小学五年级上册数学 鸡兔同笼问题
- 格式:docx
- 大小:76.43 KB
- 文档页数:2
人教版数学五年级上册十三专题之十三:鸡兔同笼问题【教法剖析】鸡兔同笼问题是我国古代著名趣题之一。
通过学习解鸡兔同笼问题,可以提高我们分析问题、解决问题的能力。
下面来介绍几种解鸡兔同笼问题的方法:1.列表法:使用列表法时,如果数据比较大,我们可以采取折中列举的方法,即从鸡和兔数量相等时开始列举,如果脚多了,则减少的兔的数量,如果脚少了,则增加的兔的数量。
2.公式法:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
3.假设法:第一步可根据题意作出正确的假设,即假设几种量相同;第二步是根据假设进行推算,找出与实际对应数量之差;第三步是分析数量不符的原因,正确进行适当的调整,从而找出问题的答案。
4.方程法:根据题意画出段落图,帮助分析数量关系,理清解题思路。
例1鸡兔同笼,有35个头,有94只脚,问鸡和兔各有多少只?【助教解读】解法一:列表法。
列表法就是让我们列出表格,采用依次列举,逐步尝试的方法来解决这个问题。
详细过程见表:所以,有23解法二:公式法。
(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
兔数:(94-2×35)÷(4-2)=12(只)鸡数:35-12=23(只)解法三:假设法。
假设这35个头都是兔子,那么腿数就应该是35×4=140,就比94还多,那么是哪里多的呢?当然是我们把两条腿的鸡看成了四条腿的兔子了。
我们都知道一只兔子比一只鸡多2条腿,多2条腿就有1只鸡,那么多的腿数当中有多少个2就有多少只鸡。
我们可以列式为:鸡的只数=(35×4-94)÷(4-2)=23(只),兔的只数=35-23=12(只)。
解法四:方程法。
小学数学鸡兔同笼问题及参考答案1、有龟和鹤共40只,龟的腿和鹤的腿共有112条。
龟、鹤各有几只?2、盒子里有大小玻璃球共30颗,共重266克。
已知大玻璃球每颗11克,小玻璃球每颗7克。
盒中大、小玻璃球各有多少颗?3、全班一共58人,共租了8辆车,每辆车都坐满了。
大、小车各租了几辆?大车限乘8人小车限乘6人4、100个和尚吃100个馒头。
大和尚一人吃3个,小和尚3人吃一个。
求大、小和尚各多少人?5、一批钢材,用小卡车装载要45辆,用大卡车装载要36辆。
已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?6、豆豆同学参加一次数学竞赛.试题共20道,规定答对一道得5分,答错一道扣1分.豆豆全部完成了答题,共得了70分.豆豆答对了多少道题?7、搬运工人搬运1000只玻璃瓶,规定搬一只可得运费3角,但打碎一只要赔5角,如果运完后共得运费260元,那么搬运中打碎了多少只?8、为倡导“绿色呼吸,还大自然清洁”,某县开展了开荒造林活动,裕华小学参加了这次活动,其中100名师生共栽树100棵,老师每人载3棵,学生每2人载一棵。
请你算一算老师和学生各多少人?9、大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮毛狗戴着1个铃铛,大白鹅不戴铃铛。
小明数了数,共有9个脑袋,28条腿,11个铃铛。
这三种动物各有多少只?参考答案1.解:假设都是鹤。
①总的腿数:40×2=80条少的腿数:112-80=32条②龟的只数:32÷2=16只③鹤的只数:40-16=24只2.解:假设都是大玻璃球总的重量:30×11=330(克)多的重要:330-266=64(克)小玻璃球:64÷(11-7)=16(颗)大玻璃球:30-16=14(颗)答:盒中大玻璃球有14颗,小玻璃球有16颗3.解:假设全都租大车总人数:8×8=64(人)多的人数:64-58=6(人)小车:6÷(8-6)=3(辆)大车:8-3=5(辆)答:大车租了5辆,小车租了3辆4.解:假设把一个大和尚和3个小和尚分为一组(一组4人),100个和尚则可以分成100÷4=25组,按题目要求一组需要4个馒头,25组刚好100个馒头,刚好分完因为一组有1个大和尚,25组则有大和尚25×1=25人因为一组有3个小和尚,25组则有小和尚25×3=75人5. 【分析】已知每辆大卡车比每辆小卡车多装4吨,那么36辆大车比36辆小车多装4×36=144吨,这144吨就相当于(45-36)辆小车装的数量,由此可以求出每辆小车装多少吨,进而求出这批钢材共有多少吨【解答】解:4×36÷(45-36)×45=144÷9×45=16×45=720(吨)答:这批钢材有720吨.6.【分析】根据“答对一道得5分,答错一道扣1分.”可知:答错一题比答对一题少得(5+1)6分;全部答对20道题共得:20×5=100(分);假设豆豆全部做对得分是100分,比70分多得100-70=30(分),那么他答错了:30÷6=5(道);所以豆豆答对了:20-5=15道题.【解答】解:假设豆豆都答对了总分:20×5=100分多出的分数:100-70=30分错的题数:30÷(5+1)=5(道);答的题数:20-5=15(道);答:豆豆答对了15道题.7.【解答】解:假设全部没有打碎:3角=0.3元,5角=0.5元1000×0.3=300(元)300-260=40(元)0.3+0.5=0.8(元)打碎:40÷0.8=50(只)答:搬运中打碎了50只玻璃瓶.8.解:假设去的都是老师:总棵树:100×3=300棵多的棵树:300-100=200棵学生数:200÷(3-1÷2)=80(人)老师数:100-80=20(人)答:老师有20人,学生有80人.9.提示:假设都是小山羊和狮毛狗(它们都有4条腿)总的腿数:9×4=36条多的腿数:36-28=8条大白鹅只数:8÷(4-2)=4(只)则小山羊和狮毛狗共有: 9一4=5(只),假设都是小山羊铃铛总数: 5×3=15个多的铃铛:15-11=4个狮毛狗只数: 4÷2=2(只)小山羊只数:5-2=3(只)。
小学数学五年级上册鸡兔同笼问题练习题1.鸡兔同笼,共有30个头,88只脚。
求笼中鸡兔各有多少只?答案:设鸡有x只,兔有y只,由题目得到方程组:x + y = 302x + 4y = 88解得:x = 22,y = 8,因此笼中有22只鸡和8只兔。
2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?答案:设鸡有x只,兔有y只,由题目得到方程组:x + y = 482x + 4y = 132解得:x = 24,y = 24,因此笼中有24只鸡和24只兔。
3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?答案:设鸡有x只,兔有y只,由题目得到方程组:x + y = 782x + 4y = 200解得:x = 50,y = 28,因此饲养组养了50只鸡和28只兔。
4.鸡兔同笼不知数,三十六头笼中露。
数清脚共五十双,各有多少鸡和兔?答案:设鸡有x只,兔有y只,由题目得到方程组:x + y = 362x + 4y = 100解得:x = 22,y = 14,因此笼中有22只鸡和14只兔。
5.XXX用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?答案:设20分邮票有x张,50分邮票有y张,由题目得到方程组:x + y = 3520x + 50y = 1000解得:x = 20,y = 15,因此XXX买了20张20分邮票和15张50分邮票。
6.XXX用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?答案:设50分邮票有x张,80分邮票有y张,由题目得到方程组:x + y = 2050x + 80y = 1360解得:x = 8,y = 12,因此XXX买了8张50分邮票和12张80分邮票。
7.XXX的储蓄罐里共2分和5分硬币70枚,XXX数了一下,一共有194分,求两种硬币各有多少枚?答案:设2分硬币有x枚,5分硬币有y枚,由题目得到方程组:x + y = 702x + 5y = 194解得:x = 38,y = 32,因此XXX有38枚2分硬币和32枚5分硬币。
小学数学应用题之鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。
把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。
五年级鸡兔同笼问题1、冬冬的钱包里有5元和2元的人民币共18张,价值60元,问5元和2元的人民币各有多少张?XXX的钱包里共有18张纸币,设5元纸币x张,2元纸币y张。
因为18=x+y,60=5x+2y,解得x=6,y=12.所以,XXX有6张5元纸币和12张2元纸币。
2、蜘蛛有8条腿,蝉有6条腿,两种小虫共有10只,共有72条腿,每种小虫各几只?设蜘蛛有x只,蝉有y只。
因为x+y=10,8x+6y=72,解得x=4,y=6.所以,蜘蛛有4只,蝉有6只。
3、松鼠采松果,晴天时,每天可以采20个,雨天时,每天只能采12个,这几天他一共采了112个松果,平均每天采14个,这几天中有几天是雨天?设晴天采松果的天数为x天,雨天采松果的天数为y天。
因为x+y=。
20x+12y=112,14(x+y)=。
解得x=4,y=2.所以,这几天中有2天是雨天。
4、100和尚吃100个馒头,大和尚每人吃4个,小和尚每4人吃一个,大和尚与小和尚各有多少个?设大和尚有x个,小和尚有y个。
因为x+y=100,4x+(y/4)=100,解得x=80,y=20.所以,大和尚有80个,小和尚有20个。
5、XXX参加数学竞赛,共做了25道题,如果每做对一道题得4分,做错或不做一道题扣2分,XXX共得了58分。
XXX做对了几道题?设小红做对的题数为x,做错或不做的题数为y。
因为x+y=25,4x-2y=58,解得x=11,y=14.所以,XXX做对了11道题。
6、从A城运茶杯1500个到B城,每运一个给运费6分钱,若打碎一个,不但不给运费,还要赔偿3角1分,现在某人共得运费73.35元,在运输过程中他打碎了几个茶杯?设没有打碎的茶杯数为x个,打碎的茶杯数为y个。
因为x+y=1500,0.06x-0.31y=73.35,解得x=1295,y=205.所以,这个人打碎了205个茶杯。
7、鸡兔同笼,数腿有110只,数头有40个,鸡、兔各有多少只?设鸡有x只,兔有y只。
鸡兔同笼问题-冀教版五年级数学上册教案教学目标1.理解并掌握鸡兔同笼问题的基本应用。
2.能够运用代数式求解鸡兔同笼问题。
3.通过鸡兔同笼问题的练习,提高学生的分析问题能力和运算能力。
教学内容本节课将要教授鸡兔同笼问题。
鸡兔同笼问题是一个数学基础问题,是指鸡和兔子被关在同一个笼子里,用腿数和头数计算出鸡和兔子的数量。
这个问题的应用非常广泛,不仅仅是在数学领域中,还可以运用在生物学、化学、物理等领域中,是学生必备的基本应用知识。
教学方法1.情境教学法:通过教师和学生一起思考鸡兔同笼问题的细节,从抽象的理论中突破出来,有助于学生理解和掌握鸡兔同笼问题。
2.演示法:通过演示不同情形下鸡兔同笼问题的求解过程,帮助学生理解代数式的运算规律,提高他们的运算能力。
教学步骤第一步:引入问题1.让学生想象一个房间里有很多鸡和兔子,但是他们全都被一张白纸挡住了,只能看到它们隔着白纸的腿和头,然后请学生把鸡和兔子的数量猜测出来。
2.逐步引导学生的思考,让学生从鸡的腿和头的数量、兔的腿和头的数量入手,想办法列出代数式。
第二步:讲解原理1.在学生完全理解鸡兔同笼问题之前,不要针对题目讲解应用方法,教师可以采用情境教学法,带领孩子尽可能多地思考、发散出问题的思维。
2.通过提出不同的问题情境,让学生根据自己的理解尝试写出代数式。
3.引导学生理解代数式含义,并总结出简单易懂的规律。
让学生用自己的话总结出鸡兔同笼问题求解的方法。
第三步:解决问题1.根据具体题目,让学生独立思考求解鸡兔同笼问题的方法。
2.通过解释不同题目的解法和思路,帮助学生更好地掌握其求解方法。
3.让学生自己总结出鸡兔同笼问题的解题规律,掌握其运算技巧,从而可以用更熟练的方法解决这种问题。
教学反思鸡兔同笼问题是一个需要通过实际操作完成的问题,学生需要依据自身的实际情况进行求解,才能完全掌握其应用方法。
在教学中,通过情境教学、演示法和学生独立思考等多种方式,提高了学生在鸡兔同笼问题求解中的思考能力和运算能力,使学生更好地理解求解的基本原理和运算方法。
第五讲鸡兔同笼问题1、鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?兔:316÷2-100=58 鸡:100-58=422、小明花4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分。
问:买了几张贺年卡,几张明信片?3角5分:(4-0.25×14)÷(0.35-0.25)=5 2角5分:14-5=93、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
鸡兔各几只?(100-92÷2)=4 鸡:(100-4×4)÷(2+4)=14 兔:14+4=184、100个馒头100个和尚吃,大和尚每人吃3个,小和尚每3人吃一个。
大、小和尚各有多少人?大和尚:100÷(3+1)=25 小和尚:25×3=755、30枚硬币,由2分和5分组成,共值9角9分。
两种硬币各多少枚?5分:(99-2×30)÷(5-2)=13 2分:30-13=176、有2角、5角和1元的人民币20张,共计12元,三种票子各多少张?2角的是5的倍数。
2角5张。
20-5=15张 12-0.2×5=11元5角:(1×15-11)÷(1-0.5)=8 1元:15-8=77、班主任老师带五年级二班50名学生去栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽两棵,总共栽树120棵。
有几名男生?几名女生?120-5=115 女生:(50×3-115)÷(3-2)=35 男生:50-35=158、100名师生绿化校园,老师每人栽3棵树,学生每两人栽1棵树,总共栽树100棵,求老师和学生各栽树多少棵?(2×100-100)÷(3-1/2)=80名学生:80÷2=40棵老师: 100-40=60棵9、80本语文书和100本数学书总价相等。
五年级数学上册鸡兔同笼练习题1、今有鸡、兔同笼,上有35个头,下有94只脚,请问鸡、兔各有多少只?2、鸡、兔同笼不知数,三十六头笼中露,数清脚共一百只,各有多少鸡和兔?3、2元一张的人民币和5元一张的人民币共63张,共计171元,问2元和5元的人民币各有多少张?4、有5角和1元的邮票共40张,一共价值22元5角,问这两种邮票各有多少张?5、体育老师买运动衣和运动裤共21件,共用去439元,上衣每件24元,裤子每条19元,上衣裤子各买了多少?6、在一个停车场上,汽车和摩托车共停了60辆,一共有190个轮子。
其中汽车每辆有4个轮子,摩托车每辆有2个轮子,求停车场上汽车和摩托车各有多少辆?7、某小学举行一次数学竞赛,共15道题,每做对一道题得8分,每做错一道题倒扣4分。
小明全做完了,得了72分,他做对了几道题?8、一张试卷有25道题,答对一题得4分,答错或不答倒扣1分。
某同学共得60分,他答对了几道题?9、某商店托运50箱玻璃,合同规定每箱运费20元,若损失一箱,除不给运费外还要倒赔损失100元,运后结算时共付运费760元,问损坏了几箱玻璃?10、鸡、兔共有100只,兔脚的总只数比鸡脚的总只数多40只,鸡、兔各有多少只?11、松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个,它一连采了112个松籽,平均每天采14个,问这几天中有多少个雨天?12、一次智力测验有10道判断题,每答对一道得4分,每答错一道倒扣2分,小红答完10道题,只得了10分,她答错了几道题?13、鸡、兔共有100只,鸡的脚比兔的脚多80只,求鸡、兔各有多少只?14、小张为花店送花盆1000只,按合同规定运一只可得运费3角,但损坏一只要倒扣5角。
结果,小张共得运费260元,求小张在运输中损坏了多少只花盆?15、小强买回8角一本的练习本和4角一本的练习本共50本,付出人民币32元。
小强买回8角的练习本多少本?16、一个圈里有10只鸡,4只兔,6只猪,还有鸭子,共有72只脚,问圈里一共有多少只鸭?。
鸡兔同笼问题练习及答案1、一个大笼子里关了一些鸡和兔子。
数它们的头,一共有36个;数它们的腿,共有100条。
则鸡和兔各有几只?【分析与解】由题设可知道,若都是鸡,腿只有36×2=72条。
比实际少100-72=28条腿。
少算的是因为把四条腿的兔子当做了2条腿的鸡子,这样一只兔子少算2条腿,28÷2=14只兔子刚好少28条腿。
即兔子有14只,鸡有36-14=22只。
2、王老师用40元钱买来20枚邮票,全是1元和5元的。
求这两种邮票各买了几枚?【分析与解】有题设可知道,若都买的是1元的邮票,则只花1×20=20元,少出了40-20=20元,这是因为把5元的当1元的算了,一枚就少算4元,20÷4=5枚就刚好少算20元。
即5元的邮票有5枚,一元的有20-5=15枚。
3、兔妈妈上山采蘑菇,晴天,每天能采30个,雨天每天能采12个。
它从4月10号开始,到4月29号,中间没有休息,一共采了510个蘑菇。
那么晴天雨天各几天?【分析与解】由题设可知,它一共采了29-10+1=20天。
若都是雨天采的,则采12×20=240个。
比实际少510-240=270个,这是因为把晴天也当雨天算了,一个晴天少算30-12=18个,270÷18=15天晴天刚好少算270个。
故晴天有15天,雨天有20-15=5天。
4、肖老师带51名学生去公园里划船。
他们一共租了11条船,其中有大船和小船。
每条大船坐6人,小船坐4人。
每条都坐满了人。
他们租了几条大船几条小船?【分析与解】由题设可知,若租的都是小船,则只能坐11×4=44人,还有51+1-44=8人没坐。
这说明把大船当小船算了,一条大船少算了6-4=2人,8人刚好是8÷4条船。
即大船有4条,小船为11-4=7条。
5、一辆汽车参加拉力赛,9天行了5000公里。
已知它晴天每天行688公里,雨天平均每天行390公里。
鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例1:长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡?解:假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。
例2:2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解:此题实际上是改头换面的“鸡兔同笼”问题。
“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。
假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。
小学数学鸡兔同笼问题鸡兔同笼是中国古代的数学名题之一。
大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。
问笼中各有几只鸡和兔?鸡兔同笼这道题,有这样几种解法:1、假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)2、方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。
4x+2(35-x)=944x+70-2x=942x=94-702x=24x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只。
2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只。
注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。
二元一次方程解:设鸡有x只,兔有y只。
x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35) x+12=35x=35-12(只)x=23(只)答:兔子有12只,鸡有23只3、抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。
笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚,这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡对于“鸡兔同笼”这种考题,常考的有这样几种类型的问题:(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
五年级解方程式鸡兔同笼练习题在五年级学习解方程式时,鸡兔同笼练习题是一种经典的训练工具。
通过解决这些问题,学生们能够巩固对方程式的理解,并锻炼他们的数学思维和逻辑推理能力。
本文将为大家介绍一些常见的鸡兔同笼练习题,并提供详细的解答过程。
1. 一个农场有鸡和兔子共计35只,总腿数为94只。
问鸡和兔子各有多少只?解答:假设鸡有x只,兔子有35-x只。
由于鸡有2只腿,而兔子有4只腿,所以可以得到以下方程式:2x + 4(35-x) = 94化简方程式,得到:2x + 140 - 4x = 94继续化简,得到:-2x + 140 = 94将常数项移到方程式的另一边,得到:-2x = 94 - 140-2x = -46两边同时除以-2,得到:x = -46 / -2x = 23所以,鸡有23只,兔子有35-23=12只。
2. 一个农场有鸡和兔子共计40只,总腿数为112只。
问鸡和兔子各有多少只?解答:同样假设鸡有x只,兔子有40-x只。
由于鸡有2只腿,而兔子有4只腿,可以得到以下方程式:2x + 4(40-x) = 112化简方程式,得到:2x + 160 - 4x = 112继续化简,得到:-2x + 160 = 112将常数项移到方程式的另一边,得到:-2x = 112 - 160-2x = -48两边同时除以-2,得到:x = -48 / -2x = 24所以,鸡有24只,兔子有40-24=16只。
通过以上两个例子的解答过程,我们可以看到解决鸡兔同笼问题的一般步骤:设立变量,列出方程式,化简方程式,解方程得出结果。
这是解方程式的基本思路,也是解决其他复杂数学问题的基础。
除了以上的两个练习题外,我们还可以推广鸡兔同笼问题的解法。
例如,我们可以设立更多的变量,解决更多未知数的问题。
同时,我们可以借助解方程式的思路解决其他实际生活中的问题,例如购物、出行等。
总结起来,五年级的解方程式鸡兔同笼练习题是培养学生数学思维和逻辑推理能力的重要工具。
五年级数学鸡兔同笼解题方法
在这道题中,需要运用代数方程的解题思路。
我们可以用以下步骤来解决鸡兔同笼的问题:
1. 确定未知数
在这个问题中,我们需要知道鸡和兔的数量,因此我们可以将鸡和兔的数量分别用x和y来表示。
2. 建立方程
鸡和兔的数量加起来等于总数量,因此我们可以得出以下方程:
x + y = 总数
鸡和兔的腿数之和等于总腿数,因此我们可以得出以下方程:
2x + 4y = 总腿数
在这里,我们可以设定一个总数量和总腿数,来代入方程中,从而求解出鸡和兔的数量。
3. 解方程
我们可以用消元法或代入法来解出鸡和兔的数量。
在这里,我们使用消元法来解方程组:
2x + 2y = 2 ×总数
2x + 4y = 总腿数
将第二式减去第一式,得出以下式子:
2y = 总腿数 - 2 ×总数
因此:
y = (总腿数 - 2 ×总数) ÷ 2
将y的值代入到第一式中,得出以下式子:
x = 总数 - y
因此:
x = 总数 - (总腿数 - 2 ×总数) ÷ 2
现在,我们已经求出了鸡和兔的数量。
4. 检验答案
为了确保我们的答案正确,我们可以将求出的鸡和兔的数量代入到方程中,检验方程是否成立。
总结:
通过上述步骤,我们可以解决鸡兔同笼这类问题,其中关键在于建立代数方程,解方程,最后检验答案。
教案标题:鸡兔同笼问题年级:五年级学科:数学教材版本:人教版2023-2024学年教学目标:1. 理解鸡兔同笼问题的背景和意义。
2. 学会使用代数方法解决鸡兔同笼问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 鸡兔同笼问题的代数解法。
2. 解决问题的步骤和逻辑思维能力。
教学难点:1. 理解鸡兔同笼问题的代数解法。
2. 解决问题的步骤和逻辑思维能力。
教学准备:1. 教师准备鸡兔同笼问题的课件或黑板。
2. 学生准备纸笔。
教学过程:一、导入(5分钟)1. 教师通过讲述鸡兔同笼问题的背景和意义,引起学生的兴趣。
2. 教师提出问题,引导学生思考如何解决鸡兔同笼问题。
二、探究(15分钟)1. 教师引导学生使用代数方法解决鸡兔同笼问题。
2. 教师通过示例,展示如何列出方程和求解。
3. 学生跟随教师一起解决鸡兔同笼问题。
三、实践(15分钟)1. 教师给出一些鸡兔同笼问题的变式,让学生独立解决。
2. 教师巡回指导,帮助学生解决问题。
四、总结(5分钟)1. 教师引导学生总结鸡兔同笼问题的解法和思路。
2. 学生分享自己的解题过程和心得。
五、作业(5分钟)1. 教师布置一些鸡兔同笼问题的作业,让学生巩固所学知识。
2. 学生完成作业。
教学反思:通过本节课的教学,学生应该能够理解鸡兔同笼问题的背景和意义,学会使用代数方法解决鸡兔同笼问题,并培养逻辑思维能力和解决问题的能力。
在教学过程中,教师应该注重学生的参与和思考,引导学生主动探究问题,并提供适当的指导和帮助。
同时,教师还应该关注学生的学习情况,及时调整教学策略,确保学生能够掌握所学知识。
重点关注的细节是“探究”环节,即如何引导学生使用代数方法解决鸡兔同笼问题。
这个环节是本节课的核心,涉及到学生对问题的理解、方程的建立、求解过程以及逻辑思维能力的培养。
详细补充和说明:在“探究”环节中,教师首先需要向学生清晰地解释鸡兔同笼问题的本质。
鸡兔同笼问题是一个经典的数学问题,通常描述为:一个笼子里关着一些鸡和兔子,从上面数,有头的总数;从下面数,有脚的总数。