结构检测常用方法
- 格式:doc
- 大小:90.50 KB
- 文档页数:4
钢结构检测方案引言概述:钢结构是现代建筑中常用的一种结构形式,其具有高强度、轻质、耐腐蚀等优点,因此在许多建筑项目中被广泛应用。
然而,随着时间的推移,钢结构可能会受到腐蚀、疲劳等因素的影响,导致结构的安全性下降。
因此,钢结构的定期检测是至关重要的,以确保其安全可靠性。
本文将介绍钢结构检测的方案,包括检测方法、检测设备、检测标准以及检测报告的编制。
正文内容:1. 检测方法1.1 目视检测:通过肉眼观察钢结构的外观,检查是否存在裂纹、变形、腐蚀等问题。
1.2 非破坏性检测:利用超声波、磁粉探伤、涡流检测等方法,对钢结构进行无损检测,以发现内部缺陷和表面疾病。
1.3 应力检测:通过应力计、应变计等设备,测量钢结构的应力和变形情况,以评估结构的稳定性和可靠性。
2. 检测设备2.1 超声波探伤仪:利用超声波的传播速度和反射特性,检测钢结构中的缺陷和异物。
2.2 磁粉探伤仪:通过施加磁场和应用磁粉,检测钢结构表面和近表面的裂纹。
2.3 涡流检测仪:利用涡流感应原理,检测钢结构中的缺陷和裂纹。
2.4 应力计和应变计:用于测量钢结构的应力和变形情况,以评估其稳定性和可靠性。
3. 检测标准3.1 国家标准:根据国家相关标准,如《钢结构工程质量检验规范》等,制定检测方案和评估标准。
3.2 行业标准:根据不同行业的特殊要求,如航空、船舶等领域,制定相应的检测标准。
3.3 国际标准:参考国际标准,如ASTM、ISO等,制定检测方案和评估标准,以确保钢结构的安全性和可靠性。
4. 检测报告编制4.1 报告内容:检测报告应包括钢结构的基本信息、检测方法、检测结果、问题描述、评估结论等内容。
4.2 报告格式:根据相关标准和规范,编制统一的报告格式,确保报告的准确性和可读性。
4.3 报告保存:检测报告应妥善保存,并进行备份,以备将来参考和追溯。
总结:钢结构检测方案是确保钢结构安全可靠性的重要手段。
通过目视检测、非破坏性检测和应力检测等方法,可以全面评估钢结构的结构完整性和可靠性。
钢结构检测方法钢结构的应用广泛,如建筑物、桥梁、塔吊等,它们的承重能力和稳定性对于人们的生命和财产安全至关重要。
因此,确保钢结构的质量和安全性成为一项重要任务。
钢结构检测方法的有效应用可以帮助我们检测钢结构的质量缺陷和潜在问题,及时采取措施加以修复或更换,从而避免事故的发生,本文将介绍几种常用的钢结构检测方法。
一、超声波检测超声波检测是一种常用的非破坏性检测方法,适用于检测钢结构中的缺陷和结构腐蚀问题。
该方法通过将超声波传入钢结构材料中,利用声波的传播速度和衰减情况来判断材料的质量。
超声波检测可以检测出钢结构材料内部的裂纹、夹杂物和腐蚀程度,并能够对钢结构中的缺陷进行评估和分类,为后续维修提供准确的参考数据。
二、磁粉检测磁粉检测是一种常用的表面缺陷检测方法,在钢结构中广泛应用。
该方法通过在钢结构表面施加电流产生磁场,然后在表面涂覆磁粉。
当钢结构中存在裂纹或其他缺陷时,磁粉会被吸附在这些缺陷处,形成可见的磁粉集合。
通过观察磁粉集合的形态和分布情况,可以判断出钢结构中的缺陷类型、大小和位置。
三、涡流检测涡流检测是一种利用电磁感应原理来检测钢结构材料中的缺陷和结构变异的方法。
该方法通过在钢结构表面放置线圈,并通以高频电流,产生涡流效应。
当涡流遇到缺陷或结构变异时,会产生电阻变化,进而引起感应线圈中的电流和电压变化,通过测量这种变化可以判断材料的质量问题。
涡流检测可用于检测钢结构表面裂纹、焊接缺陷和腐蚀程度。
四、红外热像检测红外热像检测是一种通过测量物体表面的红外辐射来检测物体温度分布和热量传导情况的方法。
钢结构在使用过程中会受到各种力的作用,可能导致结构变形或温度分布不均匀。
红外热像检测可以通过检测钢结构表面的热量分布来判断结构的变形程度和温度异常情况。
该方法可以帮助我们及时发现和解决钢结构的温度问题,防止结构失稳和破坏。
五、声发射检测声发射检测是一种通过检测材料内部的声波信号来判断材料的可靠性和结构安全性的方法。
钢结构工程中的检测方案一、常见的钢结构检测方法1.外观检测外观检测是最基本的一种检测方法,通过目视检查钢结构表面是否存在明显的缺陷、裂纹或变形等情况,以及是否存在腐蚀、锈蚀等现象。
通过外观检测可以初步了解钢结构的质量状况,但并不能全面反映其内部情况。
2.超声波检测超声波检测是利用超声波在材料中传播的特性来检测材料内部的缺陷的一种方法。
它可以检测出材料内的裂纹、夹杂、气孔等缺陷,并且可以对钢结构的厚度进行测量。
超声波检测可以对钢结构进行全面的检测,而且检测结果比较准确,广泛应用于各种钢结构工程中。
3.磁粉探伤磁粉探伤是一种通过在被检测材料表面涂覆磁粉,并施加磁场,然后观察磁粉中的颗粒在材料表面的排列情况,以检测出表面下的裂纹、夹杂、气孔等缺陷的方法。
磁粉探伤可以在钢结构表面进行快速有效的检测,尤其适用于较大的钢结构件的检测。
4.磁致伸缩检测磁致伸缩检测是一种通过在被检测材料表面涂覆磁粉,然后通过施加交变电流产生的交变磁场来检测材料表面下的裂纹、缺陷等的方法。
磁致伸缩检测可以对表面下深层的缺陷进行检测,适用于对钢结构内部缺陷的检测。
5.射线检测射线检测是一种通过照射高能射线或γ射线对材料进行透射检测的方法。
它可以检测出材料内的各种缺陷,例如裂纹、夹杂、气孔等,对钢结构的质量进行全面的检测。
射线检测在对厚重的钢结构进行检测时比较有效,但对环境和人体的辐射危害较大,需要进行辐射防护。
二、钢结构检测的要点在进行钢结构的检测时,需要注意以下几个要点:1.检测环境检测环境应该具备良好的采光、通风条件,保证检测人员的安全和健康。
同时需要保持检测环境的清洁,避免外界杂质对检测结果的影响。
2.检测设备不同的检测方法需要使用不同的检测设备,而且要保证检测设备的精度和准确性。
同时需要对检测设备进行定期的维护和校准,以确保检测结果的准确性。
3.检测标准进行钢结构检测时需要参照相应的检测标准进行操作,确保检测的合格性和可靠性。
钢结构检测方案标题:钢结构检测方案引言概述:钢结构在建造工程中扮演着重要的角色,其安全性和稳定性直接影响到建造物的整体质量。
因此,钢结构的检测工作显得尤其重要。
本文将介绍钢结构检测的方案,以确保建造物的安全和稳定性。
一、非破坏性检测方法1.1 磁粉探伤法:通过涂覆磁粉的方法,检测钢结构中的裂纹和缺陷,适合于表面裂纹的检测。
1.2 超声波检测法:利用超声波穿透材料,检测钢结构中的内部缺陷和异物,可以精确确定缺陷的位置和大小。
1.3 磁粉流检测法:利用磁场和磁粉流的作用,检测钢结构中的表面和近表面缺陷,适合于复杂形状和大尺寸结构的检测。
二、破坏性检测方法2.1 金相显微镜检测:通过金相显微镜观察钢结构的金相组织,判断其组织结构和性能,检测钢材的质量和强度。
2.2 化学分析检测:通过化学分析方法,检测钢结构中的元素含量和杂质情况,判断钢材的成份和质量。
2.3 电子探针分析:利用电子探针技术,对钢结构中的微观结构和元素成份进行分析,检测钢材的质量和性能。
三、结构监测方法3.1 振动监测:通过安装振动传感器,监测钢结构的振动情况,判断结构的稳定性和安全性。
3.2 应变监测:利用应变传感器监测钢结构的变形和应力情况,及时发现结构的变形和裂纹。
3.3 温度监测:通过安装温度传感器,监测钢结构的温度变化,判断结构的热膨胀情况,确保结构的稳定性。
四、安全评估方法4.1 结构完整性评估:通过对钢结构的检测和监测数据进行分析,评估结构的完整性和安全性。
4.2 风荷载评估:根据建造物所处的地理位置温和候条件,评估钢结构的抗风能力,确保结构的稳定性。
4.3 地震响应评估:根据建造物所处地震带的级别和频率,评估钢结构的抗震性能,确保结构在地震发生时的安全性。
五、维护保养方法5.1 表面防腐保护:定期对钢结构进行表面防腐处理,延长结构的使用寿命。
5.2 疲劳监测:通过监测钢结构的疲劳裂纹和变形情况,及时进行修复和加固。
5.3 定期检测维护:定期进行钢结构的检测和维护工作,确保结构的安全和稳定性。
结构检测常用方法-CAL-FENGHAI.-(YICAI)-Company One1结构检测常用方法重大土木工程结构的可靠性对社会、经济以及人民生命财产的安全都有重要的影响,正确评定结构的实际性态,是确定可靠性的前提,而这些就需要用到建筑结构检测技术。
结构检测方法总体上可以分为两类、即静态检测方法和动态检测方法。
本文试对其现状和发展趋势进行评析和展望。
静态检测方法静态检测方法是传统的检测方法,这一方法的数据较准确,但对于大型结构,体量大,构件多,而且有的部位无法检测,从而受到限制。
回弹法是用回弹仪弹击混凝土表面,由仪器重锤回弹能量的变化,反映混凝土的弹性和塑性性质,测量混凝土的表面硬度来推算抗压强度。
回弹法的优点是仪器简单,检测效率高,费用低,但也有一定不足,回弹值受到碳化深度、测试角度的影响,要对回弹值进行不同的修正,而且耗费大量人力和时间。
雷达法是以宽频带短脉冲形式,将高频电磁波由地面通过发射天线定向送入地下,经过存在电性差异的混凝土反射返回地面,被接收天线接收。
当发射与接收天线以固定的间距沿测线同步移动时,就可得到反映测线处地下混凝土质量缺陷分布情况的雷达图像。
当混凝土均一性差时,如存在蜂窝、架空现象等,这部分区域与周围混凝土之间的电性差异增大,反射波增强;当其完整致密时,性质相对均一,反射波很弱。
这样就能检测出混凝土的质量了。
冲击回波法是基于瞬态应力波应用于无损检测的一种技术,当应力波在混凝土中传播遇到缺陷与底面时,将产生往复反射并引起混凝土两面微小的位移响应。
接收这种响应并进行频谱分析可获得频谱图。
频谱图上突出的峰就是应力波混凝土表面与底面及缺陷间来回反射所形成。
根据频率峰值可判断有无缺陷及其深度。
冲击—回波法是一种新的无损检测方法,可用来测量结构混凝土厚度。
特别适合于单面结构。
但由于混凝土结构的复杂性、多样性,使得厚度的检测错综复杂。
垂直反射法是利用大功率高频声波向混凝土中发射脉冲信号,然后用加速度(或速度)检波器接收信号,发射与接收之间偏移距几乎为零的一种检测方法。
钢结构检测方案标题:钢结构检测方案引言概述:钢结构在建造工程中起着重要作用,但由于长期使用或者外部因素影响,钢结构可能会浮现各种问题,因此需要定期进行检测。
本文将介绍钢结构检测的方案,包括检测方法、工具设备、检测标准等内容,以匡助工程师和技术人员有效地进行钢结构检测工作。
一、非破坏检测方法1.1 超声波检测:通过超声波探头在钢结构表面传播,检测材料中的缺陷和裂纹。
1.2 磁粉探伤:利用磁粉涂覆在钢结构表面,通过磁场检测表面和亚表面的裂纹。
1.3 磁粉探伤:利用磁粉涂覆在钢结构表面,通过磁场检测表面和亚表面的裂纹。
二、检测工具设备2.1 超声波探伤仪:用于超声波检测,可测量材料中的缺陷深度和位置。
2.2 磁粉探伤仪:用于磁粉探伤,可以快速检测表面和亚表面的裂纹。
2.3 磁粉探伤仪:用于磁粉探伤,可以快速检测表面和亚表面的裂纹。
三、检测标准3.1 GB/T 3172-2022《金属材料声超声波检测》:规定了金属材料超声波检测的方法和标准。
3.2 GB/T 9444-2022《钢铁材料磁粉探伤检验方法》:规定了钢铁材料磁粉探伤的检测方法和标准。
3.3 GB/T 9444-2022《钢铁材料磁粉探伤检验方法》:规定了钢铁材料磁粉探伤的检测方法和标准。
四、检测频率4.1 定期检测:根据钢结构的使用情况和环境条件,制定定期检测计划。
4.2 事故检测:在钢结构发生事故或者受到外部冲击时,即将进行检测。
4.3 改造检测:在对钢结构进行改造或者维修时,进行检测以确保结构安全。
五、检测报告5.1 报告内容:检测报告应包括检测方法、结果分析、建议措施等内容。
5.2 报告格式:检测报告应按照标准格式编写,清晰明了。
5.3 报告保存:检测报告应保存在档案中,以备后续查阅和比对。
结论:通过本文的介绍,我们可以了解到钢结构检测的方案包括非破坏检测方法、检测工具设备、检测标准、检测频率和检测报告等内容,这些方案将有助于工程师和技术人员准确、及时地进行钢结构检测工作,确保结构的安全和稳定。
钢筋混凝土结构缺陷检测方法总结钢筋混凝土结构是现代建筑工程中常用的一种结构形式,然而随着使用时间的增长,结构可能出现一些潜在的缺陷问题,如裂缝、腐蚀等。
及早发现并修复这些缺陷对保障建筑的安全性至关重要。
本文将总结常见的钢筋混凝土结构缺陷检测方法,以便读者对这些方法有更全面的了解。
一、目测检测法目测检测法是最常见、最简单的一种检测方法。
通过肉眼观察建筑结构的外观是否有明显的裂缝、变形等缺陷。
这种方法对于表面明显的缺陷较为有效,但对于深层的隐蔽缺陷难以发现,因此需要结合其他方法进行检测。
二、声波检测法声波检测法通过发送及接收声波来检测结构内部的缺陷情况。
声波在不同材料中的传递速度和传播路径会受到结构缺陷的影响,从而可以判断是否存在隐蔽缺陷。
这种方法可以应用于混凝土结构以及与之相连的钢筋等材料的检测。
三、超声波检测法超声波检测法是一种非损伤性检测方法,通过发送高频的超声波并接收回波信号,从而评估结构材料的性能以及是否存在缺陷。
通过超声波的传播时间和回波信号的幅度,可以定量地判断出结构存在的缺陷大小和位置。
这种方法具有高灵敏度和高分辨率的特点,广泛应用于混凝土结构的质量评估和缺陷检测中。
四、红外热像法红外热像法是利用红外热像仪对结构表面进行扫描,通过红外辐射的变化来检测结构的热量分布,从而判断是否存在缺陷。
结构缺陷通常会引起热量的异常变化,这种方法可以迅速定位和评估结构中的缺陷,对于大面积、广泛分布的缺陷检测具有较好的效果。
五、电阻率测试法电阻率测试法是通过在结构表面施加电流,测量电阻率的变化来评估结构的缺陷情况。
当结构存在裂缝、空洞或潮湿等情况时,电阻率通常会发生变化。
这种方法可以应用于钢筋混凝土结构的缺陷检测,对于深层的隐蔽缺陷也有一定的检测效果。
六、雷达检测法雷达检测法利用无线电波的传播特性来检测结构内部的缺陷情况。
通过测量无线电波在结构中传播的时间和信号的强度,可以确定结构中的缺陷位置和大小。
这种方法适用于对大范围结构进行快速检测,可以检测到较小的缺陷,并且对混凝土结构的检测效果较好。
钢结构检测方案引言概述:钢结构是现代建筑中常用的一种结构形式,其重要性不言而喻。
然而,随着时间的推移和外界环境的影响,钢结构可能会出现一些问题,如腐蚀、疲劳等。
因此,为了确保钢结构的安全和可靠性,检测方案变得至关重要。
本文将从五个大点详细阐述钢结构检测方案,以确保其性能和寿命。
正文内容:1. 非破坏性检测方法1.1 超声波检测:通过发送超声波信号,检测钢结构中的缺陷和裂纹。
该方法具有高精度和高灵敏度的优点。
1.2 磁粉检测:利用磁粉涂覆在钢结构表面,通过观察磁粉的分布来检测结构中的缺陷。
该方法适用于较大的表面缺陷。
1.3 磁性检测:通过检测钢结构中的磁性变化来发现缺陷和裂纹。
该方法对于检测深层缺陷非常有效。
2. 结构强度检测2.1 荷载测试:通过施加不同的荷载,测量结构的变形和应力,以评估其强度和稳定性。
2.2 应力测试:使用应力传感器测量结构中的应力分布,以确定可能存在的弱点和应力集中区域。
2.3 振动测试:通过施加外部激励,测量结构的振动响应,以评估其固有频率和振动特性。
3. 腐蚀检测3.1 目视检查:通过人工观察结构表面的腐蚀迹象,如锈蚀、颜色变化等,来评估腐蚀程度。
3.2 电化学腐蚀检测:利用电化学原理,测量结构表面的电位和电流,以评估腐蚀的程度和速率。
3.3 超声波测厚:使用超声波技术测量结构表面的厚度,以检测腐蚀所导致的材料损失。
4. 疲劳检测4.1 应变测量:使用应变计测量结构中的应变变化,以评估疲劳裂纹的形成和扩展。
4.2 声发射检测:通过检测结构中的声发射信号,来发现潜在的疲劳裂纹和损伤。
4.3 红外热成像:利用红外热成像技术,测量结构表面的温度分布,以检测疲劳和热裂纹。
5. 温度和湿度检测5.1 温度监测:安装温度传感器,测量结构的温度变化,以评估温度对结构性能的影响。
5.2 湿度监测:使用湿度传感器测量结构中的湿度变化,以评估湿度对结构材料的腐蚀和变形的影响。
5.3 热膨胀测量:通过测量结构在温度变化下的尺寸变化,以评估温度对结构的影响。
结构检测常用方法-CAL-FENGHAI.-(YICAI)-Company One1
结构检测常用方法
重大土木工程结构的可靠性对社会、经济以及人民生命财产的安全都有重要的影响,正确评定结构的实际性态,是确定可靠性的前提,而这些就需要用到建筑结构检测技术。
结构检测方法总体上可以分为两类、即静态检测方法和动态检测方法。
本文试对其现状和发展趋势进行评析和展望。
静态检测方法静态检测方法是传统的检测方法,这一方法的数据较准确,但对于大型结构,体量大,构件多,而且有的部位无法检测,从而受到限制。
回弹法是用回弹仪弹击混凝土表面,由仪器重锤回弹能量的变化,反映混凝土的弹性和塑性性质,测量混凝土的表面硬度来推算抗压强度。
回弹法的优点是仪器简单,检测效率高,费用低,但也有一定不足,回弹值受到碳化深度、测试角度的影响,要对回弹值进行不同的修正,而且耗费大量人力和时间。
雷达法是以宽频带短脉冲形式,将高频电磁波由地面通过发射天线定向送入地下,经过存在电性差异的混凝土反射返回地面,被接收天线接收。
当发射与接收天线以固定的间距沿测线同步移动时,就可得到反映测线处地下混凝土质量缺陷分布情况的雷达图像。
当混凝土均一性差时,如存在蜂窝、架空现象等,这部分区域与周围混凝土之间的电性差异增大,反射波增强;当其完整致密时,性质相对均一,反射波很弱。
这样就能检测出混凝土的质量了。
冲击回波法是基于瞬态应力波应用于无损检测的一种技术,当应力波在混凝土中传播遇到缺陷与底面时,将产生往复反射并引起混凝土两面微小的位移响应。
接收这种响应并进行频谱分析可获得频谱图。
频谱图上突出的峰就是应力波混凝土表面与底面及缺陷间来回反射所形成。
根据频率峰值可判断有无缺陷及其深度。
冲击—回波法是一种新的无损检测方法,可用来测量结构混凝土厚度。
特别适合于单面结构。
但由于混凝土结构的复杂性、多样性,使得厚度的检测错综复杂。
垂直反射法是利用大功率高频声波向混凝土中发射脉冲信号,然后用加速度(或速度)检波器接收信号,发射与接收之间偏移距几乎为零的一种检测方法。
利用垂直反射的波形特征,经多种信号技术处理后,可判断有无缺陷及其深度。
瑞利面波法是利用纵波和横波相互干涉、叠加产生的沿介质表面传播的次生波而形成的曲线形态可以确定介质中的异常体。
在均匀连续介质中传播的瑞利面波曲线应当为光滑连续形态。
而介质中若存在不连续间断面或非均匀异常体,曲线就会中断,出现“之”字形。
红外热像法红外检测技术是新发展的鉴定建筑物外墙粘结质量有效的无损检测方法,利用红外辐射对物体或材料表层进行检测和测量。
外墙存在脱落、空鼓等粘结缺陷部位,在红热像图上表现为“热斑”,其检测结果直观、可靠,分析外墙的红外热像特征图谱,并对其进行理论计算,即可确定外墙的粘结质量。
具有非接触、远距离、实时、快速、全场测量等优点,但仪器费用高。
光测法随着与数字图像处理技术的结合,光测法在结构测试中的应用越来越广泛。
主要特点是测试精度高,全场测量,但对现场测试条件要求比较高。
包括全息干涉法、散斑法、云纹法等。
全息干涉法是通过两个或两个以上波的
干涉度量比较(这些波中至少有一个是全息再现波),形成干涉条纹图,通过对干涉条纹图的判读测得物理量。
散斑法是利用相干性很好的光照射物体粗糙表面时,在表面前方空间形成随机分布的明暗点(散斑),并随物体表面的变形而运动,记录物体变形前后两个错动的散斑图,比较变形前后散斑图的变化,可以高精度的检测物体表面各点位移或应变。
云纹检测技术是利用试件栅和参考栅的相对变化形成光学云纹图来检测物体的表面位移或应变,它在工程结构中的形变分析中已经得到了广泛应用。
随着它与数字图像处理技术的结合,在检测速度和分析精度上都得到了较大的提高。
激光检测方法也是一种新型的检测方法,激光检测系统具有多项的优势。
首先,它可以在单一位置上,对多个检测点实施检测。
其二,激光系统无具体的目标要求,传统方法进入难以到达的环节方可完成任务的要求,也就成为历史;最后激光检测系统易于安装,并能迅速得出检测结果。
采用激光仪器检测的精度非常高,易于操作,且通过和计算机的结合,更容易和准确地得到结果。
光纤检测技术是20世纪年代末发展起来的一门新技术,它是利用外界因素使光在光纤中传播时光强、相位、偏振态以及波长或频率等特征参量发生变化,从而对外界因素进行检测和信号传输。
这种新技术被应用于航空、航天等领域,利用埋入复合材料中的光纤传感器检测结构内部的应变和探测结构的损坏情况,已充分显示了这是一种有效的无损检测新技术。
与当前检测中所采用的传统应变片检测技术相比,这种新技术有明显的优越性并显示出很大的发展潜力。
磁检测法漏磁场检测技术是近年来发展较快的一门磁检测技术,它采用磁敏元件和电子仪器对构件缺陷形成的漏磁场进行检测和分析,如裂纹深度和宽度的分析,检测对象的磁化水平至少要达到饱和状态,检测装置可以对检测对象进行大面积扫描,检测效率较高。
金属磁记忆检测方法,同传统的无损检测方法相比较,金属磁检测方法的主要优点是:传统检测方法只能用于探检已产生的缺陷,而金属磁方法则可预报可能产生缺陷的危险区域,即最大应力和变形集中区域,从而及时采取措施防止破坏和事故的发生;由于可利用检测对象的自磁化现象,因而不需要人工磁化装置;可在保持金属原始状态下进行检测,所以无须对检测对象进行专门清理,也无须采用耦合技术(如采用超声检测时)。
因此,这一方法更加适用于生产现场、野外条件和普查作业;检测灵敏度高于其他磁学检测方法;仪表体积小、重量轻,有独立电源和记录装置,便于携带,使用方便,检测效率高。
超声脉冲法,工程混凝土结构物常因各种原因产生裂缝。
裂缝的存在危害结构的安全和耐久性。
通常用肉眼外观检查即可发现裂缝的位置,裂缝的深度可采用超声法进行探测。
根据声学原理可知,声波在传播过程中如遇到不同介质的界面将产生反射和透射。
由于裂缝对声波的反射,当结构混凝土中存在缺陷和损伤时,超声脉冲通过缺陷时会产生绕射,传播的声速要比同种材质的无缺陷混凝土的传播声速要小,声时偏长;缺陷界面上产生反射,因而能量显着衰减,波幅和频率显着降低,接受波形的信号平缓,甚至发生畸变。
通过与结
构正常部位接收信号幅度的比较可以发现裂缝的存在。
超声法的应用在对结构水下部分裂缝的检测尤为突出。
动态检测方法是振动反演理论在工程上的应用,在脉动、起振器共振等激励方式下,通过测量结构的频率和振型等参数,根据系统识别理论得到层间刚度。
结构动力检测的基本问题是依据结构的动力响应识别结构的当前状态,分为结构模态参数识别(自振频率和振型)和结构物理参数识别刚度。
动态检测方法又可分为正弦稳态激振、环境激振检测方法和局部激振检测方法。
正弦稳态激振是利用某种装置对结构施加稳定简谐振动的激励方式。
正弦稳态激振的优点是激振能量集中,信噪比高,从而测试精度高。
但试验需要专门的激振设备,费用高,且试验时有可能会影响建筑物的正常使用。
环境激振检测方法建筑物周围大地环境的微小振动(称为地脉动)和空气环境的流动(即风)可引起工程结构的振动,可把引起结构物振动的地脉动和风作为环境激振。
根据激振的方式又可分为自然地脉动、人工地脉动、地震动、脉动风。
环境随即激振的优点是:试验简便,无需激振设备,不受结构形状、大小的限制,试验费用低。
但记录信噪比低。
试验时间长。
对于高层建筑振动试验,自然地脉动和脉动风比较合适,因地震发生的偶然性大,采用地震动作为激励源不适宜。
局部激振检测工程结构的局部损伤往往对结构的整体性能影响很小,加上结构动力响应量测的影响,使得以结构整体为对象的结构损伤动力检测非常困难,有时甚至得不到准确结果。
结构的局部振动比结构的整体振动更准确地反映了结构局部特性,因此利用结构的局部振动反应,有助于准确地识别结构的局部特性。
利用整体层次上的检测,先大致判定结构损伤的位置,再对其激振,量测结构的局部振动反应。
环境激振检测方法可较好的把握结构的整体性能,实施方便。
局部激振检测方法可准确的把握结构局部构件的物理参数。
结构动力检测方法可不受结构规模和隐蔽的限制,只要在可达到的结构位置安装动力响应传感器即可。
随着检测仪器技术的改进,结果精度越来越高。
目前高效模块化、数字化的结构动力响应量测技术已为结构动力检测方法提供了坚实有效的技术支持。
尽管结构动力检测方法应用的条件限制少,效率高,但由于受到结构动力量测信号质量和数量的限制,结构动力检测结果的可靠性有时无法保障。