第二章 海上油气开采方式
- 格式:docx
- 大小:270.87 KB
- 文档页数:10
海上油气田生产与集输简介海上油气田生产与集输是指在海洋中开采石油和天然气,然后将其通过管道、船舶等方式运输至陆地或其他地方进行加工、使用等。
这是一个涉及到多个行业、多个领域的复杂系统。
生产海上油气田生产是指采用海上钻井平台等设备,通过在海洋中进行钻探、提取石油和天然气的过程。
该过程需要涉及到多个步骤,包括勘探、开发、生产等。
勘探勘探是指在海洋中找到可能存在石油和天然气的地方,并进行初步的调查和探测。
这需要借助各种工具和技术,包括地球物理勘探、声纳扫描、磁力勘探、卫星遥感等。
开发开发是指在确定了石油和天然气的存在并具备开发条件的情况下,对其进行开采和开发的过程。
这需要构建海上钻井平台等设施,并进行井筒钻探、固井、完井等工作。
生产生产是指在钻探平台或者其他设施上,开采石油和天然气,并将其逐步提升至表面。
这需要配置相关设备和管道,包括钻头、油泵、压缩机、传输管道等。
集输海上油气田生产并不能满足人们的能源需求,需要将其运输至陆地或其他地方进行加工和使用。
这需要依靠集输系统,即管道、船舶等将石油和天然气从海洋中运输至陆地。
管道管道是集输系统的核心,它是将石油和天然气运输至陆地的主要手段。
管道有两种,一种是就地加工,进行初步加工后经过管道运输;另一种是在海上进行甲醇等中间产品的化学处理后,通过管道运输至陆地进行进一步加工。
船舶由于部分海上油气田距离陆地较远,或管道系统受到限制,需要借助船舶将石油和天然气运输至陆地或其他地方进行进一步加工和使用。
船舶运输是海上油气田集输系统的重要组成部分。
安全海上油气田生产和集输是一个高风险的行业,往往存在着多种危险因素和安全隐患。
因此,在生产和集输过程中,需要采取一系列的措施,保障工作人员和设备的安全。
班组和熟练工人生产和集输流程中最重要的一点是班组和熟练工人,他们对操作规程、安全标准及相应的应对措施有着非常熟练的掌握。
因此,在进行海上油气田工作之前,必须接受专门的培训及持证上岗。
海上油气开采工程与生产系统教程(DOC 11页)海上油气开采工程与生产系统中海工业有限公司第一章海上油气开采工程概述海底油气资源的存在是海洋石油工业得以发展的前提。
海洋石油资源量约占全球石油资源总量的34%,全球海洋石油蕴藏量约1000多亿吨,其中已探明的储量约为380亿吨。
世界对海上石油寄予厚望,目前全球已有100多个国家在进行海上石油勘探,其中对深海进行勘探的有50多个国家。
一、海上油气开采历史进程、现状和将来一个多世纪以来,世界海洋油气开发经历如下几个阶段:早期阶段:1887年~1947年。
1887年在墨西哥湾架起了第一个木质采油井架,揭开了人类开发海洋石油的序幕。
到1947年的60年间,全世界只有少数几个滩海油田,大多是结构简单的木质平台,技术落后和成本高昂困扰着海洋石油的开发。
起步阶段:1947年~1973年。
1947年是海洋石油开发的划时代开端,美国在墨西哥湾成功地建造了世界上第一个钢制固定平台。
此后钢平台很快就取代了木结构平台,并在钻井设备上取得突破性进展。
到20世纪70年代初,海上石油开采已遍及世界各大洋。
发展阶段:1973年~至今。
1973年全球石油价格猛涨,进一步推进了海洋石油开发的历史进程,特别是为了应对恶劣环境的北海和深水油气开发的需要,人们不断采用更先进的海工技术,建造能够抵御更大风浪并适用于深水的海洋平台,如张力腿平台(TLP)、浮式圆柱型平台(SPAR)等。
海洋石油开发从此进入大规模开发阶段,近20年中,海洋原油产量的比重在世界总产油量中增加了1倍。
进军深海是近年来世界海洋石油开发的主要技术趋势之一。
二、海上油气开采流程海上油气田开采可划分为勘探评价、前期研究、工程建设、油气生产和设施弃置五个阶段:勘探评价阶段:在第一口探井有油气发现后,油气田就进入勘探评价阶段,这时开发方面的人员就开始了解该油气田情况,开展预可行性研究,将今后开发所需要的资料要求,包括销售对油气样品的要求,提交勘探人员。
海上油气集输工艺流程因为全海式油气集输系统可实现全部油气集输任务,本节就以全海式生产平台为例,介绍油气集输主要工艺流程及设备。
出油气集输生产包括油气水分离、原油处理、天然气处理、污水处理等主要生产项目。
一、油气计量及油气生产处理流程石油是碳氢化合物的混合物,在地层里油、气、水是共生的,又由于油气生成条件各异,因此各油田开采出的原油的组分是不同的。
此外,油中还含少量氧、磷、硫及沙粒等杂质。
油气生产处理的任务就是将油井液经过分离净化处理,能给用户提供合格的商品油气。
原油处理流程示意图。
由于各油田生产出来的油气组分和物性不同,生产处理流程也不完全相同,如我国海上生产的原油普遍不含硫和盐,因此就没有脱盐处理的环节。
有的油田生产的原油不含水,就没有脱水环节。
海上原油处理包括油气计量、油气分离、原油脱水及原油稳定几部分。
由于海上油田普遍采用注水增补能量的开采方法,因此原油脱水是原油处理的主要环节之一。
(一)油、气分离及油、气计量1.油、气分离原理及流程原油和天然气都是碳氢化合物。
天然气主要由甲烷和含碳小于5 个的烷烃类组成。
它们在常温、常压下是气态。
原油是由分子量较大的烷烃类组成,在常温下是液态。
在油层里由于高温、高压的作用,天然气溶解在原油中。
在原油生产和处理过程中,随着压力不断降低,天然气就不断从原油中分离出来,油、气就是根据这一物性原理进行分离的。
通过进行两次或多次平衡闪蒸,以达到最大限度地回收油气资源。
一般来说分高压力越高、级间压降越小,最终液体收率就越高;分高压力越低,则气体收率越高。
因此,确定分离工艺的压力和级数是取得气、液最大收率的关键因素。
从经济观点上看,一般认为分离级数以3~4 级为宜,最多可到5 级,超过5 级就没有经济效益了。
各油井生产的油井液汇集到管汇,通过管汇控制分别计量各口油井的油、气产量,计量后的油、气重新混合流到油气生产分离器,进行油、气、水的生产分离(图示为两级分离),分离后的油、气分别进行油、气处理。
第二章海洋采油装备与结构第一节海上采油平台及水下采油装备海洋采油装备与海上油气集输的方式有关。
一般离岸较远的低产小油田,常将油、气分离处理后,送至油轮上运走,叫做全海式。
对于离岸较远的高产油田常通过短距离海底管线将油、气集中到采油平台,分离处理后再经海底管线送至岸上进行储运,叫做半海半陆式。
离岸较近的油田即可采用一井专线或多井一线直接通过海底管线将油、气混输到岸上进行分离及储运,叫做全陆式。
此外,近年来在深海还发展了水下采油装备。
下面分别介绍海上采油平台与水下采油装备。
一、海上采油平台(一)海上采油方式的分类1.浅海采油水深在70m以内,一般采用采油平台采油。
可分下列几种情况:(l)3~5口井的采油平台在平台上进行油气的计量,然后将油、气、水通过海底管线混输至岸上。
(2)多井(可供18口井用)的采油平台,平台上有油气分离及脱水等装置,待去气去水以后,将原油用泵通过海底管线输送到岸上。
这种平台可兼供钻生产井用。
2.深海采油水深在100m以上即需采用海底井口(水下井口),并使用一系列水下采油装备来采油,叫做水下采油法。
一般在较深水中也可采用钢管在海底集油,然后再用软管连接到海上的浮动分离储油装置上。
例如常用的单点系泊装置即使用高100m以上,直径约10m的圆柱型浮筒,上端与油气分离、储油装置连接,底部用软管连接海底集油管线。
它既能固定于一个位置上,又能随风浪摇摆。
浮筒上装有漂浮软管和尼龙系缆,还有操纵软管及系绳用的滚筒和动力转盘,通过软管用泵向油轮装油。
油轮保持迎风可绕浮筒360º旋转。
水面处浮筒周围有碰垫,以防船碰伤。
浮筒上有直升飞机坪和供应维修用的房舍,如图2-1所示。
也可在海底建立水下油罐,储存原油。
油罐是一个顶部为圆弧形的圆柱体。
用管道把压缩空气压入圆柱体内,将油罐拖运到装设地点,然后再利用压缩空气和一个临时补偿装置使罐从海面沉到海底。
图2-1 单点系泊装置(二)海上采油平台的类型海上采油平台依其制造材料分有钢质及混凝土平台,按其特点来分又有桩基式、重力式和混合式三种。
1,海上石油开采,包括勘探和开采的详细流程(经过哪些程序来最终取得和输送原油)2,勘探和开采时涉及的技术(国外的领先技术和国内现在掌握和使用的技术)海上油气开发海上油气开发与陆地上的没有很大的不同,只是建造采油平台的工程耗资要大得多,因而对油气田范围的评价工作要更加慎重。
要进行风险分析,准确选定平台位置和建设规模。
避免由于对地下油藏认识不清或推断错误,造成损失。
60年代开始,海上石油开发有了极大的发展。
海上油田的采油量已达到世界总采油量的20%左右。
形成了整套的海上开采和集输的专用设备和技术。
平台的建设已经可以抗风、浪、冰流及地震等各种灾害,油、气田开采的水深已经超过200米。
当今世界上还有不少地区尚未勘探或充分勘探,深部地层及海洋深水部分的油气勘探刚刚开始不久,还会发现更多的油气藏,已开发的油气藏中应用提高石油采收率技术可以开采出的原油数量也是相当大的;这些都预示着油、气开采的科学技术将会有更大的发展。
石油是深埋在地下的流体矿物。
最初人们把自然界产生的油状液体矿物称石油,把可燃气体称天然气,把固态可燃油质矿物称沥青。
随着对这些矿物研究的深入,认识到它们在组成上均属烃类化合物,在成因上互有联系,因此把它们统称为石油。
1983年9月第11次世界石油大会提出,石油是包括自然界中存在的气态、液态和固态烃类化合物以及少量杂质组成的复杂混合物。
所以石油开采也包括了天然气开采。
石油在国民经济中的作用石油是重要能源,同煤相比,具有能量密度大(等重的石油燃烧热比标准煤高50%)、运输储存方便、燃烧后对大气的污染程度较小等优点。
从石油中提炼的燃料油是运输工具、电站锅炉、冶金工业和建筑材料工业各种窑炉的主要燃料。
以石油为原料的液化气和管道煤气是城市居民生活应用的优质燃料。
飞机、坦克、舰艇、火箭以及其他航天器,也消耗大量石油燃料。
因此,许多国家都把石油列为战略物资。
20世纪70年代以来,在世界能源消费的构成中,石油已超过煤而跃居首位。
海上油气田开发模式及实例第1章绪论1.1 课题背景及目的、意义随着我国经济的发展,对能源的需求量不断增长,能源的缺口继续扩大,石油的进口量逐年攀升。
国际上,随着北海、墨西哥湾等海上油气田的陆续建成投产,海洋石油开发进入快速发展时期,墨西哥湾、巴西、西非钻探和作业水深记录不断刷新,海洋开发已经将目光转向3000m的深水油气资源。
海洋石油是满足全球能源需要的主要能源[1]。
我国的海洋油气资源十分丰富,根据第三次全国石油资源评价结果,中国海洋石油资源量为246亿吨,占全国资源总量的23%;海洋天然气资源量为16万亿立方米,占总量的30%,这些资源是我国能源安全的重要保障。
20世纪70年代中期,我国石油工业开始向海洋进军,至今相继建成了渤海、东海及南海东部和西部等浅海油气田,形成了5000万吨/年的生产能力。
21世纪初以来,我国海上石油开发向深海迈进,“海洋石油981深水钻井平台”“海洋石油201深水铺管船”等关键设备已投入使用,特别是2017年5月,我国首次海域可燃冰试采成功,又是一个历史性突破。
随着我国深水石油开发技术的进步和成熟,我国将有能力在南海西沙、中沙和南沙等海域建设石油生产基地,进军深蓝石油强国之列。
在海洋油气开发中,海上平台间、平台与终端间通过海底管道连接,组成了一个紧密联系的生产系统,它是海上生产的主动脉。
但是海底管道内流动复杂,很多是多相流动,需要对其进行详细的分析,而且输送介质一般含水,有生成水合物的风险,需要结合运行的温度、压力条件分析;海洋中心平台承担接收油气混合物、处理后进行外输的职能,其中压缩机能耗占很大比例,其合理运行对平台的节能来说意义重大。
1.2 海上油气田开发模式及实例1.2.1 全海式开发模式全海式开发模式中,井、完井、油气水生产处理,油气储存和外输都是在海上完成的。
海上平台还设有电站、热站、生活和消防等生产生活设施。
常见的全海式开发模式有:(1)井口平台+FPSO(Floating Production Storage Offloading System 浮式生产储油外输系统)。
近海油气田开发中的海上天然气开采技术比较分析近海油气田开发一直是现代石油和天然气行业的关键领域之一。
其中,海上天然气开采技术对于有效地开发利用海洋油气资源具有重要意义。
本文将对近海油气田开发中的海上天然气开采技术进行比较分析,探讨不同技术的优势和劣势。
首先,常见的海上天然气开采技术包括浮式生产系统(FPS)和半固定式生产平台。
浮式生产系统是一种较为成熟且广泛应用的技术,具备可移动性和快速部署的优势。
它适用于较为深水和恶劣海洋环境,可以实现海上天然气开采设施的快速建设。
然而,浮式生产系统在抗风浪和海洋环境影响方面存在一定的局限性。
与之相比,半固定式生产平台借助海底支撑固定设备,具备更高的稳定性和抗风浪能力。
半固定式生产平台适用于浅水海域和相对稳定的海洋环境,可以长期用于海上天然气开采。
在海上天然气开采的具体工艺上,常见的技术包括水平井开采技术和水平井-多分支井开采技术。
水平井开采技术利用一定的倾角水平井段延伸到天然气层位置,从而提高了采气能力。
这种技术适用于特定的油气田地质条件,有助于增加天然气产量。
然而,水平井开采技术需要更多的工程技术支持和成本投入。
相比之下,水平井-多分支井开采技术在水平井技术基础上进一步提高了采气效果。
它通过在水平井段中设置多个分支井,实现更广泛的采气作业。
这种技术能够进一步提高天然气产量,但也增加了井间干扰和油气水混产的风险。
此外,海水封堵技术在近海油气田开发中的海上天然气开采中也起到关键作用。
海水封堵技术通过注入海水或其他代用物质,形成海底孔隙的液体封堵层,从而减少天然气的泄漏和排放。
这种技术可以有效地提高天然气采收率和环境保护水平。
然而,海水封堵技术在实施过程中需要考虑地质条件、井筒压力和封堵介质的选择等多个因素,并且由于液体封堵层的长期运维问题,也存在着一定的挑战。
综上所述,近海油气田开发中的海上天然气开采技术存在多种选择。
不同技术在特定的环境和地质条件下具有各自的优势和劣势。