型钢梁和组合梁的设计
- 格式:doc
- 大小:297.00 KB
- 文档页数:11
钢与混凝土组合梁桥设计与施工摘要:介绍了上海城市轨道交通明珠线特殊大桥-中山北路桥设计与施工概况及主要技术要点和创新点.中山北路桥上跨道路主要干道环线中山北路高架桥,为三跨30m+55m+30m预应力混凝土与钢组合连续梁桥,即边跨为预应力混凝土土箱梁,并自中墩支点向跨中伸出2。
5m与预制箱梁纵向连接,经体系转换形成连续梁,钢梁上桥面板为钢筋混凝土结构,采用剪力钉连接技术形成组合梁。
目前该桥已施工完毕,经验收,质量被评为优良.关键词:组合梁;连接技术;设计与施工技术;一、概述中山北路桥位于轨道交通明珠线与上海市中山北路、西体育路、新市路、西江湾路的交汇处,上跨道路中山北路高架桥,与其斜交角约为30°.桥梁上部结构为三跨(30+55+30米)连续梁结构,其两边跨为预应力混凝土现浇箱梁,梁高为1。
90~2.35米。
中跨为钢-混凝土结合梁,梁高2。
35米,全桥宽8。
9~8.92米。
桥梁中墩采用圆形独柱结构,直径2。
0米,墩高16。
804米(1#墩)和15.604米(2#墩) 。
两边墩为双矩形柱加系梁结构,墩高18.301米(0#墩),15.591米(3#墩).基础均为钻孔灌注桩、承台结构。
二、桥型选择(一)方案选择由于城市交通的发展,城市立交桥跨越主要交通干道时有发生,针对这种跨度大、曲线斜交的桥梁,常采用的桥梁型式有预应力混凝土梁或钢与混凝土结合梁.预应力混凝土梁常用的施工方法有支架现浇和悬臂浇注法,支架施工严重影响相交主路交通,而悬臂浇注时由于采用的挂篮等施工设备需占用一定空间,增加了桥梁高度,而造成不必要的浪费.连续结合梁施工时常采用分段制作现场拼装,主跨接头一般设在弯距零点附近,拼装时须在接头处搭设临时支架,仍会局部影响主路交通。
而简支结合梁梁高较高,跨度受到限制.因此,寻找一种跨度大、重量轻、能预制安装的桥梁结构形式非常必要,预应力混凝土箱梁与结合梁的纵向连接结构,是一种非常有效且有竞争力的方案。
图1 横断面布置图(单位:mm)
技术应用
图2 结构模型(单位:m)
荷载组合:根据《公路钢混组合桥梁设计与施工规范》
的规定:组合梁的持久状况按承载能力极限状态的要求,
进行承载力及稳定性验算,作用组合采用作用基本组合;
同时应按正常使用极限状态要求,进行组合梁的抗裂和挠
度的验算,作用组合采用频遇、准永久组合;
组合梁的短暂状况设计应对组合梁在施工过程各阶段
的承载能力进行验算,作用组合采用作用的基本组合;
施工阶段划分如下:
第一阶段:架设钢梁;
第二阶段:浇筑桥面板;
第三阶段:桥面板参与受力;
第四阶段:施加二期恒载;
第五阶段:收缩徐变(3650天);
1.强度、稳定和变形计算
(1)强度计算
钢混组合梁主要进行强度的计算,采用弹性法分析。
型钢组合梁截面抗弯承载力采用弹性法进行计算。
组
合梁的剪力假定全部由钢梁腹板承受。
承载能力极限状态
以计算截面的边缘应力达到材料强度设计值为标志,同时。
结构梁的种类及表示
钢结构梁啊,就像是建筑物里的大骨头,各种各样的,各有各的用处。
我给你简单说说几种常见的,还有怎么称呼它们:
框架梁:就像家里的大梁柱,负责扛起房子的重量,和其他立着的柱子一起,组成房子的主框架。
连梁:这就像给房子穿上紧身衣,让房子在刮大风、地震时更结实,不容易摇晃。
过梁:门和窗上面那个横着的小梁,它负责支撑上面的墙,不让门洞或窗洞那里塌下来。
悬挑梁:想象一下伸出的手臂,一端固定在墙上,另一端悬空,用来做阳台或者遮阳棚的,挺有意思的。
型钢梁:这种梁长得很有特点,比如工字钢,看着就像个大写的“I”,结实得很,用在很多地方。
组合梁:这个是钢铁和混凝土的混合体,就像是两个超人合体,既有钢铁的硬,又有混凝土的稳。
基础梁:它躺在地下,紧挨着地基,负责把上面的建筑稳稳地托起来,是地面建筑的隐形英雄。
每种梁都有自己的名字和规格,比如“H200x100x6x8”,就像身份证一样,告诉你是哪种类型的梁,还有它的大小和厚度。
在设计图上,工程师会用符号和数字标得清清楚楚,保证施工的师傅一看就懂。
钢-混凝土组合结构的设计与应用钢-混凝土组合结构因其结合了钢材和混凝土两种材料的优点,在现代建筑工程中得到了广泛应用。
钢材具有高强度、轻质和良好的抗拉性能,而混凝土具有良好的抗压性能和耐久性。
钢-混凝土组合结构通过将钢材和混凝土合理结合,提高结构的整体性能和经济性。
本文将探讨钢-混凝土组合结构的设计原则、应用方法及其在实际工程中的应用。
首先,钢-混凝土组合结构的设计需要综合考虑钢材和混凝土的材料特性和受力特点。
常见的组合结构形式包括组合梁、组合柱和组合楼板等。
组合梁通过在钢梁上浇筑混凝土板,形成整体受力构件,提高结构的抗弯和抗剪能力;组合柱通过在钢管或型钢内浇筑混凝土,增强柱的承载能力和稳定性;组合楼板通过在钢梁和混凝土板之间设置剪力连接件,实现钢材和混凝土的共同受力,提高楼板的整体刚度和承载能力。
在组合结构的设计中,剪力连接件是确保钢材和混凝土共同受力的关键。
剪力连接件通过提供剪力传递路径,保证钢材和混凝土之间的协调变形和受力。
例如,常用的剪力连接件包括剪力钉、剪力键和栓钉等,这些连接件通过焊接或螺栓连接在钢梁和混凝土之间,提供可靠的剪力传递和受力性能。
在施工过程中,钢-混凝土组合结构的质量控制是确保结构性能和安全性的关键。
钢材和混凝土的施工质量直接关系到组合结构的整体性能和耐久性。
例如,钢材的制造和安装需要严格控制,以确保钢构件的尺寸精度和连接质量。
钢梁和钢柱的焊接和螺栓连接必须符合设计要求,确保接头的强度和稳定性。
混凝土的浇筑和养护质量对组合结构的性能也有重要影响。
通过采用高性能混凝土和科学的养护措施,可以提高混凝土的强度和耐久性,确保组合结构的长期稳定和安全。
在实际应用中,钢-混凝土组合结构已经在多个工程项目中取得了显著成效。
例如,上海的东方明珠广播电视塔通过采用钢-混凝土组合柱和组合梁结构,实现了建筑物的高强度和高稳定性,成为现代建筑工程的杰出代表;英国的伦敦塔桥通过采用组合梁和组合楼板结构,提高了桥梁的承载能力和耐久性,确保了桥梁的安全性和使用寿命。
型钢梁和组合梁的设计一、考虑腹板屈曲后强度的组合梁设计腹板受压屈曲和受剪屈曲后都存在继续承载的能力,称为屈曲后强度。
承受静力荷载和间接承受动力荷载的组合梁,宜考虑腹板屈曲后强度,则腹板高厚比达到250时也不必设置纵向加劲肋。
1. 受剪腹板的极限承载力腹板极限剪力设计值 V u 应按下列公式计算:当8.0s ≤λ时 v w w u f t h V = (1a )当2.18.0s ≤<λ时 [])8.0(5.01v w w u --=s f t h V λ (1b )当2.1s >λ时 2.1v w w u/s f t h V λ= (1c ) 式中 λs ──用于腹板受剪计算时的通用高厚比。
2.受弯腹板的极限承载力腹板高厚比较大而不设纵向加劲肋时,在弯矩作用下腹板的受压区可能屈曲。
屈曲后的弯矩还可继续增大,但受压区的应力分布不再是线性的,其边缘应力达到y f 时即认为达到承载力的极限。
图1 受弯矩时腹板的有效宽度 假定腹板受压区有效高度为ρh c ,等分在h c 的两端,中部则扣去(1-ρ)h c 的高度,梁的中和轴也有下降。
为计算简便,假定腹板受拉区与受压区同样扣去此高度,这样中和轴可不变动。
梁截面惯性矩为(忽略孔洞绕本身轴惯性矩) w c x c w c x xe t h I h t h I I 32)1(21)2()1(2ρρ--=--= (2)梁截面模量折减系数为xw c x xe x xe e I t h I I W W 2)1(13ρα--=== (3) 腹板受压区有效高度系数ρ按下列原则确定:当85.0≤b λ时 ρ=1.0(4a ) 当25.185.0≤<b λ时 )85.0(82.01--=b λρ(4b ) 当25.1>b λ时 b b λλρ/)/2.01(-= (4c )梁的抗弯承载力设计值为f W M x e x eu αγ= (5)以上式中的梁截面模量W x 和截面惯性矩I x 以及腹板受压区高度均按截面全部有效计算。
3.弯矩和剪力共同作用下梁的极限承载力图2 弯矩与剪力相关曲线梁腹板同时承受弯矩和剪力的共同作用,承载力采用弯矩M 和剪力V 的相关关系曲线确定。
假定弯矩不超过翼缘所提供的弯矩f M 时,腹板不参与承担弯矩作用,即在f M M ≤的范围内相关关系为一水平线,0.1/=u V V 。
当截面全部有效而腹板边缘屈服时,腹板可以承受剪应力的平均值约为vy f 65.0左右。
对于薄腹板梁,腹板也同样可以负担剪力,可偏安全地取为仅承受剪力最大值u V 的0.5倍,即当5.0/≤u V V 时,取0.1/=eu M M 。
在图2所示相关曲线A 点(eu f M M /,1)和B 点(1,0.5)之间的曲线可用抛物线表达,由此抛物线确定的验算式为115.02≤--+⎪⎪⎭⎫ ⎝⎛-f eu f u M M M M V V 这样,在弯矩和剪力共同作用下梁的承载力为当≤f M M / 1.0时 u V V ≤(6a ) 当5.0/≤u V V 时eu M M ≤ (6b ) 其他情况 0.1)15.0(2≤--+-f eu f u M M M M V V (6c )f h A h h A M f f f )(222211+⋅= (7) 式中 M ,V ──梁的同一截面处同时产生的弯矩和剪力设计值;当V <0.5V u ,取V =0.5V u ;当M<M f ,取M=M f ;M f ——梁两翼缘所承担的弯矩设计值;A f1、h 1——较大翼缘的截面积及其形心至梁中和轴的距离;A f2、h 2——较小翼缘的截面积及其形心至梁中和轴的距离;M eu ,V u ──梁抗弯和抗剪承载力设计值。
4.考虑腹板屈曲后强度的梁的加劲肋的设计当仅配置支承加劲肋不能满足式(6)的要求时,应在两侧成对配置中间横向加劲肋。
(1)腹板高厚比超过170y f /235(受压翼缘扭转受到约束时)或超过150yf /235(受压翼缘扭转未受到约束时)也可只设置横向加劲肋,其间距一般采用0)5.1~0.1(h a =。
(2)中间横向加劲肋 梁腹板在剪力作用下屈曲后以斜向张力场的形式继续承受剪力,梁的受力类似桁架,张力场的水平分力在相邻区格腹板之间传递和平衡,而竖向分力则由加劲肋承担,为此,横向加劲肋应按轴心压杆计算其在腹板平面外的稳定,其轴力为cr w u s t h V N τ0-= (8)若中间横向加劲肋还承受固定集中荷载F ,则F t h V N cr w u s +-=τ0 (9)(3)支座加劲肋 支座加劲肋除承受梁支座反力R 外,还承受张力场斜拉力的水平分力H t 。
200)/(1)(h a t h V H cr w a t +-=τ (10) H t 的作用点可取为距上翼缘h 0/4处(图3a )。
图3 梁端构造为了增加抗弯能力,还应在梁外延的端部加设封头板。
可采用下列方法之一进行计算:①将封头板与支座加劲肋之间视为竖向压弯构件,简支于梁上下翼缘,计算其强度和稳定;②将支座加劲肋按承受支座反力R 的轴心压杆计算,封头板截面积则不小于)16/(30ef H h A t c =,式中e 为支座加劲肋与封头板的距离;f 为钢材强度设计值。
梁端构造还有另一方案:即缩小支座加劲肋和第一道中间加劲肋的距离a 1(图3b ),使范围内的8.0≤s λ,此种情况的支座加劲肋就不会受到H t 的作用。
二、型钢梁的设计型钢梁中应用最广泛的是工字钢和H 型钢。
型钢梁设计一般应满足强度、整体稳定和刚度的要求。
型钢梁腹板和翼缘的宽厚比都不太大,局部稳定常可得到保证,不需进行验算。
首先按抗弯强度(当梁的整体稳定有保证时)求出需要的截面模量)/(max f M W x nx γ= (11)由截面模量选择合适的型钢,然后验算其他项目。
由于型钢截面的翼缘和腹板厚度较大,不必验算局部稳定;端部无大的削弱时,也不必验算剪应力。
而局部压应力也只在有较大集中荷载或支座反力处才验算。
三、梁的拼接和连接1.梁的拼接梁的拼接分为工厂拼接和工地拼接两种。
由于钢材规格和现有钢材尺寸的限制,必须将钢材接长,这种拼接常在工厂中进行,称为工厂拼接。
由于运输或安装条件的限制,梁必须分段运输,然后在工地进行拼装连接,称为工地拼接。
型钢梁的拼接可采用对接焊缝连接(图4a ),但由于翼缘与腹板连接处不易焊透,故有时采用拼接板拼接(图4b )。
拼接位置均宜设在弯矩较小处。
图4 型钢梁的拼接焊接组合梁的工厂拼接,翼缘和腹板的拼接位置最好错开并用直对接焊缝相连。
腹板的拼接焊缝与横向加劲肋之间至少应相距10w t (图5)。
对接焊缝施焊时宜加引弧板,并采用一级或二级焊缝,这样焊缝可与主体金属等强。
图5 组合梁的工厂拼接梁的工地拼接应使翼缘和腹板基本上在同一截面处断开,以便分段运输。
高大的梁在工地施焊时应将上、下翼缘的拼接边缘均做成向上开口的V 形坡口,以便俯焊(图6)。
有时将翼缘和腹板的接头略为错开一些(图6b )。
图6 组合梁的工地拼接 图7 采用高强度螺栓的工地拼接较重要或受动力荷载的大型梁,其工地拼接宜采用高强度螺栓(图7)。
当梁拼接处的对接焊缝采用三级焊缝时,应对受拉区翼缘焊缝进行验算。
对用拼接板的接头,应按下列规定的内力进行计算的内力进行计算:翼缘拼接板及其连接所承受的内力1N 为翼缘板的最大承载力f A N fn ⋅=1 (12)式中 fn A ——被拼接的翼缘板净截面积。
腹板拼接板及其连接,主要承受梁截面上的全部剪力V ,以及按刚度分配到腹板上的弯矩I I M M w w /⋅=,式中w I 为腹板截面惯性矩;I 为整个梁截面的惯性矩。
2.次梁与主梁的连接次梁与主梁的连接型式有叠接和平接两种。
叠接将次梁直接搁在主梁上面,用螺栓或焊缝连接,构造简单,但需要的结构高度大,其使用常受到限制。
图8a 是次梁为简支梁时与主梁连接的构造,而图8b 是次梁为连续梁时与主梁连接的构造示例。
如次梁截面较大时,应另采取构造措施防止支承处截面的扭转。
图8 次梁与主梁的叠接平接(图9)是使次梁顶面与主梁相平或略高、略低于主梁顶面,从侧面与主梁的加劲肋或在腹板上专没的短角钢或支托相连接。
图9a 、b 、c 是次梁为简支梁时与主梁连接的构造,图8d 是次梁为连续梁时与主梁连接的构造。
平接虽构造复杂,但可降低结构高度,在实际工程中应用较广泛。
图9 次梁与主梁的平接四、组合梁的设计1.截面选择组合梁截面应满足强度、整体稳定、局部稳定和刚度的要求。
设计组合梁时,首先需要初步估计梁的截面高度、腹板厚度和翼缘尺寸。
(1)梁的截面高度确定梁的截面高度应考虑建筑高度、刚度和经济三个方面的要求。
.建筑高度是指梁的底面到铺板顶面之间的高度,通常由生产工艺和使用要求决定。
确定了建筑高度也就确定了梁的最大高度m ax h 。
刚度要求确定了梁的最小高度m in h 。
刚度条件要求梁在全部荷载标准值作用下的挠度v 不大于容许挠度[]T v 。
梁的经济高度,梁用钢量最少的高度。
经验公式为)mm (30073-=x e W h (13)式中x W 的单位为mm 3, e h 的单位为mm 。
实际采用的梁高,应介于建筑高度和最小高度之间,并接近经济高度。
梁的腹板高度w h 可稍小于梁的高度,一般取腹板高度w h 为50mm 的倍数。
(2)腹板厚度腹板厚度应满足抗剪强度的要求。
初选截面时,可近似的假定最大剪应力为腹板平均剪应力的1.2倍,根据腹板的抗剪强度计算公式vw w f h V t m ax 2.1≥ (14) 由式(14)确定的w t 值往往偏小。
为了考虑局部稳定和构造等因素,腹板厚度一般用下列经验公式进行估算5.3ww h t = (15)式(15)中,w t 和w h 的单位均为mm 。
实际采用的腹板厚度应考虑钢板的现有规格,一般为2mm 的倍数。
对于非吊车梁,腹板厚度取值宜比式(15)的计算值略小;对考虑腹板屈曲后强度的梁,腹板厚度可更小,但腹板高厚比不宜超过250y f /235。
(3)翼缘尺寸图10 组合梁截面已知腹板尺寸,可求得需要的翼缘截面积f A 。
已知 2221212130h W h A h t I x f w x =⎪⎭⎫ ⎝⎛+= 由此得每个翼缘的面积2132161h h t h h W A w w x f -= 近似取01h h h ≈≈,则翼缘面积为061h t h W A w w x f -= (16) 翼缘板的宽度通常为1b =(1/6~l/2.5)h ,厚度t =f A /1b 。
翼缘板常用单层板做成,当厚度过大时,可采用双层板。
确定翼缘板的尺寸时,应注意满足局部稳定要求,使受压翼缘的外伸宽度b 与其厚度t之比b /t ≤15y f /235(弹性设计)或13y f /235(考虑塑性发展)。