 32=++z y x ;(2)09543=--+z y x ,07662=-++z y x .43. 求下列直线方程(1)过点(2,1-,3-)且平行于向量{}123,,--=;(2)过点M o (3,4,2-)且平行z 轴;(3)过点M 1(1,2,3)和M 2(1,0,4);(4)过原点,且与平面0623=-+-z y x 垂直.44. 将下列直线方程化为标准方程(1)⎩⎨⎧=--+=-+-084230432z y x z y x ; (2)⎩⎨⎧-=+=422z y y x ; (3)⎩⎨⎧=+=-+00123z y z x 45. 将下列直线方程化成参数式方程(1)⎩⎨⎧-==-+-250125z y z y x ; (2)⎪⎩⎪⎨⎧=-+=-025126y z x . 46. 求过点(1,1,1)且同时平行于平面012=+-+z y x 及012=+-+z y x 的直线方程.47. 求过点(3,1,2-)且通过直线12354z y x =+=-的平面方程. 48. 求通过两直线211111-=-+=-z y x 与 112111-=+=--z y x 的平面方程. 64.求下列各对直线的夹角(1)74211+=-=-z y x ,131256--=-=+z y x ; (2)⎩⎨⎧=-+-=-+-012309335z y x z y x ,⎩⎨⎧=-++=+-+0188302322z y x z y x .49. 证明直线31141+=-=-z y x 与 ⎩⎨⎧=--+=++0207z y x z y x 相互平行. 50. 设直线 l 的方程为:nz y x 42311+=--=- 求n 为何值时,直线l 与平面052=+--z y x 平行?51. 作一平面,使它通过z 轴,且与平面0752=--+z y x 的夹角为3π. 52. 设直线l 在平面01:=+++z y x π 内,通过直线⎩⎨⎧=+=++0201:1z x z y l 与平面π的交点,且与直线l 1垂直、求直线l 的方程.53. 求过点(1,2,1)而且与直线 ⎩⎨⎧=-+-=+-+01012z y x z y x 与 ⎩⎨⎧=+-=+-002z y x z y x 平行的平面方程. 54. 一动点到坐标原点的距离等于它到平面04=-z 的距离,求它的轨迹方程.55. 直线⎩⎨⎧=-+=-+023012:z x y x l 与平面012:=--+z y x π 是否平行?若不平行,求直线l 与平面π的交点,若平行,求直线l 与平面π的距离.56. 设直线l 经过两直线35811:1--==--z y x l ,⎪⎩⎪⎨⎧--=+=+=t z t y t x l 101152143:2 的交点,而且与直线l 1与l 2都垂直,求直线l 的方程.57. 已知直线:⎩⎨⎧=-+-=+-+04201:1z y x z y x l 及点 )213(,,-p 过点p 作直线l 与直线l 1垂直相交,求直线l 的方程.58. 方程:019224222=-+--++z y x z y x 是否为球面方程,若是球面方程,求其球心坐标及半径.59. 判断方程:11462222=-+-++z y x z y x 是否为球面方程,若是球面方程,求其球心坐标及半径.60. 将曲线:⎩⎨⎧==052y x z 绕x 轴旋转一周,求所成的旋转曲面方程.61. 将曲线:⎩⎨⎧==+0369422z y x 绕y 轴旋转一周,求所成的旋转曲面方程.62. 说明下列旋转曲面是怎样形成的(1)10343222=++z y x ; (2)24222=+-z y x ; (3)1222=--z y x ; (4)222)(y x a z +=-. 63. 指出下列方程在空间中表示什么样的几何图形(1)14322=+y x ; (2)13222=-y x ; (3)x z 42=; (4)13422=+z y .自测题 (A)(一) 选择题1.点M )5,1,4(-到 x y 坐标面的距离为 ( )A .5B .4C .1D .422.点A )3,1,2(-关于y z 坐标面的对称点坐标 ( )A .)3,1,2(--B .)3,1,2(--C .)3,1,2(-D .)3,1,2(--3.已知向量{}{}{}3,1,4,2,2,2,1,5,3--==-=c b a ,则=+-c b a 432( )A .{}16,0,20B .{}20,4,5-C .{}20,0,16-D .{}16,0,20-4.设向量424--=,236+-=,则)3)(23(+-=( )A .20B .16-C .32D .32-5.已知:→→-AB prjD C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A .4 B .1 C .21 D .2 6.设=-⨯+-+=+-=)()(22,则 ( )A .k j i 53++-B .k j i 1062++-C .1062--D .k j i 543++7.设平面方程为0=-y x ,则其位置( )A .平行于x 轴B .平行于y 轴C .平行于z 轴D .过z 轴.8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( )A .平行B .垂直C .相交D .重合9.直线37423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A .平行 B .垂直 C .斜交 D .直线在平面内10.设点)0,1,0(-A 到直线⎩⎨⎧=-+=+-07201z x y 的距离为( ) A .5 B .61 C .51 D .81 (二) 填空题1.设=--x B x A ,则,两点间的距离为,,与29)421()2,,3(_________.2.设23-+-=,+-=2,则=-32_______________.3.当m=_____________时,532+-与m 23-+互相垂直.4.设++=2,22+-=,243+-=,则)(b a p r j c += .4. 设+-=2,32-+=,则)2()2(-⨯+=_________.5. 与)0,3,4()1,2,3(--B A 和等距离的点的轨迹方程为_______________.6. 过点),,(715,),,(204-且平行于z 轴的平面方程_______________.7. 设平面:03222,01=--+=+-+z y x z y x 与 平行,则它们之间的距离_________.8. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________.10.曲面方程为:44222=++z y x ,它是由曲线________绕_____________旋转而成的.(三) 解答题1.求平行于{}的单位向量2,3,6-=a .2.已知作用于一点的三个力{}{}{}5,4,3,3,2,1,4,3,2321-==--=F F F 求合力的大小与方向.3. 如果{}1,1,2-=,{}1,2,1-=求在上的投影.4. 用向量方法,求顶点在)4,4,3(),5,3,1(),1,1,2(-----的三角形的三个内角.5. 设2+-=,-+=2,22++=,试将下列各式用,,表示.(1) c b a ⨯⨯)(; (2))()(c a b a ⨯⨯⨯.6. 求经过点(1,2,0)且通过z 轴的平面方程.7. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离相等.8. 求过 )1,0,0(),0,1,0(),0,0,1( 的圆的方程,并求该圆在坐标平面xoy 上的投影曲线方程.9.求过点(1,2,1)且同时平行0132=-++z y x 和053=+-+z y x 两平面的直线方程.10.方程:12222=++z y x 表示什么图形?自测题(B )(一) 选择题1.设{}{}{}0,2,1,3,1,1,1,3,2-=-=-=,则=⨯⨯)(( )A .8B .10C .{}1,1,0--D .{}21,1,22.设{}{}2,2,2,2,1,1-=-=,则同时垂直于a 和b 的单位向量( )A .}0,21,21{± B .}0,21,21{± C .}0,2,2{± D .}0,2,2{±3.若==-+=b a b k j i a ,则,14//236( )A .)4612(k j i -+±B .)612(j i +±C .)412(k i -±D .)46(k j -±4.若ϕ,则3121321)2,1,2(),1,2,2(),1,1,1(M M M M M M M ( )A .6πB .2πC .3πD .4π 5.过)320()231(),412(321,,和,,,,M M M ---,的平面方程( )A .015914=--+z y xB .06872=--+z y xC .015914=-+-z y xD .015914=-++z y x6.求平面062=-+-z y x 与平面052=-++z y x 的夹角( )A .2πB .6πC .3πD .4π 7.直线⎩⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A 各系数满足( )条件,使它与y 轴相交. A .021==A A B .2121D D B B = C .021==C C D .021==D D 8.设点⎩⎨⎧=-+-=+-+-04201)2,1,3(z y x z y x l M o ,直线,则M O 到l 的距离为( )A .223 B .553 C .453 D .229.直线夹角为与平面62241312=++-=-=-z y x z y x ( ) A .30o B .60o C .90o D .65arcsin 10.过点)5,2,1(---且和三个坐标平面都相切的球面方程( )A .22225)1()1()1(=+++++z y xB .22225)5()5()5(=+++++z y xC .22225)2()2()2(=+++++z y xD .22225)5()5()5(=-+-+-z y x(二) 填空题1.设32+-=,+=2,++-=,则与+是否平行__________.2.设}8,5,3{=,}7,4,2{--=,}4,1,5{-=,则-+34在x 轴上的投影_________________.3.化简:=⨯--⨯+++⨯++)()()(__________________.4.直线 ⎩⎨⎧=---=-+-01205235:z y x z y x l 和平面 07734:=-+-z y x π的___________位置关系. 5.过直线⎩⎨⎧=+-+=-+-025014z y x z y x 且与x 轴平行的平面方程___________________. 6.原点==+-k kz y x ,则,的距离为到平面262)0,0,0(_________________.7.与平面0522=+++z y x ,且与三个坐标面所构成的四面体体积为1的平面方程_____________________.8.动点到点(0,0,5)的距离等于它到x 轴的距离的曲面方程为________________.9.曲面方程:259916222=--z y x 则曲面名称为________________.10.曲线⎪⎩⎪⎨⎧-+-=--=2222)1()1(2y x z y x z 在y z 面上的投影方程______________. (三) 解答题1.设}0,1,1{},1,1,0{},1,1,1{===并令z y x ++=(x ,y ,z 为数量)求 (1); (2)当z y x ,,}3,2,1{时,=.2.求平行于}2,3,6{-=a 的单位向量.3.确定k 值,使三个平面:328,1423,23=--=++=+-z y x z y x z y kx 通过同一条直线.4.已知两个不平行的向量与,2=⋅1=4=,设)(3)(2Xa b b a c -⨯=,求(1))(+⋅; (2; (3)的夹角余与弦.5.求以向量i k k j j i +++,,为棱的平行六面体的体积.6.垂直平分连接)3,5,2(),1,3,4(B A -的线段的平面方程.7.求与平面4362=+-z y x 平行平面,使点)8,2,3(为这两个平面公垂线中点.8.在平面02=--z y x 上找一点p 使它与点)3,1,2()1,3,4(),5,1,2(---及之间的距离相等.9.方程:0448422=-+-+y x y x 表示什么曲面?9. 方程组⎩⎨⎧=-++=--++0122046222z y x y x z y x 图形是什么?若是一个圆,求出它的中心与半径.参考答案参考答案练习题1.(1)),,(c b a -; (2)),,(c b a --; (3)),,(c b a ---.2.51-==x x 或. 3.算出距离后,证明满足勾股定理 4.略5.++=+32; i 75732+--=- .6. 13545或=γ. 7.225. 8.}13,4,11{4},18,8,11{32-=+-=-. 9.}5,2,7{3},12,10,9{52},1,2,1{--=+--=+=-. 10.单位向量为}31,32,32{-. 11.(1)7; (2)在x 轴的分向量i 13,在z 轴的分向量9-; (3)299=u . 12.利用数量积运算法则. 13.9-=⋅; 70359arccos )(-=∧π. 14.x =4. 15.单位向量:)24(211k j i ++±. 16.1723=∆ABC S . 17.(1)若a 与b 同向,则b a b a ⋅=⋅,若a 与b 反向,则b a b a ⋅-=⋅;(2))cos(b a ∧.18.53±=k . 19.3617+=++c b a . 20.16=⋅b a . 21.(1)46; (2)2-; (3)4838arccos )(-=∧πb a . 22.23. 23.(1)3; (2)k j i 333--; (3)21.24.30±。
苏教版高中数学选择性必修第二册第6章空间向量与立体几何单元综合测试(满分150分)一、单项选择题:本题共8小题,每小题5分,共40分.1.如图,在空间四边形OABC 中,OA →=a,OB →=b,OC →=c ,且OM =2MA,BN =NC ,则MN→等于()A.23a +23b +12c B.12a +12b -12c C .-23+12+12D.12a -23b +12c 2.已知向量a =(2,3,5),b =(-3,1,-4),c =(1,-2,1),则(a -b )·c 为()A .10 B.-10C.12D.-123.已知向量a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ+μ的值可能为().A .-3 B.12C.52D.24.已知点A,B,C 的坐标分别为(0,1,0),(-1,0,-1),(2,1,1),点P 的坐标是(x,0,y ),若PA ⊥平面ABC ,则点P 的坐标是()A .(-1,0,2) B.(1,0,2)C .(1,0,-2)D.(-1,0,-2)5.已知A,B,C三点不共线,O是平面ABC外一点,下列条件能确定点M与点A,B,C一定共面的是()A.OM→=OA→+OB→+OC→B.OM→=OA→+2OB→+3OC→C.OM→=13OA→+13OB→+13OC→D.OM→=12OA→+12OB→+12OC→6.已知A,B,C,D是空间不共面的四点,且满足AB→·AC→=0,AC→·AD→=0,AB→·AD→=0,M为BC的中点,则△AMD是()A.钝角三角形 B.锐角三角形C.直角三角形 D.形状不确定7.如图,在棱长为a的正方体ABCDA1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E,F为CD上两个动点,且EF的长为定值,则点Q到平面PEF 的距离()A.等于55aB.和EF的长度有关C.等于23aD.和点Q的位置有关8.如图,在棱长均为2的正四棱锥PABCD中,E为PC的中点,则下列判断正确的是()A.BE∥平面PAD,且BE到平面PAD的距离为3B.BE∥平面P AD,且BE到平面PAD的距离为263C.BE与平面P AD不平行,且BE与平面PAD所成的角大于30°D.BE与平面PAD不平行,且BE与平面PAD所成的角小于30°二、多项选择题:本题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列判断错误的是()A.|a|-|b|<|a+b|是向量a,b不共线的充要条件B.在空间四边形ABCD中,AB→·CD→+BC→·AD→+CA→·BD→=0C.在棱长为1的正四面体ABCD中,AB→·BC→=12D.若向量a,b,c共面,则它们所在的直线也共面10.如图,在长方体ABCDA1B1C1D1中,AB=3AD=3AA1=3,P为线段A1C上的动点,则下列结论正确的是()A.当A1C→=2A1P→时,B1,P,D三点共线→B.当AP→⊥A1C→时,AP→⊥D1PC.当A1C→=3A1P→时,D1P∥平面BDC1D.当A1C→=5A1P→时,A1C⊥平面D1AP11.如图,正方体ABCDA1B1C1D1的棱长为1,E是DD1的中点,则下列判断正确的有()A.B1C∥平面A1BDB.B1C⊥BD1C.三棱锥C1B1CE的体积为13D.异面直线B1C与BD所成的角为60°12.如图,在四棱锥PABCD中,平面PAD⊥平面ABCD,侧面P AD是边长为26的正三角形,底面ABCD为矩形,CD=23,Q是PD的中点,则下列结论正确的是()A.CQ⊥平面PADB.PC与平面AQC所成角的余弦值为223C.三棱锥BACQ的体积为62D.四棱锥QABCD外接球的半径为3三、填空题:本题共4小题,每小题5分,共20分.其中第16题第一空2分,第二空3分.13.在直三棱柱ABCA1B1C1中,AA1=AB=BC=3,AC=2,D是AC的中点,则直线B1C到平面A1BD的距离为________.14.在三棱锥PABC中,△ABC和△PBC均为等边三角形,且二面角PBCA 的大小为120°,则异面直线PB和AC所成角的余弦值为________.15.如图,棱长为3的正方体的顶点A在平面α上,三条棱AB,AC,AD都在平面α的同侧,若顶点B,C到平面α的距离分别为2,2,则顶点D到平面α的距离是________.16.在棱长为1的正方体ABCDA1B1C1D1中,E为CC1的中点,P,Q是正方体表面上相异两点,满足BP⊥A1E,BQ⊥A1E.若点P,Q均在平面A1B1C1D1内,则PQ与BD的位置关系是________,A1P的最小值为________.四、解答题:本题共6小题,共70分.17.(10分)已知点A(0,2,3),B(-2,1,6),C(1,-1,5).(1)求以AB,AC为边的平行四边形的面积;(2)若向量a分别与AB→,AC→垂直,且|a|=3,求a的坐标.18.(12分)如图,已知空间四边形ABCD每条边长和对角线长都等于1,E,F,G 分别是AB,AD,CD的中点.(1)求证:EG⊥AB;(2)求EG的长;(3)求异面直线AG和CE所成角的余弦值.19.(12分)如图,在多面体ABCA1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=2AB,B1C1∥BC且B1C1=12BC,二面角A1ABC是直二面角.(1)求证:A1B1⊥平面AA1C;(2)求证:AB1∥平面A1C1C.20.(12分)如图,在三棱锥P ABC 中,PA ⊥平面ABC,∠BAC =90°,D,E,F 分别是棱AB,BC,CP 的中点,AB =AC =1,PA =2.(1)求直线PA 与平面DEF 所成角的正弦值;(2)求点P 到平面DEF 的距离;(3)求点P 到直线EF 的距离.21.(12分)如图,在三棱柱ABC A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,已知∠BCC 1=π3,BC =1,AB =C 1C =2,E 是棱C 1C 的中点.(1)求证:C 1B ⊥平面ABC .(2)求二面角A EB 1A 1的余弦值.(3)在棱CA 上是否存在一点M ,使得EM 与平面A 1B 1E 所成角的正弦值为21111若存在,求出CMCA的值;若不存在,请说明理由.22.(12分)已知条件①:在图1中,tan2B =-43.条件②:在图1中,AD →=23AB →+13AC →.条件③:在图2中,三棱锥A BCD 的体积最大.从以上三个条件中任选一个,补充在问题(2)中的横线上,并加以解答.如图1,在△ABC 中,∠ACB =45°,BC =3,过点A 作AD ⊥BC ,垂足为D ,沿AD 将△ABD 折起,使∠BDC =90°,如图2,E,M 分别为棱BC,AC 的中点.图1图2(1)求证:CD ⊥ME ;(2)已知______,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求锐二面角M BN C 的余弦值.注:若选择多个条件分别解答,则按第一个解答计分.参考答案与解析1.C 2.A 3.C 4.A 5.C 6.C提示因为M 为BC 的中点,所以AM →=12(AB →+AC →),所以AM→·AD →=12(AB →+AC→)·AD →=12AB →·AD →+12AC →·AD →=0.所以AM ⊥AD,所以△AMD 为直角三角形7.A提示取B 1C 1的中点G ,连接PG,CG,DP ,则PG ∥CD ,所以点Q 到平面PEF 的距离即点Q 到平面PGCD 的距离,与EF 的长度无关,故B 错.又因为A 1B 1∥平面PGCD 所以点A 1到平面PGCD 的距离即点Q 到平面PGCD 的距离,所以点Q 到平面PEF 的距离与点Q 的位置无关,故D 错.如图,以点D 为原点建立空间直角坐标系,则知点C (0,a,0),D (0,0,0),A 1(a,0,a ),0,以DC →=(0,a,0),DA 1→=(a,0,a ),DP →0,设n =(x,y,z )是平面PGCD 的一个·DP →=0,·DC→=0,+az =0,=0,令z =1,则x =-2,y =0,所以n =(-2,0,1).设点Q 到平面PEF 的距离为d ,则d =|DA 1→·n |n ||=|-2a +a 5|=55a ,即A 对C 错8.D 提示连接AC,BD ,交点为O ,连接OP ,以O为坐标原点,OC,OD,OP 所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系.由正四棱锥P ABCD 的棱长均为2,E为PC 的中点,知点A (-2,0,0),B (0,-2,0),C (2,0,0),D (0,2,0),P (0,0,2),则BE →,2PA →=(-2,0,-2),PD →=(0,2,-2).设m =(x,y,z )是平面PAD 的一个法向量,则m ⊥P A →,且m ⊥PD →,即-2z =0,-2z =0,令x =1,则z =-1,y =-1,所以m =(1,-1,-1).设BE与平面PAD 所成的角为θ,则sin θ=|m ·BE →||m |·|BE →|=23<12,故BE 与平面P AD 不平行,且BE 与平面PAD 所成的角小于30°9.ACD提示①由|a |-|b |<|a +b |得向量a,b 可能共线,比如共线向量a,b的模分别是2,3,故A 错误.②在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=(AC →+CB →)·CD →-CB →·AD →-AC →·BD →=AC →·(CD →-BD →)+CB →·(CD →-AD →)=AC →·BC →+CB→·AC →=0,故B 正确.③在棱长为1的正四面体A BCD 中,AB →·BC →=1×1×cos120°=-12,故C 错误.④若向量a,b,c 共面,则它们所在的直线在某个平面内或者平行于某个平面,故D 错误10.ACD提示以D 为坐标原点建立如图所示的空间直角坐标系.因为AB =3AD =3AA 1=3,所以AD =AA 1=1,则知点A (1,0,0),A 1(1,0,1),C (0,3,0),D 1(0,0,1),D (0,0,0),B (1,3,0),则A 1C →=(-1,3,-1),D 1A →=(1,0,-1).对于A 选项,当A 1C →=2A 1P →时,P 为A 1C 的中点,根据长方体结构特征,P 为体对角线的中点,因此P 也为B 1D 的中点,所以B 1,P,D 三点共线,故A 正确.对于B 选项,当AP →⊥A 1C →时,AP ⊥A 1C ,由题意可得A 1C =1+1+3=5,AC =1+3=2,所以由S △A 1AC =12AA 1·AC =12A 1C ·AP ,解得AP =255,所以A 1P =55,即P 为靠近点A 1的五等分点,所以P ,35,D 1P →=,35,-AP →-15,35,D 1P →·AP →=-425+325-425=-15≠0,所以AP →与D 1P →不垂直,故B 错误.对于C 选项,当A 1C →=3A 1P →时,则A 1P →=13A 1C →=-13,33,-.设平面BDC 1的一个法向量为n =(x,y,z ),由·DC 1→=3y +z =0,·DB→=x +3y =0,令y =1,可得n =(-3,1,-3),又因为D 1P →=A 1P →-A 1D 1→,33,-D 1P →·n =0,因此D 1P →⊥n ,所以D 1P ∥平面BDC 1,故C 正确.对于D 选项,当A 1C →=5A 1P →时,A 1P →=15A 1C →-15,35,-所以D 1P→=A 1P →-A 1D 1→,35,-所以A 1C →·D 1P →=0,A 1C →·D 1A →=0,因此A 1C ⊥D 1P,A 1C ⊥D 1A ,根据线面垂直定理,可得A 1C ⊥平面D 1AP ,故D 正确.故选ACD11.ABD提示如图,建立空间直角坐标系,则知点A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),C 1(1,1,1),D 1(0,1,1),,1B 1C →=(0,1,-1),BD 1→=(-1,1,1),BD →=(-1,1,0),BA 1→=(-1,0,1),所以B 1C →·BD 1→=-1×0+1×1+(-1)×1=0,即B 1C →⊥BD 1→,所以B 1C ⊥BD 1,故B 正确;B 1C →·BD →=-1×0+1×1+(-1)×0=1,|B 1C →|=2,BD →=2,设异面直线B 1C 与BD 所成的角为θ,则cos θ=B 1C →·BD →|B 1C →|·|BD→|=12,而θ,π2,所以θ=π3,故D 正确;设平面A 1BD 的一个法向量为n =(x,y,z )·BA 1→=0,·BD→=0,x +z =0,x +y =0,令x =1,则n =(1,1,1),所以n ·B 1C →=0×1+1×1+1×(-1)=0,即n ⊥B 1C →,又因为直线B 1C ⊄平面A 1BD ,所以直线B 1C ∥平面A 1BD ,故A 正确;VC 1-B 1CE =VB 1-C 1CE =13B 1C 1·S △C 1CE =13×1×12×1×1=16,故C 错误.故选ABD 12.BD提示如图,取AD 的中点O,BC 的中点E ,连接OE,OP .因为△PAD 为等边三角形,所以OP ⊥AD .因为平面PAD ⊥平面ABCD ,所以OP ⊥平面ABCD .因为AD ⊥OE ,所以OD,OE,OP 两两垂直.以O 为坐标原点,以OD,OE,OP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则知点O (0,0,0),D (6,0,0),A (-6,0,0),P (0,0,32),C (6,23,0),B (-6,23,0).因为Q 是PD 的中点,所以Q 0设平面PAD 的一个法向量为m =(0,1,0),QC →=62,23,-322,显然m 与QC →不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;PC →=(6,23,-32),AQ →=362,0,322,AC →=(26,23,0),设平面AQC 的一个法向量为n =(x,y,z ),则n ·AQ→=362x +322z =0,n ·AC→=26x +23y =0,令x =1,则y =-2,z =-3,所以n =(1,-2,-3).设PC 与平面AQC 所成角为θ,则sin θ=13,所以cos θ=223,所以B 正确;三棱锥B ACQ 的体积为V B ACQ =V Q ABC =13S △ABC ·12OP =13×12×23×26×12×32=6,所以C 不正确;设四棱锥Q ABCD 外接球的球心为点M (0,3,a ),则MQ =MD ,所以622+(3)2+a -3222=(6)2+(3)2+a 2,解得a =0,即M (0,3,0)为矩形ABCD 对角线的交点,所以四棱锥Q ABCD 外接球的半径为3.故选BD13.31010提示由B 1C ∥平面A 1BD ,知直线B 1C 到平面A 1BD 的距离就等于点B 1到平面A 1BD 的距离.以点D 为坐标原点建立如图所示的空间直角坐标系,则知点B 1(0,22,3),B (0,22,0),A 1(-1,0,3),DB 1→=(0,22,3),DB →=(0,22,0),DA 1→=(-1,0,3).设平面A 1BD 的一个法向量为n =(x,y,z ),所以n ⊥DB →,n ⊥DA 1→,即n ·DB →=0,n ·DA 1→=0,即22y =0,-x +3z =0,令z =1,则n =(3,0,1).所求距离为d =|n ·DB 1→||n |=3101014.58提示如图,取BC 的中点O ,连接OP,OA ,因为△ABC 和△PBC 均为等边三角形,所以AO ⊥BC,PO ⊥BC ,所以BC ⊥平面PAO ,即平面PAO ⊥平面ABC .故∠POA 的大小就是二面角P BC A 的大小,即∠POA =120°,建立空间直角坐标系如图所示.设AB =2,则知点A (3,0,0),C (0,-1,0),B (0,1,0),-32,0AC →=(-3,-1,0),PB→1cos 〈AC →,PB →〉=-58,所以异面直线PB 与AC 所成角的余弦值为5815.5提示如图,以O 为坐标原点,建立空间直角坐标系,则知点O (0,0,0),C (3,0,0),B (0,3,0),A (3,3,0),D (3,3,3)所以BA →=(3,0,0),CA →=(0,3,0),AD →=(0,0,3).设平面α的一个法向量为n =(x,y,z ),则点B 到平面α距离为d 1=|BA→·n ||n |=|3x |x 2+y 2+z 2=2①,点C 到平面α距离为d 1=|CA→·n ||n |=|3y |x 2+y 2+z 2=2②,由①②可得|y |=|x |,|z |=52|x |.所以点D 到平面α的距离为|AD→·n ||n |=|3z |x 2+y 2+z2=352|x |32|x |=516.平行324提示(1)如图,以D 为原点,DA 为x轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,则知点A 1(1,0,1),1B (1,1,0).因为点P,Q 均在平面A 1B 1C 1D 1内,所以设点P (a,b,1),Q (m,n,1),则A 1E →1,1BP →=(a -1,b -1,1),BQ→=(m -1,n -1,1).因为BP ⊥A 1E,BQ ⊥A 1E,所以·A 1E →=-(a -1)+(b -1)-12=0,·A 1E →=-(m -1)+(n -1)-12=0,解得-a =12,-m =12.可得PQ ∥BD(2)当A 1P 取最小值时,点P在平面A 1B 1C 1D 1内,设点P 的坐标为(a,b,1),由(1)得b =a +12,所以A 1P =(a -1)2+b 2=(a -1)2+a +122=2a 2-a +54=2a -142+98,所以当a =14,即点P 的坐标为14,34,1时,A 1P 的最小值为32417.(1)因为AB →=(-2,-1,3),AC →=(1,-3,2),设〈AB →,AC →〉=θ,则cos θ=AB →·AC →|AB →|·|AC →|=-2+3+614×14=12,得θ=60°,所以以AB,AC 为边的平行四边形的面积S=AB ·AC ·sin θ=73(2)设a =(x,y,z ),则a ·AB →=(x,y,z )·(-2,-1,3)=0,a ·AC →=(x,y,z )·(1,-3,2)=0,x 2+y 2+z 2=3,解得a =(1,1,1)或a =(-1,-1,-1)18.(1)设AB →=a,AC →=b,AD →=c ,则|a |=|b|=|c|=1,〈a,b 〉=〈b,c 〉=〈c,a 〉=60°,EG →=12(AC →+AD →-AB →)=12(b +c -a ),所以EG →·AB →=12(a·b +a·c -a 2)=121×1×12+1×1×12-1=0.故EG →⊥AB →,即EG ⊥AB (2)由EG→=-12a +12b +12c ,得|EG →|2=14a 2+14b 2+14c 2-12a·b +12b·c -12c·a =12,则|EG →|=22,即EG 的长为22(3)由题意知AG→=12b +12c,CE →=CA →+AE →=-b +12a,cos AG→,CE →=AG →·CE →|AG→|·|CE →|=-23.由于异面直线所成角的范围是0,π2],所以异面直线AG 与CE 所成角的余弦值为2319.(1)由二面角A 1AB C 是直二面角,四边形A 1ABB 1为正方形,可得AA 1⊥平面ABC .又因为AB =AC,BC =2AB,所以AB 2+AC 2=BC 2,所以∠CAB =90°,即CA ⊥AB .所以AB,AC,AA 1两两垂直.以A 为坐标原点,AC,AB,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系A xyz .设AB =2,则知点A (0,0,0),B (0,2,0),A 1(0,0,2),C (2,0,0),C 1(1,1,2),B 1(0,2,2).A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0),设平面AA 1C 的一个法向量为n =(x,y,z ),则n ·A 1A →=0,n ·AC→=0,即-2z =0,2x =0,即x =0,z =0.取y =1,则n =(0,1,0).所以A 1B 1→=2n ,即A 1B 1→∥n ,所以A 1B 1⊥平面AA 1C (2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2),设平面A 1C 1C 的一个法向量为m =(x 1,y 1,z 1),则m ·A 1C 1→=0,m ·A 1C →=0,即x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1).所以AB 1→·m =0×1+2×(-1)+2×1=0,所以AB 1→⊥m .又因为AB 1⊄平面A 1C 1C,所以AB 1∥平面A 1C 1C20.(1)如图,以A 为原点,AB,AC,AP 所在的直线分别为x,y,z 轴,建立空间直角坐标系A xyz .由AB =AC =1,PA =2,知点A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D 12,0,0,E 12,12,0,F 0,12,1.设平面DEF 的一个法向量为n =(x,y,z ),则n ·DE →=0,n ·DF→=0,即(x ,y ,z )·0,12,0=0,(x ,y ,z )·-12,12,1=0,解得x =2z ,y =0.取z =1,则n =(2,0,1).设P A 与平面DEF 所成的角为θ,则sin θ=|PA →·n ||PA →|·|n |=55,故直线P A 与平面DEF 所成角的正弦值为55(2)因为PF →=0,12,-1,n =(2,0,1),所以点P 到平面DEF 的距离为d =|PF →·n ||n |=55(3)因为PF →=0,12,-1,EF →=-12,0,1,PF →在EF →上的投影长为|PF →·EF →||EF →|=255,所以点P 到直线EF 的距离为|PF →|2-2552=54-45=920=351021.(1)因为BC =1,CC 1=2,∠BCC 1=π3,所以BC 1=3.所以BC 2+BC 21=CC 21,所以BC 1⊥BC .因为AB ⊥侧面BB 1C 1C,所以AB ⊥BC 1.又因为AB ∩BC =B,AB,BC ⊂平面ABC,所以直线C 1B ⊥平面ABC(2)以B 为原点,BC →,BC 1→和BA →的方向分别为x,y,z 轴的正方向,建立如图所示的空间直角坐标系,则知点A (0,0,2),B 1(-1,3,0),E 12,32,0,A 1(-1,3,2).设平面AB 1E 的一个法向量为n =(x 1,y 1,z 1),AB 1→=(-1,3,-2),AE →=12,32,-2,因为n ·AB 1→=0,n ·AE→=0,所以-x 1+3y 1-2z 1=0,12x 1+32y 1-2z 1=0,令y 1=3,则x 1=1,z 1=1,所以n =(1,3,1).设平面A 1B 1E 的一个法向量为m =(x,y,z ),A 1B 1→=(0,0,-2),A 1E →=32,-32,-2,因为m ·A 1B 1→=0,m ·A 1E →=0,所以-2z =0,32x -32y -2z =0,令y =3,则x =1,所以m =(1,3,0).因为|m |=2,|n |=5,m ·n =4,所以cos 〈m,n 〉=m ·n|m |·|n |=425=255.设二面角A EB 1A 1为α,则cos α=cos 〈m,n 〉=255,所以二面角A EB 1A 1的余弦值为255(3)假设存在点M (x,y,z ),因为CM→=λCA →,λ∈[0,1],所以(x -1,y,z )=λ(-1,0,2),所以M 点坐标为(1-λ,0,2λ),所以EM →=12-λ,-32,2λ.由(2)知平面A 1B 1E 的一个法向量为m =(1,3,0),所以21111=|12-λ-32|212-λ2+34+4λ2,得69λ2-38λ+5=0,即(3λ-1)(23λ-5)=0,所以λ=13或λ=523,所以CM CA =13或CM CA =52322.(1)因为CD ⊥AD,CD ⊥BD,AD ∩BD =D,所以CD ⊥平面ABD .因为AB ⊂平面ABD,所以CD ⊥AB .又因为M,E 分别为AC,BC 的中点,所以ME ∥AB,所以CD ⊥ME(2)方案一:选①.由tan2B =-43=2tan B 1-tan 2B ,解得tan B =2或tan B =-12(舍去).设AD =CD =x ,在Rt △ABD 中,tan B =ADBD =x 3-x=2,解得x =2,所以BD =1.以点D 为原点,DB,DC,DA 所在直线分别为x,y,z 轴建立如图所示的空间直角坐标系D xyz,则知点D (0,0,0),B (1,0,0),C (0,2,0),A (0,0,2),M (0,1,1),1,BM →=(-1,1,1).设N 点坐标为(0,a,0),则EN →-12,a -1,因为EN ⊥BM,所以EN →·BM →=0,-12,a -1,-1,1,1)=0,得a =12,所以N ,12,所以当DN =12(即点N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .设平面BNM 的一个法向量为n =(x,y,z ),且BN →1,12·BN →=0,·BM →=0,得x +12y =0,x +y +z =0,令x =1,则n =(1,2,-1).取平面BNC 的一个法向量m =(0,0,1),则cos 〈m,n 〉=m ·n |m |·|n |=-16=-66,所以锐二面角M BN C 的余弦值为66方案二:选②.在△ABC 中,设BD →=λBC →,则AD→=AB →+BD →=AB →+λBC →=AB →+λ(AC→-AB →=(1-λ)AB →+λAC →.又因为AD →=23AB →+13AC →,由平面向量基本定理知λ=13,即BD =1.以下过程同方案一方案三:选③.在△ABC 中,设BD =x (0<x <3),则CD =3-x ,因为AD ⊥BC,∠ACB =45°,所以△ADC 为等腰直角三角形,所以AD =CD =3-x .折起后,AD ⊥DC,AD ⊥BD ,且BD ∩DC =D ,所以AD ⊥平面BCD .又因为∠BDC =90°,所以S △BCD =12x (3-x ),V A BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=16(x 3-6x 2+9x ),x ∈(0,3).令f (x )=16(x 3-6x 2+9x ),f ′(x )=12(x -1)(x -3).当0<x <1时,f ′(x )>0;当1<x <3时,f ′(x )<0.所以x =BD =1时,三棱锥A BCD 的体积最大.以下过程同方案一。
空间解析几何习题答案一、计算题与证明题1.已知|a|?1, |b|?4, |c|?5, 并且a?b?c?0.计算a?b?b?c?c?a.解:因为|a|?1, |b|?4, |c|?5, 并且a?b?c?0 所以a与b同向,且a?b与c反向因此a?b?0,b?c?0,c?a?0 所以a?b?b?c?c?a?0 2.已知|a?b|?3, |a?b|?4, 求|a|?|b|.解:|a?b|?a?bcos??3|a?b|?a?bsin??4 2(1)2??2?得?a?b??25 2所以a?b?5 4.已知向量x与a(,1,5,?2)共线, 且满足a?x?3, 求向量x的坐标.解:设x的坐标为?x,y,z?,又a??1,5,?2? 则a?x?x?5y?2z?3又x与a共线,则x?a?0 即??yzxyxyxyz?i?j?k5?21?215 15?2???2y?5z?i??z?2x?j??5x?y?k?0所以ijk??2y?5z?2??z?2x?2??5x?y?2222?0即29x?5y?26z?20yz?4xz?10xy?0又x与a共线,x与a夹角为0或?cos0?1?x?ax?y?z?1?5???2?222222222?3x ?y?z?30222 整理得x?y?z?3 10?2?、?3?解出向量x的坐标为?联立?1?、?111?,,?? 1025??6.已知点A(3,8,7), B(?1,2,?3)求线段AB的中垂面的方程.解:因为A?3,8,7?,B(?1,2,?3) AB中垂面上的点到A、B的距离相等,设动点坐标为M?x,y,z?,则MA?MB 得?x?3?2??y?8?2??z?7?2化简得2x?3y?5z?27?0 ??x?1?2??y?2?2??z? 3?2 这就是线段AB的中垂面的方程。
7.向量a, b, c具有相同的模, 且两两所成的角相等, 若a, b的坐标分别为(1,1,0)和(0,1,1), 求向量c的坐标.解:a?b?c?r且它们两两所成的角相等,设为? 则有a?b?1?0?1?1?0?1?1 则cos??a?b1?2 a?br设向量c的坐标为?x,y,z? 则a?c?1?x?1?y?0?z?x?y?a?bcos??r?r?1?1r2b?c?0?x?1?y?1?z?y?z?b?ccos??r?r?1?1r2c?x2?y2?z2?r?12?12?02?2 所以x?y?z?22221?x???3x?1??4??联立、、(3)求出?y?0或?y? 3?z?1??1?z???3?所以向量c 的坐标为?1,0,1?或??,,?? 8.已知点A(3,6,1), B(2,?4,1), C(0,?2,3), D(?2,0,?3),(1) 求以AB, AC, AD为邻边组成的平行六面体的体积.(2) 求三棱锥A?BCD的体积.?14?331?3?(3) 求?BCD的面积.(4) 求点A到平面BCD的距离.解:因为A?3,0,1?,B?2,?4,1?,C?0,?2,3?,D??2,0,?3? 所以AB???1,?10,0? AC???3,?8,2? AD???5,?6,?4? AB,AC,AD是以它们为邻边的平行六面体的体积???1?10V??3?5?8?602??3?100?0 ??0?120?12??176 ?4立体几何中知道,四面体ABCD的体积1188VT?V??176? 663因为BC???2,2,2?,BD???4,4,?4? i BC?BD??2jk22??16i?16j?0k ?44?4 所以BC?BD?因此S?BCD???16?2???16?2?162,这是平行四边形BCED的面积11S□BCED??162?82 22(4)设点A到平面BCD的距离为H,立体几何使得三棱锥A?BCD的体积1VT?S?BCD?H 3所以H?3VTS?BCD883?11?112 ?28223?1.求经过点A(3,2,1)和B(?1,2,?3)且与坐标平面xOz垂直的平面的方程.解:与xoy 平面垂直的平面平行于y轴,方程为Ax?Cz?D?0(1) 把点A?3,2,1?和点B??1,2,?3?代入上式得3A?C?D?0(2) ?A?3C?D?0(3) DD,得A??,C? 22DDz?D?0代入得?x?22消去D得所求的平面方程为x?2?z?0 xyz??1距离相等的点的轨迹方程.2.求到两平面?:3x?y?2z?6?0和?:?2?51解;设动点为M?x,y,z?,点到平面的距离公式得3z?y?2z?63???1??2222??5x?2y?10z?10?? 5?2?2???10?22 所以3x?y?2z?6??14129??5x?2y?10z?10?3.已知原点到平面?的距离为120, 且?在三个坐标轴上的截距之比为?2:6:5, 求?的方程.解:设截距的比例系数为k,则该平面的截距式方程为xyz???1 ?2k6k5k 化成一般式为?15x?5y?6z?30k?0 又因点O?0,0,0?到平面?的距离为120,则有?30k??15?求出k??4286 2?5?622?120 所以,所求平面方程为?15x?5y?6z?120286?0 5.已知两平面?:mx?7y?6z?24?0与平面?:2x?3my?11z?19?0相互垂直,求m的值.解:两平面的法矢分别为n1??m,?1,?6?,n2??2,?3m,11?,n1⊥n2,得2m?21m?66?0 求出m??66 196.已知四点A(0,0,0), B(,2,?5,3), C(0,1,?2), D(2,0,7), 求三棱锥D?ABC中ABC。
2023最新解析几何基础练习题及参考答案近年来,越来越多的学生开始关注解析几何这门数学课程。
解析几何对于高中生和大学生的数学学习都是非常重要的,甚至应用到一些高等数学领域。
今天我将带您了解2023最新解析几何基础练习题及参考答案,帮助您更好地掌握解析几何。
第一部分:主要观念解析几何的基本思想是在几何空间中引入笛卡尔坐标系。
解析几何主要研究的对象是几何图形,如点、线、面等。
在解析几何中,每个点都可以表示为一组有序数对(x,y,z),这就是笛卡尔坐标系的基础。
同时,在解析几何中,可以通过坐标系的表示方法来描述几何对象的一些性质。
解析几何的目标是通过解决坐标方程来解决几何问题。
第二部分:常见解析几何问题1. 直线与平面的交点问题这是解析几何中最基本的问题。
要解决这个问题,首先需要找到直线和平面的方程。
然后将直线方程代入平面方程,求出相交点的坐标。
2. 平面的方程问题在解析几何中,经常需要求一个平面的方程。
解决这个问题的方法是,首先找到平面上的三个点,然后将这些点的坐标代入平面的标准方程。
3. 直线与直线的交点问题求解直线与直线交点的问题需要通过建立两条直线的方程,然后将这些方程联立,解出交点坐标。
注意,当两条直线平行时,它们没有交点。
第三部分:参考答案下面是一些常见的解析几何问题的参考答案,希望能帮到您。
1. 已知三维空间中的点A(1,2,3),B(-2,4,-1),C(3,-1,2),求三角形ABC的周长。
答案:我们可以求出三个边长分别为|AB| = 5,|B C| = √26,|AC| =√29,所以三角形的周长为5 + √26 + √29。
2. 已知平面P的点法式方程为x+y+z=2,点M的坐标为(1,2,3),求点M到平面P的距离。
答案:将点M的坐标代入平面P的点法式方程中,得到1 + 2 + 3 -2 = 4,所以点M到平面P的距离为4 / √3。
总结:在解析几何中,需要掌握一定的基础知识和解题方法。
空间解析几何复习题(答案)1.已知1||=a , 4||=b , 5||=c , 并且0=++c b a . 计算a c c b b a ⨯+⨯+⨯. 解:因为1||=a , 4||=b , 5||=c , 并且0=++c b a 所以a 与b 同向,且b a +与c 反向 因此0=⨯b a ,0=⨯c b ,0=⨯a c 所以0=⨯+⨯+⨯a c c b b a2.已知3||=⋅b a , 4||=⨯b a , 求||||b a ⋅. 解:3cos ||=⋅=⋅θb a b a (1)4sin ||=⋅=⨯θb a b a (2)()222)1(+得()252=⋅b a所以 5=⋅b a3.已知向量x 与)2,5,1(,-a 共线, 且满足3=⋅x a, 求向量x 的坐标. 解:设x 的坐标为()z y x ,,,又()2,5,1-=a则325=-+=⋅z y x x a (1) 又x 与a 共线,则0=⨯a x 即()()()05252512125251=-+++--=+---=-k y x j x z i z y kyx j y x i z y z y x kj i所以()()()05252222=-+++--y x x z z y即010*********22=-++++xy xz yz z y x (2) 又x 与a 共线,x 与a 夹角为0或π()30325110cos 222222222⋅++=-++⋅++⋅==z y x z y x ax整理得 103222=++z y x (3)联立()()()321、、解出向量x 的坐标为⎪⎭⎫⎝⎛-51,21,101 4.向量a , b , c 具有相同的模, 且两两所成的角相等, 若a , b 的坐标分别为)1,1,0()0,1,1(和, 求向量c 的坐标.解:r c b a ===且它们两两所成的角相等,设为θ 则有1101101=⨯+⨯+⨯=⋅b a 则21cos rb a b a =⋅⋅=θ 设向量c 的坐标为()z y x ,,则11cos 0112=⋅⋅=⋅=+=⋅+⋅+⋅=⋅rr r b a y x z y x c a ϑ (1) 11cos 1102=⋅⋅=⋅=+=⋅+⋅+⋅=⋅r r r c b z y z y x c b ϑ (2) 2011222222=++==++=r z y x c所以2222=++z y x (3)联立(1)、(2)、(3)求出⎪⎩⎪⎨⎧===101z y x 或⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=313431z y x所以向量c 的坐标为()1,0,1或⎪⎭⎫ ⎝⎛--31,34,315.已知点)1,6,3(A , )1,4,2(-B , )3,2,0(-C , )3,0,2(--D , (1)求以AB , AC , AD 为邻边组成的平行六面体的体积. (2) 求三棱锥BCD A -的体积. (3) 求BCD ∆的面积.(4) 求点A 到平面BCD 的距离.解:因为()103,,A ,()1,4,2-B ,()3,2,0-C ,()3,0,2--D 所以()0,10,1--=()2,8,3--=AC()4,6,5---=(1)(),,是以它们为邻边的平行六面体的体积()17612120001003465283101=+--++---------=V (2)由立体几何中知道,四面体ABCD (三棱锥BCD A -)的体积3881766161=⨯==V V T(3)因为()222,,-=,()444--=,,k j i kj iBD BC 01616444222+--=---=⨯()()216161622=-+-=,这是平行四边形BCED 的面积因此S S BCD 21=∆□BCED 2821621=⨯= (4)设点A 到平面BCD 的距离为H ,由立体几何使得三棱锥BCD A -的体积H S V BCD T ⋅=∆31所以22112112838833==⋅==∆BCDT S V H 6.求经过点)1,2,3(A 和)3,2,1(--B 且与坐标平面xOz 垂直的平面的方程. 解:与xoy 平面垂直的平面平行于y 轴,方程为0=++D Cz Ax (1)把点()123,,A 和点()321--,,B 代入上式得03=++D C A (2)03=+--D C A (3)由(2),(3)得2D A -=,2DC =代入(1)得022=++-D z Dx D 消去D 得所求的平面方程为02=--z x7.求到两平面0623:=-+-z y x α和1152:=+-+z y x β距离相等的点的轨迹方程. 解;设动点为()z y x M ,,,由点到平面的距离公式得()()()2222221025101025213623-++-+-+-=+-+-+-z y x z y z所以()10102512914623+-+-±=-+-z y x z y x8.已知原点到平面α的距离为120, 且α在三个坐标轴上的截距之比为5:6:2-, 求α 的方程.解:设截距的比例系数为k ,则该平面的截距式方程为1562=++-kz k y k x 化成一般式为0306515=-++-k z y x 又因点()0,0,0O 到平面α的距离为120,则有()120651530222=++--k求出2864±=k所以,所求平面方程为028********=±++-z y x9.若点)1,0,2(-A 在平面α上的投影为)1,5,2(-B , 求平面α的方程. 解:依题意,设平面的法矢为()2,5,4-=n 代入平面的点法式方程为()()()0125524=----+z y x整理得所求平面方程为035254=+--z y x10.已知两平面02467:=--+z y mx α与平面0191132:=-+-z my x β相互垂直,求m 的值.解:两平面的法矢分别为()6,1,1--=m n ,()11,3,22m n -=,由1n ⊥2n ,得066212=--m m求出1966-=m 11.已知四点)0,0,0(A , )3,5,2(,-B , )2,1,0(-C , )7,0,2(D , 求三棱锥ABC D -中ABC面上的高.解:已知四点()()()()7,0,2,2,1,0,3,5,2,0,0,0D C B A --,则()()()9,1,2,4,5,0,7,0,2--=--=--=DC DB DA为邻边构成的平行六面体的体积为()912450702,,-------==V()[]80700090++--++-=()87090-+-=28=由立体几何可知,三棱锥ABC D -的体积为314286161=⨯==-V V ABC D设D 到平面ABC 的高为H则有 ABC ABC D S H V ∆-⋅=31所以 ABCABCD S V H ∆-=3又()()2,1,0,3,5,2-==k j i kj i 24721352++=--=⨯所以,692124721222=++==∆S ABC 因此,696928692869213143==⨯=H 12.已知点A 在z 轴上且到平面014724:=+--z y x α的距离为7, 求点A 的坐标. 解:A 在z 轴上,故设A 的坐标为()200,,,由点到平面的距离公式,得()()7724147222=-+-++-z所以69147±=+-z 则692±=z那么A 点的坐标为()692,0,0±A13.已知点.A 在z 轴上且到点)1,2,0(-B 与到平面9326:=+-z y x α的距离相等, 求点A 的坐标。
苏教版(新教材)数学选择性必修 第二册第6章 空间向量与立体几何6.3 空间向量的应用同步测验共 22 题一、单选题1、如图,正四棱锥S-ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO=OD,则直线BC 与平面PAC 的夹角是( )A. 30°B. 45°C. 60°D. 90°2、正方体ABCD—A′B′C′D′中,AB 的中点为M ,DD′的中点为N ,则异面直线B′M 与CN 所成角的大小为( )A. 0°B. 45°C. 60 °D. 90°3、如图,三棱柱 满足棱长都相等且 平面 ,D 是棱的中点,E 是棱 上的动点.设,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A. 先增大再减小B. 减小C. 增大D. 先减小再增大4、已知两平面的法向量分别为,,则两平面所成的二面角为( )A.B.C. 或D.5、如图,在长方体中,M ,N 分别是棱BB1 , B 1C 1的中点,若∠CMN=90°,则异面直线AD 1和DM 所成角为( )A. 30°B. 45°C. 60°D. 90°6、在四面体中,已知棱的长为,其余各棱长都为1,则二面角的平面角的余弦值为()A. B.C. D.7、如图,设矩形 ABCD 所在的平面与梯形 ACEF 所在平面交于 AC ,若,则下面二面角的平面角大小为定值的是()A. B.C. D.8、如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角,使得∠B′AC=60°.那么这个二面角大小是()A.30°B.60°C.90°D.120°9、如图,直三棱柱的底面是边长为6的等边三角形,侧棱长为2,E是棱BC上的动点,F是棱上靠近点的三分点,M是棱上的动点,则二面角的正切值不可能是()A. B.C. D.10、如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1= ,则AA1与平面AB1C1所成的角为( )A. B.C. D.11、已知正四面体中,为的中点,则过点与侧面和底面所在平面都成的平面共有()(注:若二面角的大小为,则平面与平面所成的角也为)A.1个B.2个C.3个D.4个12、在三棱锥中,,, P在平面的射影O为的中点,D是上的动点,M,N是的两个三等分点,(),记二面角,的平面角分别为, .若,则的最大值为()A. B.C. D.二、填空题13、棱长相等的三棱锥的任意两个面组成的二面角的余弦值是__.14、将边长为1的正方形沿对角线折叠,使得点B和D的距离为1,则二面角的大小为________.15、如图,在正方体中,直线与平面所成的角等于________.16、四棱锥中,平面ABCD,,,BC//AD,已知Q是四边形ABCD内部一点,且二面角的平面角大小为,若动点Q的轨迹将ABCD分成面积为的两部分,则 =________.三、解答题17、如图,在直三棱柱中,,,, .(1)设,异面直线与所成角的余弦值为,求的值;(2)若点D是的中点,求二面角的余弦值.18、在三棱锥A—BCD中,已知CB=CD= ,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF= BC,设二面角F—DE—C的大小为θ,求sinθ的值.19、如图,在三棱柱中,平面,,且 .(1)求棱与所成的角的大小;(2)在棱上确定一点,使二面角的平面角的余弦值为 .20、如图,在直三棱柱中,已知,,, .D是线段的中点.(1)求直线与平面所成角的正弦值;(2)求二面角的大小的余弦值.21、如图, 在三棱锥中,平面,,且,,E为的中点.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值.22、如图所示,等边三角形的边长为3,点,分别是边,上的点,满足,.将沿折起到的位置,使二面角为直二面角,连接,.(1)求二面角的余弦值;(2)线段上是否存在点,使得直线与平面所成的角为60°?若存在,求出的长;若不存在,请说明理由.参考答案一、单选题1、【答案】A【解析】【解答】如图,以O为坐标原点,以OA为x轴,以OB为y轴,以OS为z轴,建立空间直角坐标系O﹣xyz.设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(﹣a,0,0),P(0,,),则(2a,0,0),(﹣a,,),(a,a,0),设平面PAC的一个法向量为,则,,∴,可取(0,1,1),∴,∴,>=60°,∴直线BC与平面PAC的夹角为90°﹣60°=30°.故答案为:A.【分析】利用空间向量的方法结合正四棱锥的结构特征,再利用数量积求两向量夹角的方法结合直角三角形互余的性质,用已知条件求出直线BC与平面PAC的夹角。
3.2刻画空间点、线、面位置关系的公理(二)课后篇巩固提升基础达标练1.如图,在三棱柱ABC-A1B1C1中,E,F,G分别为棱A1C1,B1C1,B1B的中点,则∠EFG与∠ABC1()A.相等B.互补C.相等或互补E,F,G分别为A1C1,B1C1,BB1的中点,所以EF∥A1B1∥AB,FG∥BC1,所以∠EFG与∠ABC1的两组对应边分别平行,一组对应边方向相同,另一组对应边方向相反,故∠EFG与∠ABC1互补.2.(多选)下列命题中错误的是()A.空间三点可以确定一个平面B.三角形一定是平面图形C.若A,B,C,D既在平面α内,又在平面β内,则平面α和平面β重合,故A错误;当A,B,C,D四点共线时,这两个平面可以是相交的,故C错误;四边都相等的四边形可以是空间四边形,故D错误.3.在正方体ABCD-A1B1C1D1中,E,F分别是侧面AA1D1D,侧面CC1D1D的中心,G,H分别是线段AB,BC的中点,则直线EF与直线GH的位置关系是()B.异面C.平行D.垂直,连接AD1,CD1,AC,则E,F分别为AD1,CD1的中点.由三角形的中位线定理,知EF∥AC,GH∥AC,所以EF∥GH,故选C.4.如图,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是异面直线的一个图是.(填序号).5.如图所示,在长方体ABCD-A 1B 1C 1D 1中,AA 1=AB=2,AD=1,点E ,F ,G 分别是DD 1,AB ,CC 1的中点,则异面直线A 1E 与GF 所成的角是 .GB 1,B 1F ,则GB 1∥A 1E ,故∠B 1GF 或其补角即为A 1E 与GF 所成的角,B 1G=√C 1B 12+C 1G 2=√12+12=√2,B 1F=√B 1B 2+BF 2=√22+12=√5,√CG 2+CB 2+BF 2=√3,所以B 1G 2+FG 2=B 1F 2,所以∠B 1GF=90°.°6.如图,在四棱锥P-ABCD 中,底面ABCD 是平行四边形,E ,F ,G ,H 分别为PA ,PB ,PC ,PD 的中点,求证:四边形EFGH 是平行四边形.△PAB 中,因为E ,F 分别是PA ,PB 的中点,所以EF ∥AB ,EF=12AB ,同理GH ∥DC ,GH=12DC.因为四边形ABCD 是平行四边形, 所以AB ∥CD ,AB=CD. 所以EF ∥GH ,EF=GH.所以四边形EFGH 是平行四边形.能力提升练1.设P 是直线l 外一定点,过点P 且与l 成30°角的异面直线( ) A.有无数条 B.有两条 D.有一条,过点P 作直线l'∥l ,以l'为轴,与l'成30°角的圆锥面的所有母线都与l 成30°角.2.如图所示,已知三棱锥A-BCD 中,M ,N 分别为AB ,CD 的中点,则下列结论正确的是( )A.MN ≥12(AC+BD ) B.MN ≤12(AC+BD ) C.MN=12(AC+BD )D.MN<12(AC+BD )图所示,取BC 的中点E ,连接ME ,NE ,则ME=12AC ,NE=12BD ,所以ME+NE=12(AC+BD ).在△MNE 中,有ME+NE>MN , 所以MN<12(AC+BD ).3.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD. 以上结论正确的为 .(填序号),AB ⊥EF ,EF 与MN 是异面直线,AB ∥⊥CD ,只有①③正确.4.如图所示,在长方体ABCD-A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点.求证:(1)D1E∥BF;BF=∠D1EA1.1取BB1的中点M,连接EM,C1M.在矩形ABB1A1中,易得EM=A1B1,EM∥A1B1.因为A1B1=C1D1,且A1B1∥C1D1,所以EM=C1D1,且EM∥C1D1.所以四边形EMC1D1为平行四边形.所以D1E∥C1M.在矩形BCC1B1中,易得MB=C1F,且MB∥C1F.所以BF∥C1M,所以D1E∥BF.(2)由(1)知,ED1∥BF,BB1∥EA1.因为∠B1BF与∠D1EA1的对应边方向相同,所以∠B1BF=∠D1EA1.素养培优练(2019安徽合肥期中)如图,正方体ABCD-A'B'C'D'有12条棱,选取其中6条棱,每条棱上取一点,使这6个点正好成为正八面体的6个顶点(注:正八面体共有6个顶点).比如从点A出发,来进行构建.在与点A相邻的三条棱上分别取一点,使其到点A的距离都为棱长的四分之三,得到3个点:E,F,G.同理,对与点A相对的点C'进行类似的操作,得到另外3个点:E',F',G'.如图所示,显然,位于正方体界面上的6条线段相等,即EF=FG=GE=E'F'=F'G'=G'E'.从正方体内部穿过的线段也有六条:EF',EG',FE',FG',GE',GF'.这样一共得到12条线段,它们就是所要构建的正八面体的12条棱.通过计算它们的长度全都相等,即构建的是正八面体.在此正八面体中EF'与FG'所成角的余弦值是.EF'∥FE',所以∠E'FG'是此正八面体中EF'与FG'所成角(或所成角的补角), 因为位于正方体界面上的6条线段相等,即EF=FG=GE=E'F'=F'G'=G'E'.所以E'F=G'F=E'G',所以∠E'FG'=60°,.所以此正八面体中EF'与FG'所成角的余弦值为cos∠E'FG'=cos60°=12。
6.1.3 共面向量定理A 级必备知识基础练A.如果a,b 是两个单位向量,则|a|=|b|B.若两个空间向量相等,则它们的起点相同,终点也相同C.若a,b,c 为任意向量,则(a+b)+c=a+(b+c)D.空间任意两个非零向量都可以平移到同一个平面内2.对于空间一点O 和不共线的三点A,B,C,有6OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ ,则一定有( )A.O,A,B,C 四点共面B.P,A,B,C 四点共面C.O,P,B,C 四点共面D.O,P,A,B,C 五点共面3.已知M,A,B,C 四点共面,并且对空间内不在平面ABC 内的一点O,有OM ⃗⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ +13OC⃗⃗⃗⃗⃗ ,则实数x 的值为( ) A.1 B.0 C.3 D.134.已知非零向量e 1,e 2不共线,如果AB ⃗⃗⃗⃗⃗ =e 1+e 2,AC ⃗⃗⃗⃗⃗ =2e 1+8e 2,AD ⃗⃗⃗⃗⃗ =3e 1-3e 2,则A,B,C,D 四点( ) A.一定共线B.恰是空间四边形的四个顶点C.一定共面D.一定不共面5.对于空间任一点O 和不共线的三点A,B,C,若有OP ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,则“x+y+z=1”是“P,A,B,C 四点共面”的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件D.既不充分又不必要条件6.已知OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 不共面,且A,B,C,D 四点共面,OA ⃗⃗⃗⃗⃗ =2x BO ⃗⃗⃗⃗⃗ +3y CO ⃗⃗⃗⃗⃗ +4z DO ⃗⃗⃗⃗⃗ ,则2x+3y+4z= .7.如图,在底面为正三角形的斜棱柱ABC-A 1B 1C 1中,D 为AC 的中点. 求证:AB 1∥平面C 1BD.8.对于任意空间四边形ABCD,E,F 分别是AB,CD 的中点.求证:EF ⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ 共面.B 级关键能力提升练9.下列关于空间向量的说法正确的是( ) A.若向量a,b 平行,则a,b 所在直线平行 B.若向量a,b 所在直线是异面直线,则a,b 不共面 C.若A,B,C,D 四点不共面,则向量AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 不共面 D.若A,B,C,D 四点不共面,则向量AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ 不共面10.平面α内有五点A,B,C,D,E,其中任意三点不共线,O 为空间内且不在平面α内的任一点,满足OA ⃗⃗⃗⃗⃗ =12OB ⃗⃗⃗⃗⃗ +x OC ⃗⃗⃗⃗⃗ +y OD ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ =2x OC ⃗⃗⃗⃗⃗ +13OD ⃗⃗⃗⃗⃗ +y OE⃗⃗⃗⃗⃗ ,则x+3y 等于( ) A.56B.76C.53D.73①若A,B,C,D 是空间任意四点,则有AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DA ⃗⃗⃗⃗⃗ =0; ②|a|-|b|=|a+b|是a,b 共线的充要条件; ③若AB ⃗⃗⃗⃗⃗ ,CD⃗⃗⃗⃗⃗ 共线,则AB ∥CD; ④已知OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 不共面,若OP ⃗⃗⃗⃗⃗ =x OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ (其中x,y,z ∈R),则P,A,B,C 四点共面. A.1B.2C.3D.412.已知正方体ABCD-A 1B 1C 1D 1中,P,M 为空间任意两点,如果有PM ⃗⃗⃗⃗⃗⃗ =PB 1⃗⃗⃗⃗⃗⃗⃗ +7BA ⃗⃗⃗⃗⃗ +6AA 1⃗⃗⃗⃗⃗⃗⃗ -4A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,那么对点M 判断正确的是( ) A.在平面BAD 1内 B.在平面BA 1D 内 C.在平面BA 1D 1内 D.在平面AB 1C 1内13.已知i,j,k 是不共面向量,a=2i-j+3k,b=-i+4j-2k,c=7i+5j+λk,若a,b,c 三个向量共面,则实数λ= .14.已知A,B,C 三点不共线,O 是平面ABC 外的任意一点,若点P 分别满足下列关系:(1)OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ =6OP ⃗⃗⃗⃗⃗ -3OC ⃗⃗⃗⃗⃗ ; (2)OP ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =4OA ⃗⃗⃗⃗⃗ −OB⃗⃗⃗⃗⃗ . 试判断点P 是否与点A,B,C 共面.15.如图,在四面体ABCD中,M是AD的中点,P是BM的中点,点Q在线段AC 上,且AQ=3QC.证明:PQ∥平面BCD.C 级学科素养创新练16.已知平行四边形ABCD,从平面ABCD 外一点O 引向量OE ⃗⃗⃗⃗⃗ =k OA ⃗⃗⃗⃗⃗ ,OF ⃗⃗⃗⃗⃗ =k OB ⃗⃗⃗⃗⃗ ,OG ⃗⃗⃗⃗⃗ =k OC ⃗⃗⃗⃗⃗ ,OH ⃗⃗⃗⃗⃗⃗ =k OD ⃗⃗⃗⃗⃗⃗ ,k ∈R 且k≠0. 求证:(1)点E,F,G,H 共面; (2)AB ∥平面EFGH.参考答案6.1.3 共面向量定理1.ACD 由单位向量的定义知|a|=|b|=1,故A 正确; 因为相等向量不一定有相同的起点和终点,所以B 错误; 由向量加法运算律知C 正确;在空间确定一点后,可将两向量的起点移至该点,两向量所在直线确定一个平面,这两个非零向量就共同在这个平面内,故D 正确. 2.B 由6OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ , 得OP ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =2(OB ⃗⃗⃗⃗⃗ −OP ⃗⃗⃗⃗⃗ )+3(OC ⃗⃗⃗⃗⃗ −OP ⃗⃗⃗⃗⃗ ), 即AP ⃗⃗⃗⃗⃗ =2PB ⃗⃗⃗⃗⃗ +3PC⃗⃗⃗⃗⃗ , 所以AP ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ ,PC ⃗⃗⃗⃗⃗ 共面且有公共起点P. 所以P,A,B,C 四点共面.3.D ∵OM ⃗⃗⃗⃗⃗⃗ =,A,B,C 四点共面,∴x+13+13=1,∴x=13.4.C 设AB ⃗⃗⃗⃗⃗ =x AC ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗ =(2x+3y)e 1+(8x-3y)e 2=e 1+e 2,x,y ∈R,则{2x +3y =1,8x -3y =1,解得{x =15,y =15,即AB ⃗⃗⃗⃗⃗ =15AC ⃗⃗⃗⃗⃗ +15AD ⃗⃗⃗⃗⃗ ,所以A,B,C,D 四点一定共面.5.B 若x+y+z=1,则OP ⃗⃗⃗⃗⃗ =(1-y-z)OA ⃗⃗⃗⃗⃗ +y OB ⃗⃗⃗⃗⃗ +z OC ⃗⃗⃗⃗⃗ ,即AP ⃗⃗⃗⃗⃗ =y AB ⃗⃗⃗⃗⃗ +z AC ⃗⃗⃗⃗⃗ , 由共面向量定理可知向量AP ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 共面,所以P,A,B,C 四点共面; 反之,若P,A,B,C 四点共面,当点O 与点A 重合时,OA ⃗⃗⃗⃗⃗ =0,x 可取任意值,不一定有x+y+z=1.故“x+y+z=1”是“P,A,B,C 四点共面”的充分不必要条件. 6.-1 OA ⃗⃗⃗⃗⃗ =2x BO ⃗⃗⃗⃗⃗ +3y CO ⃗⃗⃗⃗⃗ +4z DO ⃗⃗⃗⃗⃗⃗ =-2x OB ⃗⃗⃗⃗⃗ -3y OC ⃗⃗⃗⃗⃗ -4z OD ⃗⃗⃗⃗⃗⃗ . 由四点共面知-2x-3y-4z=1,即2x+3y+4z=-1. 7.证明记AB ⃗⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗⃗ =b,AA 1⃗⃗⃗⃗⃗⃗⃗ =c,则AB 1⃗⃗⃗⃗⃗⃗⃗ =a+c,DB ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗ =a-12b,DC 1⃗⃗⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ +CC 1⃗⃗⃗⃗⃗⃗⃗ =12b+c, 所以DB ⃗⃗⃗⃗⃗⃗ +DC 1⃗⃗⃗⃗⃗⃗⃗ =a+c=AB 1⃗⃗⃗⃗⃗⃗⃗ .又DB ⃗⃗⃗⃗⃗⃗ 与DC 1⃗⃗⃗⃗⃗⃗⃗ 不共线,所以AB 1⃗⃗⃗⃗⃗⃗⃗ ,DB ⃗⃗⃗⃗⃗⃗ ,DC 1⃗⃗⃗⃗⃗⃗⃗ 共面. 因为AB 1不在平面C 1BD 内,所以AB 1∥平面C 1BD.8.证明如图,在空间四边形ABCD 中,E,F 分别是AB,CD 上的点,则EF ⃗⃗⃗⃗⃗ =EA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ ,①EF ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CF⃗⃗⃗⃗⃗ . ② 又E,F 分别是AB,CD 的中点,故有EA ⃗⃗⃗⃗⃗ =-EB ⃗⃗⃗⃗⃗ ,DF ⃗⃗⃗⃗⃗ =-CF⃗⃗⃗⃗⃗ . ③将③代入②中,并与①相加得2EF ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ . 所以EF ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ ,即EF ⃗⃗⃗⃗⃗ 与BC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ 共面. 9.D 我们可以通过平移将空间中任意两个向量平移到一个平面内,因此空间任意两个向量都是共面的,故B,C 错误;由向量平行与直线平行的区别,可知A 错误;因为AB,AC,AD 是空间中有公共端点A 但不共面的三条线段,所以向量AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ 不共面.故选D.10.B 由点A,B,C,D 共面,得x+y=12, ①又由点B,C,D,E 共面,得2x+y=23, ② 联立①②,解得x=16,y=13,所以x+3y=76. 11.C 显然①正确;若a,b 共线,则|a+b|=|a|+|b|或|a+b|=||a|-|b||,故②错误;若AB ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ 共线,则直线AB,CD 可能重合,故③错误;只有当x+y+z=1时,P,A,B,C 四点才共面,故④错误.12.C PM ⃗⃗⃗⃗⃗⃗ =PB 1⃗⃗⃗⃗⃗⃗⃗ +7BA ⃗⃗⃗⃗⃗ +6AA 1⃗⃗⃗⃗⃗⃗⃗ -4A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=PB 1⃗⃗⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ +6BA 1⃗⃗⃗⃗⃗⃗⃗⃗ -4A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=PB 1⃗⃗⃗⃗⃗⃗⃗ +B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +6BA 1⃗⃗⃗⃗⃗⃗⃗⃗ -4A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗=PA 1⃗⃗⃗⃗⃗⃗⃗ +6(PA 1⃗⃗⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ )-4(PD 1⃗⃗⃗⃗⃗⃗⃗ −PA 1⃗⃗⃗⃗⃗⃗⃗ )=11PA 1⃗⃗⃗⃗⃗⃗⃗ -6PB ⃗⃗⃗⃗⃗ -4PD 1⃗⃗⃗⃗⃗⃗⃗ ,且11-6-4=1,于是M,B,A 1,D 1四点共面,即点M 在平面BA 1D 1内.13.657 ∵a,b,c 三个向量共面, ∴存在实数m,n,使得c=ma+nb,即7i+5j+λk=m(2i -j+3k)+n(-i+4j-2k). ∴{7=2m -n ,5=-m +4n ,λ=3m -2n ,∴λ=657. 14.解(方法一)(1)∵OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ =6OP ⃗⃗⃗⃗⃗ -3OC ⃗⃗⃗⃗⃗ ⇔3OP ⃗⃗⃗⃗⃗ -3OC⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +2OB ⃗⃗⃗⃗⃗ -3OP ⃗⃗⃗⃗⃗ =(OA ⃗⃗⃗⃗⃗ −OP⃗⃗⃗⃗⃗ )+(2OB ⃗⃗⃗⃗⃗ -2OP ⃗⃗⃗⃗⃗ ), ∴3CP ⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ +2PB ⃗⃗⃗⃗⃗ ,即PA ⃗⃗⃗⃗⃗ =-2PB ⃗⃗⃗⃗⃗ -3PC⃗⃗⃗⃗⃗ . 根据共面向量定理,PA ⃗⃗⃗⃗⃗ ,PB ⃗⃗⃗⃗⃗ ,PC⃗⃗⃗⃗⃗ 共面且有公共起点P,所以点P 与A,B,C 共面.(2)假设P,A,B,C 四点共面,则可设AP ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC⃗⃗⃗⃗⃗ (x,y ∈R), 即OP ⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +x AB ⃗⃗⃗⃗⃗ +y AC⃗⃗⃗⃗⃗ , 则OA ⃗⃗⃗⃗⃗ +x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =4OA ⃗⃗⃗⃗⃗ −OB⃗⃗⃗⃗⃗ , ∴OA ⃗⃗⃗⃗⃗ +x(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )+y(OC ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )+OC ⃗⃗⃗⃗⃗ =4OA ⃗⃗⃗⃗⃗ −OB⃗⃗⃗⃗⃗ ,∴(1-x-y-4)OA ⃗⃗⃗⃗⃗ +(1+x)OB ⃗⃗⃗⃗⃗ +(1+y)OC⃗⃗⃗⃗⃗ =0. 由题意知OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC⃗⃗⃗⃗⃗ 均为非零向量,所以x,y 满足 {1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解, 故点P 与点A,B,C 不共面.(方法二)(1)由题意,OP ⃗⃗⃗⃗⃗ =16OA ⃗⃗⃗⃗⃗ +13OB ⃗⃗⃗⃗⃗ +12OC ⃗⃗⃗⃗⃗ , 又16+13+12=1,故点P 与点A,B,C 共面. (2)由题意,OP ⃗⃗⃗⃗⃗ =4OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ −OC⃗⃗⃗⃗⃗ ,而4-1-1=2≠1, 故点P 与点A,B,C 不共面.15.证明由图形易得PQ ⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CQ⃗⃗⃗⃗⃗ =12MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +14CA ⃗⃗⃗⃗⃗ =12(MA ⃗⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )+BC ⃗⃗⃗⃗⃗ +12CA ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ )+12MA ⃗⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ =14(DA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )+12BC ⃗⃗⃗⃗⃗ =14DC ⃗⃗⃗⃗⃗ +12BC ⃗⃗⃗⃗⃗ . 又DC ⃗⃗⃗⃗⃗ 与BC⃗⃗⃗⃗⃗ 不共线, 根据共面向量定理,可知PQ ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,BC⃗⃗⃗⃗⃗ 共面, 又因为PQ ⊄平面BCD,所以PQ ∥平面BCD.16.证明(1)∵OA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ ,∴k OA ⃗⃗⃗⃗⃗ +k AB ⃗⃗⃗⃗⃗ =k OB⃗⃗⃗⃗⃗ . 而OE ⃗⃗⃗⃗⃗ =k OA ⃗⃗⃗⃗⃗ ,OF ⃗⃗⃗⃗⃗ =k OB ⃗⃗⃗⃗⃗ ,∴OE ⃗⃗⃗⃗⃗ +k AB ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ .又OE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗⃗ =OF ⃗⃗⃗⃗⃗ ,∴EF ⃗⃗⃗⃗⃗ =k AB ⃗⃗⃗⃗⃗ .同理,EH ⃗⃗⃗⃗⃗⃗ =k AD ⃗⃗⃗⃗⃗ ,EG⃗⃗⃗⃗⃗ =k AC ⃗⃗⃗⃗⃗ . ∵ABCD 是平行四边形,∴AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,∴EG⃗⃗⃗⃗⃗ k =EF⃗⃗⃗⃗⃗ k +EH⃗⃗⃗⃗⃗⃗ k ,即EG ⃗⃗⃗⃗⃗ =EF ⃗⃗⃗⃗⃗ +EH⃗⃗⃗⃗⃗⃗ . 根据共面向量定理,可知EG ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ ,EH⃗⃗⃗⃗⃗⃗ 共面, 又它们有同一公共点E,∴点E,F,G,H 共面.(2)由(1)知EF ⃗⃗⃗⃗⃗ =k AB ⃗⃗⃗⃗⃗ ,∴AB ⃗⃗⃗⃗⃗ ∥EF⃗⃗⃗⃗⃗ ,即AB ∥EF. 又AB ⊄平面EFGH,∴AB ∥平面EFGH.。
第六章要求与练习
一、学习要求
1、理解空间直角坐标系,理解向量的概念及其表示.
2、掌握向量的运算(线性运算、数量积、向量积),两个向量垂直、平行的条件.掌握单位向量、方向数与方向余弦、向量的坐标表达式,以及用坐标表达式进行向量运算的方法.
(平7
1
(1
(2AB的模;)AB方向上的单位向量
解:1)AB=,AB分别在轴的投影为-3,在8,在z 轴上的分向量2k;(2)AB=77
(4)AB方向上的单位向量12)k.
2、设向量a和b夹角为5=,||8
b=,求|
解:()2220
+=+=++=129,
a b a b a b a b
||||||2||||cos60
()2220
a b a b a b a b
-=-=+-=7.
||||||2||||cos60
3、已知向量{2,2,1}
b=-,求
a=,{8,4,1}
(1)平行于向量a的单位向量;(2)向量b的方向余弦.
解(1)2223
a=+=平行于向量a的单位向量221
±;
{,,}
333
(2)2849
b=+=,向量b的方向余弦为:841
-.
,,
999
4、一向量的终点为B (2,-1,7),该向量在三个坐标轴上的投影依次为4、-4和7.求该向量的起点A 的坐标.
解:AB =(4,-4,7)=(2,-1,7)-(x ,y ,z),所以(x ,y ,z)=(-2,3,0); 5、已知{2,2,1}a =-,{3,2,2}b =,求
(1)垂直于a 和b 的单位向量;(2)向量a 在b 上的投影; (3解()()6,1,10,137c a b c =⨯=--=,
(2()4
cos ,17
a b a b a b
⋅==⋅;
(3()
sin ,137a b a b a b ⨯=⋅=()
4
,1751
a b =
60b c +=,||3a =,||2b =,||4c =,求a b b c c a ++.
解:(
)
2
22220a b c
a b c a b b c c a ++=+++++=,所以a b b c c a ++=29/2-7、求参数k ,使得平面29x ky z +-=分别适合下列条件: (1(3解:8解:设平面方程为:0Ax By D ++=,将(1,5,1)P -和(3,2,1)Q -代入求得1,1, 2.A B D ===-该平面方程为:20x z +-=.
9、已知平面过(0,0,0)O 、(1,0,1)A 、(2,1,0)B 三点,求该平面方程.
解:设平面方程为:0Ax By Cz ++=,将(1,0,1)A 、(2,1,0)B 代入平面方程得,
1,2,1,A B C ==-=-,该平面方程为20x y z --=.
10、求过点(1,2,1)M ,且垂直于已知两平面0x y +=与510y z +-=的平面方程. 解:两平面的法向量为:()()121,1,0,0,5,1n n ==,所示平面的法向量为:
()()()121,1,00,5,11,1,5n n n =⨯=⨯=-,则所示的平面方程为:540x y z -+-=.
11、把直线1
24x y z x y z -+=⎧⎨
++=⎩
化为对称式方程及参数方程.
解:两平面的法向量为:()()121,1,1,2,1,1n n =-=,则直线的方向向量为:
1s n =,参数12解:()(1,2,2,0,1,n n ==-为:
1s n =,则直线方程为:2234t t t
=-=+=+ 13为:
(2,0,4),所以直线方程为:231
204x y z -++==,即30
2124
y x z +=⎧⎪⎨-+=⎪⎩.
14.将xoz 坐标面上的抛物线x z 52=绕x 轴旋转一周,求所生成的旋转曲面的方程。
解:由坐标面上的曲线绕一坐标轴旋转时生成的曲面方程的规律,所得的旋转曲面的方程为
()x z
y 52
2
2=+±
,即x z y
522
=+。
15.画出下列各方程所表示的曲面:
(1)2
2
2
22⎪⎭
⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-a y a x ;(2)14922=+z x ;(3)22x z -=。
指出下列
2=x ;1+x ;
4
=;
(1)14
222
=+-z y x ;(2)()222
y x a z +=-。
解:(1)由xoy 坐标面上的双曲线14
2
2
=-y x ,绕y 轴旋转一周或是yoz 坐标面上的双曲线14
22=+-z y ,绕y 轴旋转一周得到。
(2)是yoz 坐标面上关于z 轴对称的一对相交直线()22
y a z =-,即a y z +=和a y z +-=中之一
条绕z 轴旋转一周;或是xoz 坐标上关于z 轴对称的一对相交直线()22
x a z =-,即a x z +=和
a x z +-=中之一条,绕z 轴旋转一周。
18.指出下列方程组在平面解析几何与空间解析几何中分别表示什么图形?
(1)⎩⎨⎧-=+=3215x y x y ;(2).3
19
42
2⎪⎩
⎪⎨⎧==+y y x
圆柱面
42+x 92
=,即
22x z 轴的。