空间滤波的理论和方法
- 格式:ppt
- 大小:1.19 MB
- 文档页数:45
Chapter 3強度轉換與空間濾波空間濾波的基本原理與各式濾波器Chapter 3強度轉換與空間濾波(S ti l filt i )遮罩mask空間濾波(Spatial filtering)將濾波遮罩在影像中移動,在每一點(x,y)計算濾波係數及遮罩所涵蓋的影像區域的像素乘積和mask 濾波器filter 核心kernel template 模板template 窗windowmaskimage++++++−−+−−−−=y x f w y x f w y x f w y x f w y x g )1,1()1,1(...),()0,0(...),1()0,1()1,1()1,1(),(∑∑−=−=++=aa s bbs t y s x f t s w y x g ),(),(),(Chapter 3強度轉換與空間濾波相關性(correlation)迴旋積(convolution)相關性¾迴旋積Chapter 3強度轉換與空間濾波相關性迴旋積相關性∑++=a bt s x t s w y x f y x w ,,),(),(o ∑−=−=a s bt y f )()(•y x f y x w ),(),(迴旋積∑∑−=−=−−=a a s bbt t y s x f t s w ),(),(Chapter 3強度轉換與空間濾波Chapter 3強度轉換與空間濾波z w z w z w R mn mn +++= (221)1h (-1,-1)h (-1,0)h (-1,1)-1z w mni k k =∑=1h (0,1)h (0,0)h (0,1)h (1,-1)h (1,0)h (1,1)zw T =產生空間濾波器遮罩h (x ,y )1.平均濾波器z w z w z w R +++=...對於3*3的遮罩2.101 and 101 1),(,,-y ,,-x y x h ===z w kk =∑9992211 2.高斯濾波器101and 101 2222−=−==+x ex h y x σzw Tk ==1,,,,,),(y yChapter 3強度轉換與空間濾波平滑空間濾波器Smoothing spatial filters•∑a bGeneral form用於模糊化跟減少雜訊•以濾波器所定義的平均值取代原灰階值•對於銳利的邊緣也有模糊的負效果∑∑−=−=++=aba s bt t s w t y s x f t s w y x g ),(),(),(Box filterWeighted average∑−=−=a s bt ),(1(所有係數都相等)g g (每個像素有不同的重要性)∑==919i izRChapter 3強度轉換與空間濾波3使用方形濾波器的結果N=3N9N=5N=9N 15N35N=15N=35Chapter 3強度轉換與空間濾波Threshing with a threshold value equal to 影像平均遮罩的大小建立了會被融入背景的物體的相對大小,可用於標示較大較亮的物體Threshing with a threshold value equal to 25% of the highest intensity in the blurredimage, the small objects are eliminated.After averaging, the small objectsblend with backgroundChapter 3強度轉換與空間濾波排序統計濾波器(Order-statistics filters)非線性的濾波器,其響應建立在由濾波器所包圍的影像區域中所含的像素順序上•中值濾波器Median filterM di filt•將像素值用該鄰近區域像素的“中間值"代替•適用於胡椒鹽式雜訊(salt and pepper noise)M filt Mi filt•Max filter, Min filter平均濾波中間值濾波Chapter 3強度轉換與空間濾波•中值濾波器1818191919202021155將九宮格中的灰階值重新排序1819182021中值19155202121 20192120191819182021 191920212119202116018 17192220192019212019 19202116018 1719222019胡椒鹽式雜訊Chapter 3強度轉換與空間濾波•中值濾波器—水彩畫特效Chapter 3強度轉換與空間濾波S li銳化空間濾波器(Sharpening spatial filters)突顯影像中細微的部分或增強模糊的細節,藉由微分來達成Scan line •微分運算子的響應強度正比於所在影像處的不連續程度•微分增強邊緣和不連續處fderivative order -First −∂()()x fx f xderivative order -Second 12∂+=∂()()()x f x f x f xf2112−−++=∂Chapter 3強度轉換與空間濾波銳化空間濾波器(Sharpening spatial filters)微分運算子的響應強度正比於運算子在其運用點處影像強度不連續的程度一階導數first derivative•在常數強度區域中為零•在強度步階斜面起始處不為零•沿著斜面不為零二次導數Second-order derivatives•在常數強度區域中為零•在強度步階或斜面起始處以及尾端不為零沿著有常數斜率的斜面為零•Chapter 3強度轉換與空間濾波二次導數濾波器圖3.37(a)用來實現(3.6-6) 式的濾波器遮罩;Laplacian22∂(b)實現此式之延伸所用的遮罩,其中包括對角項;(c)和(d) 兩個實際上常見之拉普拉斯的其它實現。
空间滤波⏹空间滤波基础⏹平滑空间滤波器⏹锐化空间滤波器⏹混合空间增强法⏹上次Matlab报告中老师留的问题1. 空间滤波机理在图像像素上执行的是线性操作,则该滤波器称为线性空间滤波器;否则,滤波器就称为非线性空间滤波器。
在图像中的任意一点(x,y), 滤波器的响应g(x,y),是滤波器系数与由该滤波器包围的图像像素的乘积之和:g(x,y)=w(-1,-1)f(x-1,y-1)+w(-1,0)f(x-1,y)+...+w(0,0)f(x,y)+...+w(1,1)f(x+1,y+1)一般来说,使用大小为m*n的滤波器岁大小为M*N的图像进行线性空间滤波,可由下表示:其中,x和y是可变的。
∑∑-=-=++=aasbbttysxftswyxg),(),(),(空间滤波基础(续)左图显示了,使用大小3*3滤波器模板的线性空间滤的机理。
表示滤波器模板系数坐标所选择的形式简化了线性滤波的表达式。
空间滤波基础(续)2. 空间相关与卷积相关:滤波器模板移过图像并计算每个计算位置乘积之和的处理。
一个大小为m*n 的滤波器w(x,y)与一幅图像f(x,y)做相关操作。
公式总结如下:卷积:卷积的机理相似,但滤波器首先要旋转180度。
类似地,w(x,y)和f(x,y)的卷积表示为w (x,y )★f(x,y)。
公式总结如下:∑∑-=-=++=a a s bb t s y t x f t s w y x y x w ),(),(),(f ),(☆∑∑-=-=++=a a s bb t s y t x f t s w y x y x w ),(),(),(f ),(★空间滤波基础(续)空间滤波基础(续)3. 线性滤波的向量的表示R=w 1z 1+w 2z 2+...+w mn z mn = =w T z 其中w 项是一个大小为m*n 的滤波器的系数,Z 为由滤波器覆盖的相应图像的灰度值。
kk mnk z w ∑=1平滑空间滤波器平滑滤波器用于模糊处理和降低噪声1. 平滑线性滤波器平滑线性空间滤波器的输出(响应)是包含在滤波模板邻域内的像素的简单平均值。
空间域滤波复原方法
空间域滤波复原方法是一种基于图像的频域分析和处理的方法,它通过对图像进行滤波操作,然后再通过逆滤波操作将图像恢复到原来的状态。
这种方法通常用于去除图像中的噪声或模糊,以及增强图像的细节和边缘等。
常见的空间域滤波复原方法包括以下几种:
1. 均值滤波:将像素点周围的像素值取平均值,从而去除噪声或平滑图像。
均值滤波是最简单的空间域滤波方法,但可能会损失图像的细节和边缘等信息。
2. 中值滤波:将像素点周围的像素值按照大小排序,然后取中间值作为该像素的值,从而去除噪声或平滑图像。
中值滤波相对于均值滤波可以更好地保持图像的细节和边缘等信息,但可能会产生较多的图像模糊。
3. 高斯滤波:将像素点周围的像素值按照高斯分布加权平均,从而去除噪声或平滑图像。
高斯滤波是一种比较常用的空间域滤波方法,可以根据不同的参数设置来平衡去除噪声和保持图像细节等方面的需求。
4. 双边滤波:将像素点周围的像素值按照距离和像素值大小进行加权平均,从而去除噪声或平滑图像。
双边滤波可以更好地平衡去除噪声和保持图像细节等方面的需求,同时可以产生更自然的图像效果。
在实际应用中,通常需要根据图像的特点和处理要求来选择合适的空间域滤波方法,并进行相应的参数设置和调整。
空间滤波(spatial filters)空间滤波(又称local operation)空间滤波是一种通用的光栅图像处理操作。
是根据某像素周围像素的数值,修改图像中的该像素值.它能增强或抑制图像的空间细节信号,提高图像的可视化解释。
如应用滤波增强图像的边界信息,去除或减少图像中的噪音图案。
突出结构特征等.空间频率(Spatial frequency)空间频率是所有类型的光栅数据共有的特性,它的定义是指图像中的任何一特定部分,每单位距离内数据值的变化数量.对图像上数据变化小、或渐进变化的区域称为低频区域(如平滑的湖面),对图像上数据变化大、或迅速变化的区域称为高频区域(如布满密集公路网的城区).空间滤波分为三大类:低通滤波(Low pass filters):强调的是低频信息,平滑了图像的噪音、减少了数据的菱角。
因为它不在重视图像的细节部分,所以低通滤波有时又称为平滑或均值滤波。
高通滤波(High pass filters):强调的是高频信息,增强或锐化线性特征,象公路、断层、水陆边界。
因为它没有图像的低频部分,增强了图像的细节信息,所以高通滤波有时又称为锐化滤波。
边界检测滤波(Edge detection filters):强调的是图像中目标或特征的边界,以便更容易分析。
边界检测滤波通常建立一个灰色背景图和围绕图像目标或特征边界的黑白色线.卷积核(convolution kernels)卷积核是指二维矩形滤波距阵(或窗口),包含着与图像像素值有关的权值。
滤波距阵(或窗口)在图像上从左向右,自上而下,进行平移滑动,窗口中心的像素值是根据其周围像素值与窗口中对应的每个像素的权值乘积就和而计算出来的。
ER Mapper滤波对话框如图1—1。
包含着滤波文件名、滤波距阵和滤波编辑等项。
图1-1 ER Mapper滤波对话框实习目的:建立和删除滤波,应用不同的滤波距阵,查看结果。
实习步骤:(一)增加滤波1.打开和显示一个已存在的算法文件①在标准工具条上,点击Open按钮,打开图像显示窗口和文件输入窗口。
傅里叶光学空间滤波实验实验安全注意事项随着科学技术的不断进步,傅里叶光学空间滤波实验在光学领域中扮演着越来越重要的角色。
傅里叶光学空间滤波实验是利用傅里叶变换原理进行光学信息处理的一种方法,可以对光学信号进行处理和改善,被广泛应用于图像处理、光学通信和光学信息处理等领域。
然而,在进行傅里叶光学空间滤波实验时,我们必须要注意一些实验安全的注意事项,以确保实验顺利进行且不发生意外。
在进行傅里叶光学空间滤波实验时,首先要注意使用实验装置和设备。
实验中需要使用激光器、透镜、衍射光栅等光学器件,这些器件在使用过程中可能会产生高能光线,因此需要注意眼睛的保护,避免直接暴露在光线中。
实验中需要处理激光器和高压电源等设备,这些设备可能存在触电、烫伤等风险,因此在操作时需要格外小心,避免发生意外。
在进行傅里叶光学空间滤波实验时,要注意实验环境的安全。
由于实验中可能会产生激光和高能光线,因此需要在实验室中设置相应的警示标识,并保证实验环境的通风良好,避免光线对实验人员和周围环境造成伤害。
在实验室中还要保持实验区域的整洁,避免杂物和化学品等对实验产生干扰,确保实验的安全进行。
另外,进行傅里叶光学空间滤波实验时,要注意实验操作的安全。
在操作过程中需要遵守操作规程,确保实验设备和器件的正确使用。
特别是在调整激光器功率、调节透镜焦距等操作时,要小心谨慎,避免对自己和他人造成伤害。
在进行实验时要注意实验数据的记录和保存,避免实验数据的丢失和损坏,确保实验结果的准确性和可靠性。
进行傅里叶光学空间滤波实验时,实验者要时刻注意实验安全的重要性,严格遵守实验安全规程,确保实验的顺利进行且不发生意外。
只有在保证实验安全的前提下,我们才能够更好地进行傅里叶光学空间滤波实验,获取准确的实验结果,推动光学领域的发展。
在我看来,实验安全是进行任何实验工作时必须首要考虑的因素。
只有在保证实验安全的前提下,才能够更好地进行科学研究和实验工作,创造更多的科研成果。
实验名称:空间滤波一、 实验内容1. 对影像进行中值滤波。
2. 对影像进行Sobel 滤波。
二、 实验所用的仪器设备,包括所用到的数据Window7/XP 操作系统电脑一台,遥感影像处理软件(ENVI4.3),TM 单波段卫星遥感影像PCA 。
三、 实验原理(一) 中值滤波1. 定义:是一种非线性的平滑方法,对一个滑动窗口内的诸像素灰度值排序,用其居于中间位置的值代替窗口中心像素的灰度值。
2. 中间值的取法:当邻域内像元数为偶数时,取排序后中间两像元值的平均值;当邻域内的像素数为奇数时,取排序后的位于中间位置的像元的灰度。
3. 优缺点:抑制噪声的同时能够有效保护边缘少受模糊,但是对点、线等细节较多的图像却不太合适。
当窗口内噪声点的个数大于窗口宽度的一半时,中值滤波的效果不好,因此正确选择窗口的尺寸是用好中值滤波的重要环节。
(二) Sobel 滤波1. Sobel 算子: Sobel 算子是图像处理中的算子之一,主要用于边缘检测。
在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。
在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量。
2. 核心公式:该算子包含两组3x3的矩阵,分别为横向及纵向,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。
如果以A 代表原始图像,Gx 及Gy 分别代表经横向及纵向边缘检测的图像,其公式如下:AG and A G +⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++---=+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-=121000121101202101y x 图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。
然后可用以下公式计算梯度方向。
如果以上的角度θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。
3. Sobel 滤波:Sobel 滤波是通过Sobel 算子与原始影像进行卷积实现的。
4. 优缺点:该滤波方式使图像的非线性边缘增强。
空间域滤波空间域滤波基础 某些邻域处理⼯作是操作邻域的图像像素值以及相应的与邻域有相同维数的⼦图像的值。
这些⼦图像可以被称为滤波器、掩模、核、模板或窗⼝,其中前三个词是更为普遍的术语。
在滤波器⼦图像中的值是系数值,⽽不是像素值。
空间滤波就是在待处理图像中逐点地移动掩模。
在每⼀点 (x, y) 处,滤波器在该点的响应通过事先定义的关系来计算。
对于线性空间滤波,其响应由滤波器系数与滤波掩模扫过区域的相应像素值的乘积之和给出。
对于⼀个尺⼨为 m×n 的掩模,我们假设 m=2a+1 且 n=2b+1,这⾥的 a、b 为⾮负整数。
在后续的讨论中,处理的掩模的长与宽都为奇数。
⼀般来说,在 M×N 的图像 f 上,⽤ m×n ⼤⼩的滤波器掩模进⾏线性滤波由下式给出: 这⾥,a=(m-1)/2 且 b=(n-1)/2。
为了得到⼀幅完整的经过滤波处理的图像,必须对 x=0, 1, 2, …, M-1 和 y=0, 1, 2, …, N-1 依次应⽤公式。
这样,就保证了对图像中的所有像素进⾏了处理。
式中的线性滤波处理与频率域中卷积处理的概念很相似。
因此,线性空间滤波处理经常被称为“掩模与图像的卷积”。
类似地,滤波掩模有时也可以称为“卷积模板”或“卷积核”。
当滤波中⼼靠近图像轮廓时发⽣的情况 考虑⼀个简单的⼤⼩为 n×n 的⽅形掩模,当掩模中⼼距离图像边缘为 (n-1)/2 个像素时,该掩模⾄少有⼀条边与图像轮廓相重合。
如果掩模的中⼼继续向图像边缘靠近,那么掩模的⾏或列就会处于图像平⾯之外。
⽅法⼀:最简单的⽅法就是将掩模中⼼点的移动范围限制在距离图像边缘不⼩于 (n-1)/2 个像素处。
如果要保持与原图像⼀样⼤⼩,可以直接将未处理的图像边缘像素直接复制到结果图像,或者⽤全部包含于图像中的掩模部分滤波所有像素。
通过这种⽅法,图像靠近边缘部分的像素带将⽤部分滤波掩模来处理。
⽅法⼆:在图像边缘以外再补上 (n-1)/2 ⾏和 (n-1)/2 列灰度值为0(也可为其它常值)的像素点,或者将边缘复制补在图像之外。