高新一中2013高考数学一轮复习单元练习--统计案例
- 格式:doc
- 大小:123.00 KB
- 文档页数:7
12.3 统 计●知识梳理1.抽样当总体中的个体较少时,一般可用简单随机抽样;当总体中的个体较多时,一般可用系统抽样;当总体由差异明显的几部分组成时,一般可用分层抽样,而简单随机抽样作为一种最简单的抽样方法,又在其中处于一种非常重要的地位.实施简单随机抽样,主要有两种方法:抽签法和随机数表法.系统抽样适用于总体中的个体数较多的情况,因为这时采用简单随机抽样就显得不方便,系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均匀分后的每一段进行抽样时,采用的是简单随机抽样;与简单随机抽样一样,系统抽样也属于等概率抽样.分层抽样在内容上与系统抽样是平行的,在每一层进行抽样时,采用简单随机抽样或系统抽样,分层抽样也是等概率抽样.2.样本与总体用样本估计总体是研究统计问题的一种思想方法.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及其相应的频率来表示,其几何表示就是相应的条形图,当总体中的个体取不同值较多,甚至无限时,其频率分布的研究要用到初中学过的整理样本数据的知识.用样本估计总体,除在整体上用样本的频率分布去估计总体的分布以外,还可以从特征数上进行估计,即用样本的平均数去估计总体的平均数,用关于样本的方差(标准差)去估计总体的方差(标准差).3.正态分布正态分布在实际生产、生活中有着广泛的应用,很多变量,如测量的误差、产品的尺寸等服从或近似服从正态分布,利用正态分布的有关性质可以对产品进行假设检验.4.线性回归直线设x 、y 是具有相关关系的两个变量,且相应于n 组观察值的n 个点大致分布在一条直线的附近,我们把整体上这n 个点最接近的一条直线叫线性回归直线.特别提示在三种抽样中,简单随机抽样是最简单、最基本的抽样方法,其他两种抽样方法是建立在它的基础上的.三种抽样方法的共同点是:它们都是等概率抽样,体现了抽样的公平性.三种抽样方法各有其特点和适用范围,在抽样实践中要根据具体情况选用相应的抽样方法.●点击双基1.一个总体中共有10个个体,用简单随机抽样的方法从中抽取一容量为3的样本,则某特定个体入样的概率是 A.310C 3 B.89103⨯⨯ C.103 D. 101 解析:简单随机抽样中每一个体的入样概率为Nn . 答案:C2.(2004年江苏,6)某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均每人的课外阅读时间为 055人数(人)h )A.0.6 hB.0.9 hC.1.0 hD.1.5 h解析:一天平均每人的课外阅读时间应为一天的总阅读时间与学生数的比,即 5050.2105.1100.1205.050⨯+⨯+⨯+⨯+⨯=0.9 h. 答案:B3.一个年级有12个班,每个班有50名同学,随机编号为1~50号,为了了解他们在课外的兴趣爱好,要求每班的33号学生留下来参加阅卷调查,这里运用的抽样方法是A.分层抽样法B.抽签法C.随机数表法D.系统抽样法答案:D4.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1)等于A.2Φ(1)-1B.Φ(4)-Φ(2)C.Φ(2)-Φ(4)D.Φ(-4)-Φ(-2)解析:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2).答案:B5.为考虑广告费用x 与销售额y 之间的关系,抽取了5家餐厅,得到如下数据: 广告费用(千元) 1.0 4.06.0 10.0 14.0 销售额(千元) 19.0 44.0 40.0 52.0 53.0 现要使销售额达到6万元,则需广告费用为______.(保留两位有效数字)解析:先求出回归方程yˆ=bx+a ,令y ˆ=6,得x=1.5万元. 答案:1.5万元●典例剖析【例1】 某批零件共160个,其中,一级品48个,二级品64个,三级品32个,等外品16个.从中抽取一个容量为20的样本.请说明分别用简单随机抽样、系统抽样和分层抽样法抽取时总体中的每个个体被取到的概率均相同.剖析:要说明每个个体被取到的概率相同,只需计算出用三种抽样方法抽取个体时,每个个体被取到的概率.解:(1)简单随机抽样法:可采取抽签法,将160个零件按1~160编号,相应地制作1~160号的160个签,从中随机抽20个.显然每个个体被抽到的概率为16020=81. (2)系统抽样法:将160个零件从1至160编上号,按编号顺序分成20组,每组8个.然后在第1组用抽签法随机抽取一个号码,如它是第k 号(1≤k ≤8),则在其余组中分别抽取第k+8n (n=1,2,3,…,19)号,此时每个个体被抽到的概率为81. (3)分层抽样法:按比例16020=81,分别在一级品、二级品、三级品、等外品中抽取48×81=6个,64×81=8个,32×81=4个,16×81=2个,每个个体被抽到的概率分别为486,648,324,162,即都是81. 综上可知,无论采取哪种抽样,总体的每个个体被抽到的概率都是81. 评述:三种抽样方法的共同点就是每个个体被抽到的概率相同,这样样本的抽取体现了公平性和客观性.思考讨论现有20张奖券,已知只有一张能获奖,甲从中任摸一张,中奖的概率为201,刮开一看没中奖.乙再从余下19张中任摸一张,中奖概率为191,这样说甲、乙中奖的概率不一样,是否正确?【例2】 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52).(1)若d=90°,求ξ<89的概率;(2)若要保持液体的温度至少为80 ℃的概率不低于0.99,问d 至少是多少?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01).剖析:(1)要求P (ξ<89)=F (89),∵ξ~N (d ,0.5)不是标准正态分布,而给出的是Φ(2),Φ(-2.327),故需转化为标准正态分布的数值.(2)转化为标准正态分布下的数值求概率p ,再利用p ≥0.99,解d.解:(1)P (ξ<89)=F (89)=Φ(5.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228. (2)由已知d 满足0.99≤P (ξ≥80),即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01.∴Φ(5.080d -)≤0.01=Φ(-2.327). ∴5.080d -≤-2.327. ∴d ≤81.1635.故d 至少为81.1635.评述:(1)若ξ~N (0,1),则η=σμξ-~N (0,1).(2)标准正态分布的密度函数f (x )是偶函数,x<0时,f (x )为增函数,x>0时,f (x )为减函数.深化拓展在实际生活中,常用统计中假设检验的思想检验产品是否合格,方法是:(1)提出统计假设:某种指标服从正态分布N (μ,σ2);(2)确定一次试验中的取值a ;(2)作出统计推断:若a ∈(μ-3σ,μ+3σ),则接受假设,若a ∈(μ-3σ,μ+3σ),则拒绝假设.如:某砖瓦厂生产的砖的“抗断强度”ξ服从正态分布N (30,0.8),质检人员从该厂某一天生产的1000块砖中随机抽查一块,测得它的抗断强度为27.5 kg/cm 2,你认为该厂这天生产的这批砖是否合格?为什么?分析:由于在一次试验中ξ落在区间(μ-3σ,μ+3σ)内的概率为0.997,故ξ几乎必然落在上述区间内.于是把μ=30,σ=0.8代入,算出区间(μ-3σ,μ+3σ)=(27.6,32.4),而27.5∉(27.6,32.4).∴据此认为这批砖不合格.【例3】 已知测量误差ξ~N (2,100)(cm ),必须进行多少次测量,才能使至少有一次测量误差的绝对值不超过8 cm 的频率大于0.9?解:设η表示n 次测量中绝对误差不超过8 cm 的次数,则η~B (n ,p ).其中P=P (|ξ|<8)=Φ(1028-)-Φ(1028--)=Φ(0.6)-1+Φ(1)=0.7258-1+0.8413=0.5671.由题意,∵P (η≥1)>0.9,n 应满足P (η≥1)=1-P (η=0)=1-(1-p )n >0.9,∴n>)5671.01lg()9.01lg(--=4329.0lg 1-=2.75. 因此,至少要进行3次测量,才能使至少有一次误差的绝对值不超过8 cm 的概率大于0.9. ●闯关训练夯实基础1.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N 等于A.150B.200C.120D.100解析:∵N30=0.25,∴N=120.答案:C2.设随机变量ξ~N (μ,σ),且P (ξ≤C )=P (ξ>C ),则C 等于A.0B.σC.-μD.μ解析:由正态曲线的图象关于直线x=μ对称可得答案为D.答案:D3.(2003年全国,14)某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______辆、______辆、______辆.解析:因总轿车数为9200辆,而抽取46辆进行检验,抽样比例为920046=2001,而三种型号的轿车有显著区别.根据分层抽样分为三层按2001比例分别有6辆、30辆、10辆. 答案:6 30 104.某厂生产的零件外直径ξ~N (8.0,1.52)(mm ),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9 mm 和7.5 mm ,则可认为A.上、下午生产情况均为正常B.上、下午生产情况均为异常C.上午生产情况正常,下午生产情况异常D.上午生产情况异常,下午生产情况正常解析:根据3σ原则,在8+3×1.5=8.45(mm )与8-3×1.5=7.55(mm )之外时为异常. 答案:C5.随机变量ξ服从正态分布N (0,1),如果P (ξ<1)=0.8413,求P (-1<ξ<0). 解:∵ξ~N (0,1),∴P (-1<ξ<0)=P (0<ξ<1)=Φ(1)-Φ(0)=0.8413-0.5=0.3413.6.公共汽车门的高度是按照确保99%以上的成年男子头部不跟车门顶部碰撞设计的,如果某地成年男子的身高ξ~N (173,72)(cm ),问车门应设计多高?解:设公共汽车门的设计高度为x cm ,由题意,需使P (ξ≥x )<1%.∵ξ~N (173,72),∴P (ξ≤x )=Φ(7173-x )>0.99. 查表得7173-x >2.33,∴x >189.31,即公共汽车门的高度应设计为190 cm ,可确保99%以上的成年男子头部不跟车门顶部碰撞.培养能力7.一投资者在两个投资方案中选择一个,这两个投资方案的利润x (万元)分别服从正态分布N (8,32)和N (6,22),投资者要求利润超过5万元的概率尽量地大,那么他应选择哪一个方案?解:对第一个方案,有x ~N (8,32),于是P (x>5)=1-P (x ≤5)=1-F (5)=1-Φ(385-)=1-Φ(-1)=1-[1-Φ(1)]=Φ(1)=0.8413. 对第二个方案,有x ~N (6,22),于是P (x>5)=1-P (x ≤5)=1-F (5)=1-Φ(265-)=1-Φ(-0.5)=Φ(0.5)=0.6915.相比之下,“利润超过5万元”的概率以第一个方案为好,可选第一个方案.探究创新(2)画出频率分布直方图和累积频率分布图;(3)根据累积频率分布图,总体中小于22的样本数据大约占多大的百分比?(2)频率分布直方图及累积频率分布图如下:(3横坐标为22,落在21~24的区间内,折线图在这段区间上的线段所在的直线方程是y -0.3=21243.051.0--(x -21), 即y=0.07x -1.17.当x=22时,y=1.54-0.17=0.37.因此,总体中小于22的数据大约占37%.●思悟小结以上两种情况的不同之处在于前者的频率分布表中列出的是几个不同数值的频率,相应的条形图是用其高度来取各个值的频率的;后者的频率分布表中列出的是在各个不同区间内取值的频率,相应的直方图是用图形面积的大小来表示在各个区间内取值的频率.●教师下载中心教学点睛简单随机抽样,有以下特点:(1)它要求被抽取样本的总体的个体数有限.这样,就便于对其中各个个体被抽取的概率进行分析.(2)它是从总体中逐个地进行抽取,这样,就便于在抽样实践中进行操作.(3)它是一种不放回抽样.由于抽样实践中多采用不放回抽样,使其具有较广泛的实用性,而且由于所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算.(4)它是一种等概率抽样.不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程当中,各个个体被抽取的概率相等,从而保证了这种抽样方法的公平性.频率分布随着样本容量的增大更加接近总体分布,当样本容量无限增大且分组的组距无限缩小时,频率分布直方图就会演变成一条光滑曲线——反映总体分布的频率密度曲线,基于频率分布与相应的总体分布的关系,且通常我们并不知道一个总体的分布,因此,我们往往是从总体中抽取一个样本,用样本的频率分布去估计相应的总体分布.统计中假设检验的基本思想是:根据小概率事件在一次试验中几乎不可能发生的原理和从总体中抽测的个体的数值,对事先所作的统计假设作出判断:是拒绝假设,还是接受假设.拓展例题【例题】 设有一样本x 1,x 2,…,x n ,其标准差为s x ,另有一样本y 1,y 2,…,y n ,其中y i =3x i +2(i=1,2,…,n ),其标准差为s y ,求证:s y =3s x .证明:∵x =nx x x n ++21, ∴y =ny y y n ++21 =nx x x n )23()23()23(21++++++ =nn x x x n 2)(321+++ =3x +2. ∴s y 2=n1[(y 12+y 22+…+y n 2)-n y 2] =n1[(3x 1+2)2+(3x 2+2)2+…+(3x n +2)2-n (3x +2)2] =n1[9(x 12+x 22+…+x n 2)+12(x 1+x 2+…+x n )+4n -n (9x 2+12x +4)] =n9[(x 12+x 22+…+x n 2)-n x 2] =9s x 2.∵s x ≥0,s y ≥0,∴s y =3s x .。
长安一中、高新一中、交大附中、师大附中、西安中学高2013届第一次模拟考试数学(理)试题第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x|一3<x<3,x ∈Z ),N={x|x<1},则M N=A .{|3x x -<<1}B .{|02}x x <<C .{-3,-2,-1,0,1)D .{-2,一1,0}2.已知直线a 和平面α,那么a//α的一个充分条件是A .存在一条直线b ,a//b 且b ⊂αB .存在一条直线b ,a ⊥b 且b ⊥αC .存在一个平面β,a ⊂β∥且α//βD .存在一个平面β,α//β且α//β3.如果数列321121,,,,,nn a a a a a a a -…是首项为1,公比为2-的等比数列,则a 5等于A .32B .64C .—32D .—644.过抛物线22(0)y px p =>的焦点作直线交抛物线于1122(,),(,)P x y Q x y 两点,若122,||4x x PQ +==,则抛物线方程是A .24y x =B .28y x =C .22y x =D .26y x = 5.21()nx x -展开式中,常数项为15,则n 的值可以为A .3B .4C .5D .66.若某空间几何体的三视图如图所示,则该几何体的表面积是 A .226++ B .2(12)6++C .23D .32262++7.给出15个数:1,2,4,7,1 l ,…,要计算这15个数的和,现给出解决该问题的程序框图(如右图所示),那么框图中判断框①处和执行框②处应分别填入A .16?;1i p p i ≤=+-B .14?;1i p p i ≤=++C .15?;1i p p i ≤=++D .15?;i p p i ≤=+8.已知实数x ,y 满足1(10)||,(,)()2cos (0)||12x x x x y f x x x y ππ---≤<⎧⎧≤⎪⎪=⎨⎨≤<⎪⎪≤⎩⎩则点在函数的图象与坐标轴所围成的封闭图形的内部的概率为A .32πB .14πC .34πD .12π9.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区。
2013届高三第十一次大练习数学试题一、选择题(每小题5分,满分60分) 1.(理)复数11iz i+=-等于 A .1 B .1- C .i -D .i(文)2009sin 4π等于A .1B .1-CD . 2.满足条件{1,2}{1,2,3}M =的所有集合M 的个数是 A .1B . 2C . 3D . 43.(理)函数ln 1(0)y x x =+>的反函数为A .1()x y e x R +=∈B .1()x y e x R -=∈C .1(1)x y e x +=>D .1(1)x y e x -=> (文)过点(1,2)P -且方向向量是(1,2)=-a 的直线方程是A .20x y +=B .20x y +=C .20x y -=D .20x y -= 4.若(0,1),x ∈则下列结论正确的是A .122lg xx x >> B .122lg xx x >> C .122lg xx x >> D .12lg 2x x x >>5.函数sin()y x ωϕ=+(,0,02)x ωϕπ∈>≤<R 的部分图象如图,则 A .,24ππωϕ==; B . ,36ππωϕ==;C . ,44ππωϕ==; D . 5,24ππωϕ==。
6.过正三棱锥的侧棱与底面中心作截面,如果截面是等腰三角形,则侧面与底面所成角的余弦值是A .13B C D .137.过点(4,4)P 且与双曲线221169x y -=只有一个交点的直线有A .1条B .2条C .3条D .4条 8.点O 在ABC ∆内,满足230OA OB OC ++=,那么AO B ∆与AOC ∆的面积之比是 A .2:1B .3:2C .3:1D .5:39.从单词“education ”中选取5个不同的字母排成一排,则含“at ”(“at ”相连且顺序不变)的概率为 A .118 B .1378 C .1432 D .175610.设二项式1)n x的展开式的各项系数和为p ,所有二项式系数的和是s ,若272p s +=,则n =A .6B .5C .4D .8 11.已知函数(0),()(3)4(0)x a x f x a x a x ⎧<=⎨-+≥⎩满足对任意12x x ≠,都有1212()()0f x f x x x -<-成立, 则a 的取值范围是A .1(0,]4 B .(0,1) C .1[,1)4D .(0,3) 12.集合P 中的元素都是整数,并且满足条件:①P 中有正数,也有负数;②P 中有奇数,也有偶数;③1P -∉;④若,x y P ∈,则x y P +∈。
一、选择题1.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C2.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( ) A .12B .25C .35D .453.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:则下列结论正确的是( ) 附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”4.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .235.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ).A .0.378B .0.3C .0.58D .0.9586.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 7.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750 B .0.3000C .0.2500D .0.20008.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A .35B .14C .12D .139.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( ) A .116B .14C .13D .1210.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:参考公式:22()()()()()n ad bc K a b c d a c b d -=++++则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;11.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .1412.抛掷一枚质地均匀的骰子两次,记事件{两次的点数均为奇数},{两次的点数之和小于},则( )A .B .C .D .二、填空题13.甲、乙两位同学进行篮球三分球投篮比赛,甲每次投中的概率为13,乙每次投中的概率为12,每人分别进行三次投篮.乙恰好比甲多投进2次的概率是______. 14.两个实习生加工一个零件,产品为一等品的概率分别为23和34,则这两个零件中恰有一个一等品的概率为__________.15.下列命题中,正确的命题有__________.①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,且至少过一个样本点;②将一组数据的每个数据都加一个相同的常数后,方差不变;③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于1,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越小;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做函数关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 16.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象;④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号) 17.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.18.现有A B 、两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢一分,答错得0分.A 队中每人答对的概率均为23,B 队中3人答对的概率分别为221,,332,且各答题人答题正确与否之间互无影响,若事件M 表示“A 队得2分”,事件N 表示“B 队得1分”,则()P MN =______.19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”__________.(填有或没有)附:()()()()()22n ad bc K a b c d a c b d -=++++20.排球比赛实行“五局三胜制”.某次比赛中,中国女排和M 国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为23,M 国女排获胜的概率为13,则中国女排在先输一局的情况下最终获胜的概率为________.三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求: (i )三个球中有两个红球一个黑球的概率;(ii )第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.为激活国内消费布场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图,如图所示.(1)求出频率分布直方图中的a 值和这200人的平均年龄;(2)从第2,3,5组中用分层抽样的方法抽取12人,并再从这12人中随机抽取3人进行电话回访,求这三人恰好属于不同组别的概率;(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否“购买力强人群”与年龄有关? 附:()20P K K 0.150 0.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.828()()()()()2n ad bc K a b c d a c b d -=++++,n a b c d =+++ 23.在我国抗疫期间,素有“南抖音,北快手”之说的小视频除了给人们带来生活中的快乐外,更在于传递了一种正能量,为抗疫起到了积极的作用,但一个优秀的作品除了需要有很好的素材外,更要有制作上的技术要求,某同学学习利用“快影”软件将已拍摄的素材进行制作,每次制作分三个环节来进行,其中每个环节制作合格的概率分别为34,45,23,只有当每个环节制作都合格才认为一次成功制作,该小视频视为合格作品. (1)求该同学进行3次制作,恰有一次合格作品的概率;(2)若该同学制作10次,其中合格作品数为X ,求X 的数学期望与方差;(3)该同学掌握技术后制作的小视频被某广告公司看中,聘其为公司做广告宣传,决定试用一段时间,每天制作小视频(注:每天可提供素材制作个数至多40个),其中前7天制作合格作品数y 与时间t 如下表:(第t 天用数字t 表示)其中合格作品数(y )与时间(t )具有线性相关关系,求y 关于t 的线性回归方程(精确到0.01),并估算第14天能制作多少个合格作品(四舍五入取整)?(参考公式()()()1221121niii nnin i i ii ii x y nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-,参考数据:71163i ii t y==∑.)24.高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢中国古典文学与性别有关?请说明理由;(3)已知在喜欢中国古典文学的10位男生中,1A ,2A ,3A 还喜欢数学,1B ,2B 还喜欢绘画,1C ,2C 还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.参考公式及数据:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2()P K k≥0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82825.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:停车时间取车概率停车人员(0,2](2,3](3,4](4,5]甲12x x x乙1613y0(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()Eξ. 26.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动不喜爱运动总计男生a b30女生c d20总计50(1)求出列联表中a 、b 、c 、d 的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.2.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得mP n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.3.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论. 详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.B解析:B 【解析】分析:设已知第一次取出的是红球为事件A ,第二次是白球为事件B ,先求出P AB ()的概率,然后利用条件概率公式进行计算即可.详解:设已知第一次取出的是红球为事件A ,第二次是白球为事件B .则由题意知,77371010930PA P AB ⨯===⨯(),(), 所以已知第一次取出的是白球,则第二次也取到白球的概率为7130|.7310PB A ()== . 故选B .点睛:本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键. 5.D解析:D 【详解】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.6.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.7.C解析:C 【解析】1x y a a =+-图象不经过第二象限,11,2a a ∴-≤-∴≥,随机变量ξ服从正态分布()21,N σ,且()()()()1010.3000,120.3000,210.60000.20002P a P a P a <<=∴<<=∴>=-=,∴函数1x y a a =+-图象不经过第二象限的概率为0.20.250010.2=-,故选C. 8.D解析:D 【解析】抛掷红、黄两枚骰子,第一个数字代表红色骰子,第二个数字代表黄色骰子,当红色骰子的点数为4或6时有(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共12种, 两颗骰子的点数之积大于20的种数有(4,6),6,4),(6,5),(6,6)4种, 根据概率公式得,两颗骰子的点数之积大于20的概率41123P ==. 本题选择D 选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.9.C解析:C 【解析】 因为12386x x x x ++++=,12383y y y y ++++=所以33,48x y ==,所以样本中心点的坐标为33(,)48, 代入回归直线方程得848ˆ331b =⨯+,解得ˆ13b=,故选C. 10.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.11.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.12.D解析:D 【解析】 由题意得,两次的点数均为奇数且和小于的情况有,则,故选D.二、填空题13.;【分析】将事件拆分为乙投进3次甲投进1次和乙投进2次甲投进0次再根据二项分布的概率计算公式和独立事件的概率计算即可求得【详解】根据题意甲和乙投进的次数均满足二项分布且甲投进和乙投进相互独立;根据题解析:16; 【分析】将事件拆分为乙投进3次,甲投进1次和乙投进2次,甲投进0次,再根据二项分布的概率计算公式和独立事件的概率计算即可求得. 【详解】根据题意,甲和乙投进的次数均满足二项分布,且甲投进和乙投进相互独立; 根据题意:乙恰好比甲多投进2次,包括乙投进3次,甲投进1次和乙投进2次,甲投进0次.则乙投进3次,甲投进1次的概率为3213112123318C ⎛⎫⎛⎫⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭;乙投进2次,甲投进0次的概率为232311212239C ⎛⎫⎛⎫⎛⎫⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故乙恰好比甲多投进2次的概率为111 1896+=. 故答案为:16. 【点睛】本题考查二项分布的概率计算,属综合基础题.14.【分析】利用相互独立事件概率乘法公式直接求解【详解】解:两个实习生加工一个零件产品为一等品的概率分别为和这两个零件中恰有一个一等品的概率为:故答案为:【点睛】本题考查概率的求法考查相互独立事件概率乘 解析:512【分析】利用相互独立事件概率乘法公式直接求解. 【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为23和34, ∴这两个零件中恰有一个一等品的概率为:2323511343412p ⎛⎫⎛⎫=⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案为:512.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.15.②⑥⑦【解析】①回归直线恒过样本点的中心可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后根据方差公式可知方差恒不变;③用相关指数来刻面回归效果;表示预报变量对解释变量变化的贡献率越解析:②⑥⑦ 【解析】①回归直线ˆˆˆy bx a =+恒过样本点的中心(),x y ,可以不过任何一个样本点;②将一组数据中的每个数据都加上同一个常数后,根据方差公式可知方差恒不变; ③用相关指数2R 来刻面回归效果;表示预报变量对解释变量变化的贡献率,越接近于0,说明模型的拟合效果越好;④若分类变量X 和Y 的随机变量2K 的观测值K 越大,则“X 与Y 相关”的可信程度越大;⑤.对于自变量x 和因变量y ,当x 取值一定时,y 的取值具有一定的随机性,x ,y 间的这种非确定关系叫做相关关系;⑥.残差图中残差点比较均匀的地落在水平的带状区域中,说明选用的模型比较合适; ⑦.两个模型中残差平方和越小的模型拟合的效果越好. 故答案为:②⑥⑦16.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2.因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+, ∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.17.3个【分析】直接利用线性回归直线的相关理论知识的应用求出结果【详解】(1)已知变量x 和y 满足关系y=-2x+3则x 与y 正相关;应该是:x 与y 负相关故错误(2)线性回归直线必过点线性回归直线必过中心点解析:3个 【分析】直接利用线性回归直线的相关理论知识的应用求出结果. 【详解】(1)已知变量x 和y 满足关系y=-2x+3,则x 与y 正相关;应该是:x 与y 负相关.故错误. (2)线性回归直线必过点(),x y ,线性回归直线必过中心点.故正确.(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大. 根据课本上有原句,故正确.(4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数R 2的值越大,说明拟合的效果越好.故正确,根据课本上有原句. 故填3个. 【点睛】本题主要考查了线性回归直线的应用,学生对知识的记忆能力,主要考查学生的运算能力和转换能力,属于中档题.18.【解析】队总得分为分为事件队总得分为分即队三人有一人答错其余两人答对其概率记队得分为事件事件即为队三人人答错其余一人答对则队得分队得一分即事件同时发生则故答案为 解析:1081【解析】“A 队总得分为2分”为事件M , A 队总得分为2分,即A 队三人有一人答错,其余两人答对,其概率()2232241339P M C ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭,记“B 队得1分”为事件N ,事件N 即为B 队三人2人答错,其余一人答对,则()221221221511133233233218P N ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯+⨯-⨯+⨯⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,A 队得2分B 队得一分,即事件,M N 同时发生,则()()()451091881P MN P M P N ==⨯=,故答案为1081.19.有【解析】根据表中数据计算观测值对照临界值知有95的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异解析:有 【解析】根据表中数据,计算观测值22100(60102010)1003.8417030802021K ⨯-⨯==>⨯⨯⨯,对照临界值知,有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”。
山西省2013届高考数学一轮单元复习测试:统计案例本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归直线方程为ˆ7.1973.93=+,据此可以预测这个孩子10岁时的身高,则正确的叙述是( ) y xA.身高一定是145.83cm B.身高超过146.00cmC.身高低于145.00cm D.身高在145.83cm左右【答案】D2. .如果有95%的把握说事件A和B有关系,那么具体计算出的数据A.K2>3.841 B.K2<3.841C.K2>6.635 D.K2<6.635【答案】A3.根据下面的列联表判断患肝病与嗜酒有关系的把握有( )A.90% B.95%C.97.5% D.99.9%【答案】D4.下列变量之间的关系是函数关系的是( )A.二次函数y=ax2+bx+c中,a和c是已知常数,取b为自变量,因变量是这个函数的判别式Δ=b2-4acB.光照时间和果树亩产量C.降雨量和交通事故发生率D.每亩施用肥料量和粮食亩产量【答案】A5.给出下列结论:(1)在回归分析中,可用指数系数2R的值判断模型的拟合效果,2R越大,模型的拟合效果越好;(2)在回归分析中,可用残差平方和判断模型的拟合效果,残差平方和越大,模型的拟合效果越好;(3)在回归分析中,可用相关系数r的值判断模型的拟合效果,r越小,模型的拟合效果越好;(4)在回归分析中,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适.带状区域的宽度越窄,说明模型的拟合精度越高.以上结论中,正确的有()个.A.1 B.2 C.3 D.4【答案】B6.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②用相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是( )A.0 B.1C.2 D.3【答案】D7.为了探究色盲是否与性别有关,在调查的500名男性中有39名色盲患者,500名女性中有6名色盲患者,那么你认为色盲与性别有关的把握为( )A.0 B.95%C.99% D.都不正确【答案】C8.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值计算,得∑i=18x i=52,∑i=18y i=228,∑i=18x2i=478,∑i=18x i y i=1849,则其回归直线方程为( )A.=11.47+2.62x B.=-11.47+2.62xC.=2.62+11.47x D.=11.47-2.62x【答案】A9.下面的各图中,散点图与相关系数r不符合的是()【答案】B10.关于独立性检验问题,下面的说法中正确的是( )A.若检验结果支持统计假设,就说明统计假设一定成立B.若检验结果不支持统计假设,就说明统计假设一定不成立C.独立性检验能够对统计推断的可靠性的大小作出保证D.样本容量的大小不影响独立性检验的结论【答案】C11.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数2R如下,其中拟合效果最好的模型是( )A.模型1的相关指数2R为0.98B.模型2的相关指数2R为0.80C.模型3的相关指数2R为0.50D.模型4的相关指数2R为0.25【答案】A12.下列说法中正确的是 ( )①独立性检验的基本思想是带有概率性质的反证法;②独立性检验就是选取一个假设0H条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝0H的推断;③独立性检验一定能给出明确的结论.A.①②B.①③C.②③D.①②③【答案】A第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.为考虑广告费用x与销售额y之间的关系,抽取了5家餐厅,得到如下数据:现要使销售额达到6万元,则需广告费用为________.(保留两位有效数字)【答案】1.5万元14.某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程=x+中的为9.4,据此模型预报广告费用为6万元时销售额为________.【答案】65.5万元15.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5时间x 1234 5命中率0.40.50.60.60.4小李这56号打篮球6小时的投篮命中率为________.【答案】0.5 0.5316.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,下列说法中正确的是________.①100个吸烟者中至少有99人患有肺癌;②1个人吸烟,那么这个人有99%的概率患有肺癌;③在100个吸烟者中一定有患肺癌的人;④在100个吸烟者中可能一个患肺癌的人也没有.【答案】④三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.某企业为考察生产同一种产品的甲、乙两条生产线的产品合格率,同时各抽取100件产品,检验后得到如下列联表:生产线与产品合格数列联表请问甲、乙两线生产的产品合格率在多大程度上有关系?【答案】2K的观测值2200(975953)0.521 2.706(973)(955)(9795)(35)k⨯⨯-⨯=≈+⨯+⨯+⨯+≤,因此没有充分的证据显示甲、乙两线生产的产品合格率有关系.18.有10名同学的高一数学成绩x和高二数学成绩y如下表所示.(1)y与x是否具有相关关系?(2)如果y与x具有相关关系,求回归直线方程.【答案】(1)由已知表格中所给数据得,x=71,y=72.3,∑i=110x i=710,∑i=110y i=723,∑i=110x i y i=51467,∑=1012iix=50520,于是r=∑i=110x i y i-10x y(∑i=110x2i-10x2)(∑i=110y2i-10y2)=51467-71×723(50520-10×712)(52541-10×72.32)≈0.7802972,∵r>0.75,∴y与x具有很强的线性相关关系.(2)l xx=∑i=110x2i-110(∑i=110x i)2=50520-110×7102=110,l xy=∑i=110x i y i-110∑i=110x i∑i=110y i=51467-110×710×723=134,∴=134110≈1.22,=y-x≈-14.32,∴所求回归直线方程为y =1.22x-14.32.19.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:(1)画出散点图; (2)求回归直线方程. 【答案】(1)(2)=6.5x +17.520. 调查某市出租车使用年限x 和该年支出维修费用y (万元),得到数据如下:(1)求线性回归方程;(2)由(1)中结论预测第10年所支出的维修费用.(1221ni i i nii x y nx y b x nx a y bx==⎧-⋅⎪⎪=⎨-⎪⎪=-⎩∑∑) 【答案】(1) 回归方程为: 1.230.08y x =+(2) 预计第10年需要支出维修费用12.38 万元.21. 假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:若由资料可知y 对x 呈线性相关关系试求: (1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少? 【答案】(1)列表如下:于是23.145905453.112552251251=⨯-⨯⨯-=--=∑∑==xxy xyxbiiiii,08.0423.15=⨯-=-=bxya∴线性回归方程为:08.023.1^+=+=xabxy (2)当x=10时,38.1208.01023.1^=+⨯=y(万元)即估计使用10年时维修费用是1238万元22.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程=bx+a;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:b=,a=-b.)【答案】将6组数据按月份顺序编号为1,2,3,4,5,6,从中任取两组数据,基本事件空间Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)}中共15个基本事件,设抽到相邻两个月的事件为A,则A={(1,2),(2,3),(3,4),(4,5),(5,6)}中共5个基本事件,∴P (A )=515=13.(2)由表中数据求得=11,=24,由参考公式可得b =187,再由a =-b 求得a =-307,:]所以y 关于x 的线性回归方程为=187x -307.(3)当x =10时,=1507,|1507-22|=47<2;同样,当x =6时,=787,|787-12|=67<2.所以,该小组所得线性回归方程是理想的.。
一、选择题1.如图是九江市2019年4月至2020年3月每月最低气温与最高气温(℃)的折线统计图:已知每月最低气温与最高气温的线性相关系数r =0.83,则下列结论错误的是( )A .每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关B .月温差(月最高气温﹣月最低气温)的最大值出现在10月C .9﹣12月的月温差相对于5﹣8月,波动性更大D .每月最高气温与最低气温的平均值在前6个月逐月增加 2.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C3.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11124.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由2222()110(40302030),7.8()()()()60506050n ad bc K K a b c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得 附表:参照附表,得到的正确结论是( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”5.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:由以上数据,计算得到2K 的观测值9.643k ≈,根据临界值表,以下说法正确的是( )A .在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B .在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C .在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D .在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关 6.在某场考试中,同学甲最后两道单项选择题(每题四个选项)不会解答,分别随机选择一个选项作为答案,在其答对了其中一道题的条件下,两道题都答对的概率为( )A .116B .17C .14D .137.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:则下列结论正确的是( ) 附参照表:参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++A .在犯错误的概率不超过90%的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B .在犯错误的概率不超过1%的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D .有90%以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”8.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为x y +为偶数,事件B 为x y ≠ ,则概率(|)P B A =( )A .14B .13C .12D .239.把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P (B/A )=( ) A .14B .13C .12D .2310.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ) A .0.12B .0.42C .0.46D .0.8811.为了解学生对街舞的喜欢是否与性别有关,在全校学生中进行抽样调查,根据数据,求得2K 的观测值0 4.804k ≈,则至少有( )的把握认为对街舞的喜欢与性别有关.参考数据:k 2.072 2.706 3.841 5.024 6.6357.87910.828A.90%B.95%C.97.5%D.99%12.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为()A.130B.415C.1115D.1315二、填空题13.某商圈为了吸引顾客举办了一次有奖竟猜活动,活动规则如下:两人一组,每轮竞猜中,每人竞猜两次,两人猜对的次数之和不少于3次就可以获得一张奖券.小蓝和她的妈妈同一小组,小蓝和她妈妈猜中的概率分别为p1,p2,两人是否猜中相互独立,若p1+p2=32,则当小蓝和她妈妈获得1张奖券的概率最大时,p12+p22的值为_____.14.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.15.4月16日摩拜单车进驻大连市旅顺口区,绿色出行引领时尚,旅顺口区进行了“经常使用共享单车与年龄关系”的调查,得下列22⨯列联表:年轻人非年轻人合计经常使用单车用户10020120不常使用单车用户602080合计16040200则得到的2χ=__________.(小数点后保留一位)(附:()()()()()22χ-=++++n ad bca b c d a c b d)16.以下4个命题中,正确命题的序号为_________.①“两个分类变量的独立性检验”是指利用随机变量2K来确定是否能以给定的把握认为“两个分类变量有关系”的统计方法;②将参数方程cossinxyθθ=⎧⎨=⎩(θ是参数,[]0,θπ∈)化为普通方程,即为221x y+=;③极坐标系中,22,3Aπ⎛⎫⎪⎝⎭与()3,0B④推理:“因为所有边长相等的凸多边形都是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形”,推理错误在于“大前提”错误.17.在10个形状大小均相同的球中有4个红球和6个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率为_________.18.2019年7月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:可知,销售量y与价格x之间有较强的线性相关关系,其线性回归方程是3.240y x=-+,且20m n+=,则其中的n=______.19.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”__________.(填有或没有)附:()()()()()22n ad bcKa b c d a c b d-=++++20.在一段线路中有4个自动控制的常用开关A、B、C、D,如图连接在一起,假定在2019年9月份开关A,D能够闭合的概率都是0.7,开关B,C能够闭合的概率都是0.8,则在9月份这段线路能正常工作的概率为________.三、解答题21.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.短潜伏者 长潜伏者 合计60岁及以上 9060岁以下 140 合计300(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bcK a b c d a c b d -=++++22.一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:(1)在给定的坐标系中画出表中数据的散点图,并由散点图判断销售件数y 与进店人数x 是否线性相关?(给出判断即可,不必说明理由)(2)建立y 关于x 的回归方程(系数精确到0.01),预测进店人数为80时,商品销售的件数(结果保留整数) (参考数据:713245i i i x y ==∑,25x =,15.43y =,7215075i i x ==∑,()274375x =,72700xy =)23.某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如图茎叶图:甲配送方案乙配送方案 9 7 9 9 8 8 7 09 7 6 4 4 4 3 3 3 3 2 1 12 1 0 03 4 5 67 8 9 93 3 5 7 7 7 8 8 9 9 9 9 2 34 4 7 8 8 0 2(1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;(2)设所有50名骑手在相同时间内完成订单数的平均数m ,将完成订单数超过m 记为“优秀”,不超过m记为“一般”,然后将骑手的对应人数填入如表列联表;优秀一般甲配送方案乙配送方案(3)根据(2)中的列联表,判断能否有95%的把握认为两种配送方案的效率有差异.附:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.050.0100.005k 3.841 6.6357.87924.为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示.(1)求a的值及通过电子阅读的居民的平均年龄;(2)把年龄在第123,,组的居民称为青少年组,年龄在第45,组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成上面22⨯列联表,则是否有97.5%的把握认为阅读方式与年龄有关?()()()()()22n ad bc K a b a d b c c d -=++++()2P K k >0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.82825.3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求,某医疗器械厂开足马力,日夜生产防疫所需物品.已知该厂有两条不同生产线A 和B 生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如下所示:该产品的质量评价标准规定:鉴定成绩达到[90,100)的产品,质量等级为优秀;鉴定成绩达到[80,90)的产品,质量等级为良好;鉴定成绩达到[60,80)的产品,质量等级为合格.将这组数据的频率视为整批产品的概率.(1)从等级为优秀的样本中随机抽取两件,记X 为来自B 机器生产的产品数量,写出X 的分布列,并求X 的数学期望;(2)请完成下面质量等级与生产线产品列联表,并判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.A 生产线的产品B 生产线的产品 合计良好以上 合格 合计附:22()()()()()n ad bcKa b c d a c b d-=++++26.在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不少于120分的有10人,统计成绩后得到如下22⨯列联表:(1)请完成上面22⨯列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,其中每周线上学习时间不足5小时的人数为X,求X的分布列及其数学期望.(下面的临界值表供参考)(参考公式()()()()()22n ad bcKa b c d a c b d-=++++其中n a b c d=+++)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据相关系数的性质判断A;根据所给折线图,对B,C,D逐项进行判断.【详解】每月最低气温与最高气温的线性相关系数r=0.83,比较接近于1,则每月最低气温与最高气温有较强的线性相关性,且二者为线性正相关,则A正确;由所给的折线图可以看出月温差(月最高气温﹣月最低气温)的最大值出现在10月,则B 正确;5﹣8月的月温差分别为18,17,16,16,9﹣12月的月温差分别为20,31,24,21,则9﹣12月的月温差相对于5﹣8月,波动性更大,C正确;每月的最高气温与最低气温的平均值在前5个月逐月增加,第六个月开始减少,所以A正确,则D错误;故选:D【点睛】本题主要考查了根据折线图解决实际问题以及相关系数的性质的应用,对于相关系数r,r越接近于1,两个变量的线性相关程度越强,属于中档题.2.B解析:B【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果.【详解】因为射击7次有4次命中且恰有3次连续命中有24A种情况,所以所求概率为7241A2⎛⎫⋅ ⎪⎝⎭.选B.【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.3.D解析:D【分析】记事件:A甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A的对立事件的概率,再利用对立事件的概率公式可得出事件A的概率.【详解】记事件:A甲乙两人各自射击同一目标一次,该目标被击中,则事件:A甲乙两人各自射击同一目标一次,两人都未击中目标,由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.4.A解析:A 【详解】由27.8 6.635K ≈>,而()26.6350.010P K ≥=,故由独立性检验的意义可知选A5.D解析:D 【解析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关. 选D.点睛:本题考查卡方含义,考查基本求解能力.6.B解析:B 【解析】分析:由题意结合条件概率计算公式整理计算即可求得最终结果.详解:同学甲至少答对一道题的概率为:2371416⎛⎫-= ⎪⎝⎭,两道题都答对的概率为211416⎛⎫= ⎪⎝⎭,由条件概率计算公式可知,同学甲两道题都答对的概率为:11167716p ==. 本题选择B 选项.点睛:本题主要考查古典概型计算公式,条件概率的计算等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C 【解析】分析:根据列联表中数据,利用公式求得2 3.03K ≈,参照临界值表即可得到正确结论.详解:由公式()()()()()22n d bc k a b c d a c b d -=++++可得2 3.03K ≈,参照临界值表,2.7063.030 3.841<<,∴0090以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.8.D解析:D 【解析】因为事件A 的基本事件分别为A(1,1),(1,3),(3,1),(2,2),(2,4),(4,2),(3,3),(4,4),(4,6),(6,4),(5,5),(1,5),(5,1),(6,6),(3,5),(5,3),(2,6),(6,2),共18种情形;其中x y =的情形(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6种情形,所以事件B 为x y ≠的情形有12种,则所求条件事件的概率()122|183P B A ==,应选答案D 。
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,则f(x)的对称中心为:A. (1, 0)B. (0, 2)C. (0, -2)D. (1, -2)2. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=5,b=7,c=8,则△ABC的面积S为:A. 15B. 20C. 24D. 283. 下列不等式中,恒成立的是:A. x^2 + y^2 ≥ 0B. x^2 - y^2 ≥ 0C. x^2 + y^2≤ 0D. x^2 - y^2 ≤ 04. 已知数列{an}的通项公式为an = 3^n - 2^n,则数列{an}的前n项和S_n为:A. 2(3^n - 1)B. 2(3^n + 1)C. 2(3^n - 2^n)D. 2(3^n + 2^n)5. 若复数z满足|z - 1| = |z + 1|,则复数z的取值范围是:A. z = 0B. z = 1C. z = -1D. z = ±16. 已知函数f(x) = x^2 - 4x + 4,若对于任意实数x,都有f(x) ≥ 0,则实数x的取值范围是:A. x ≤ 2B. x ≥ 2C. x ≤ 0 或x ≥ 4D. x ≤ 0 或x ≥ 27. 若直线l的方程为x + 2y - 3 = 0,则直线l的斜率为:A. 1/2B. -1/2C. 2D. -28. 已知等差数列{an}的首项为a_1,公差为d,若a_1 + a_2 + a_3 = 9,a_4 + a_5 + a_6 = 27,则数列{an}的前n项和S_n为:A. 3n^2 + 3nB. 3n^2 - 3nC. 3n^2 + 6nD. 3n^2 - 6n9. 已知函数f(x) = log_2(x - 1) + log_2(x + 1),则f(x)的定义域为:A. x > 1B. x > 0C. x < -1 或x > 1D. x ≠ 110. 若等比数列{an}的首项为a_1,公比为q,若a_1 + a_2 + a_3 = 6,a_4 +a_5 + a_6 = 54,则数列{an}的前n项和S_n为:A. 6nB. 12nC. 18nD. 24n二、填空题(每题5分,共25分)11. 若复数z = 2 + 3i,则|z|^2 = ________。
长安一中 高新一中 交大附中 师大附中 西安中学高2013届第二次模拟考试数学(理)试题第Ⅰ卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分. (在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合2{|(1)}(,),A x x a a i a R i A R ==+-∈⊆是虚数单位若,则a=A .1B .-1C .±1D .0 2.某程序框图如图所示,现输入如下四个函数,其中可以输出的函数是 . A .2()f x x = B .1()f x x=C .()ln 26f x x x =+-D .()sin f x x =3.已知p :存在2200,20.:,210x R mx q x R x mx ∈+≤∈-+>任意,若“p 或q”为假命题,则实数m 的取值范围是A .[1,+∞)B .(一∞,一1]C .(一∞,一2]D .[一l ,1]4.设等差数列{}n a 的前n 项和为S n ,若14611,6a a a =-+=-,则当S n 取最小值时.n 等于A .6B .7C .8D .95.定义在R 上的函数()f x 满足2(6)(),31,()(2),f x f x x f x x +=-≤≤=-+当时当一1≤x<3时,(),(1)(2)(3)(2013)f x x f f f f =+++= 则A .2013B .2012C .338D .3376. 如果实数x 、y 满足条件1010,10x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩那么z=4x ·2-y 的最大值为A .1B .2C .12D .147.已知函数33(0)()(,)(0)(01)xx a x f x x ax a a -+-<⎧=∈-∞+∞⎨≥>≠⎩是且上的减函数,则a 的取值范围是A .2(0,]3B .1(,1)3C .(2,3)D .12(,]238.已知F 1,F 2为双曲线22:1C x y -=的左、右焦点,点P 在C 上,1212||2||,c o s P F P F F P F =∠则=A .14B .34C .35D .459.已知球的直径SC=4,A ,B 是该球球面上的两点,AB=2.∠ASC=∠BSC=45°则棱锥S —ABC 的体积为A B C D 10.已知函数y=x 3-3x+c 的图像与x 恰有两个公共点.则c= A .一2或2 B .一9或3 C .一1或1 D .一3或1第Ⅱ卷(共100分)二、填空题:(本大题共5小题,每小题5分,共25分.把答案值填在答题卡的相应位置)11.若6()x x-展开式的常数项是60,则常数a 的值为 . 12.若曲线||21x y =+与直线y=b 没有公共点,则b 的取值范围是 .13.椭圆2221(5x y a a+=为定值,且a >F ,直线x=m 与椭圆相交于点A 、B 。
一、选择题1.某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中()表1表2表3语文性别不及格及格总计数学性别不及格及格总计英语性别不及格及格总男143650男104050男2525女163450女203050女545总计3070100总计3070100总计30701A.语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小B.数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小C.英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小D.英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小2.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为()A.12B.25C.35D.453.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为1 4.若他第1球投进的概率为34,则他第3球投进的概率为()A.34B.58C.116D.9164.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有()参考公式:0.100.050.0250.0100.0050.0012.7063.841 5.024 6.635 7.879 10.828A .12人B .18人C .24人D .30人5.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的12,男生喜欢抖音的人数占男生人数的16,女生喜欢抖音的人数占女生人数23若有95%的把握认为是否喜欢抖音和性别有关,则男生至少有( )人. (K 2≥k 0) 0.050 0.010 k 03.8416.635A .12B .6C .10D .186.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:天数x (天) 3 4 56 繁殖个数y (千个)2.5344.5由最小二乘法得y 与的线性回归方程为,则当时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95 D .6.157.已知变量,X Y ,由它们的样本数据计算得到2K 的观测值 4.328k ≈,2K 的部分临界值表如下:20()P K k ≥0.10 0.05 0.025 0.010 0.005 0k2.7063.8415.0246.6357.879以下判断正确的是( )A .在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系B .在犯错误的概率不超过0.05的前提下认为变量,X Y 没有关系C .有97.5%的把握说变量,X Y 有关系D .有97.5%的把握说变量,X Y 没有关系8.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,已知小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为2133、,则小球落入A袋中的概率为()A.34B.14C.13D.239.为直观判断两个分类变量x和y之间是否有关系,若它们的取值分别为{x1,x2}和{y1,y2},通过抽样得到频数表为:y1y2x1a bx2c d则下列哪两个比值相差越大,可判断两个分类变量之间的关系应该越强()A.aa c+与bb d+B.aa d+与cb c+C.ab d+与ca c+D.ac d+与ca b+10.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为,x y,设事件A为x y+为偶数,事件B为x y≠,则概率(|)P B A=()A.14B.13C.12D.2311.为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下22⨯列联表:做不到“光盘”能做到“光盘”男4510女3015附:()2P K k≥0.100.050.025k 2.7063.841 5.024()()()()()22n ad bc K a b c d a c b d -=++++参照附录,得到的正确结论是( ) A .在犯错误的概率不超过5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” B .在犯错误的概率不超过2.5%的前提下,认为“该市居民能否做到‘光盘’与性别有关” C .有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关” D .有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关” 12.对具有线性相关关系的变量x ,y 有一组观测数据(),i i x y (1,2,,8i =),其回归直线方程是1ˆ8ˆybx =+,且1238x x x x ++++=()123826y y y y ++++=,则实数ˆb的值是( ) A .116B .14C .13D .12二、填空题13.有9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种,假定每个坑至多补种一次,需要补种的坑数为2的概率等于_______. 14.已知下列命题:①从匀速传递的产品生产流水线上,质检员每30分钟从生产流水线中抽取一件产品进行某项指标检测,这样的抽样方法是系统抽样;②两个变量的线性相关程度越强,则相关系数的值越接近于1;③两个分类变量X 与Y 的观测值2k ,若2k 越小,则说明“X 与Y 有关系”的把握程度越大;④随机变量X ~(0,1)N ,则(1)2(1)1P X P X <=<-. 其中为真命题的是__________.15.如图, A, B, C 表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________16.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =_____.17.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.18.若10件产品包含2件次品,今在其中任取两件,已知两件中有一件不是废品的条件下,另一件是废品的概率为__________.19.现有A ,B 两队参加关于“十九大”知识问答竞赛,每队3人,每人回答一个问题,答对者为本队赢1分,答错得0分;A 队中每人答对的概率均为23,B 队中3人答对的概率分别为23,23,13,且各答题人答题正确与否之间互不影响,若事件M 表示“A 队得2分”,事件N 表示“B 队得1分”,则()P MN =______.20.已知甲、乙两位射手,甲击中目标的概率为0.7,乙击中目标的概率为0.6,如果甲乙两仁射手的射击相互独立,那么甲乙两射手同时瞄准一个目标射击,目标被射中的概率为_________.三、解答题21.某电器企业统计了近10年的年利润额y (千万元)与投入的年广告费用x (十万元)的相关数据,散点图如图,对数据作出如下处理:令ln i i u x =,ln i i v y =,得到相关数据如表所示:101i i i u v =∑101ii u=∑101i i v =∑1021ii u=∑30.5 15 1546.5(1)从①y bx a =+;②()0,0ky m xm k =⋅>>;③2y cx dx e =++三个函数中选择一个作为年广告费用x 和年利润额y 的回归类型,判断哪个类型符合,不必说明理由; (2)根据(1)中选择的回归类型,求出y 与x 的回归方程;(3)预计要使年利润额突破1亿,下一年应至少投入多少广告费用?(结果保留到万元)参考数据:103.6788e≈,33.678849.787≈.参考公式:回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为()()()121ˆni iiniit t y ybt t==--=-∑∑,a y bt=-.22.网购是当前民众购物的新方式,某公司为改进营销方式,随机调查了100名市民,统计其周平均网购的次数,并整理得到如下的频数分布直方图.这100名市民中,年龄不超过40岁的有65人,将所抽样本中周平均网购次数不小于4次的市民称为网购迷,且已知其中有5名市民的年龄超过40岁.(1)根据已知条件完成下面的22⨯列联表,能否在犯错误的概率不超过0.10的前提下认为网购迷与年龄不超过40岁有关?网购迷非网购迷合计年龄不超过40岁年龄超过40岁合计(2)若从网购迷中任意选取2名,求其中年龄超过40岁的市民人数ξ的分布列.(附:()()()()()22n ad bcka b c d a c b d-=++++)()2P K k≥0.150.100.050.01k 2.072 2.706 3.841 6.63523.2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人(其中450人为女性)的得分(满分:100分)数据,统计结果如表所示:(1)由频数分布表可以认为,此次问卷调查的得分Z 服从正态分布,210N ,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求()50.594P Z <<;(2)把市民分为对垃圾分类“比较了解”(不低于60分的)和“不太了解”(低于60分的)两类,请完成如下22⨯列联表,并判断是否有99%的把握认为市民对垃圾分类的了解程度与性别有关?10名.再从这10人中随机抽取3人,求抽取的3人中男性人数的分布列及数学期望.参考数据:14.5≈;②若()2,XN μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=;③()()()()()2n ad bc K a b c d a c b d -=++++, .n a b c d =+++ 24.高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢中国古典文学与性别有关?请说明理由;(3)已知在喜欢中国古典文学的10位男生中,1A ,2A ,3A 还喜欢数学,1B ,2B 还喜欢绘画,1C ,2C 还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.25.H 市某企业坚持以市场需求为导向,合理配置生产资源,不断改革、探索销售模式.下表是该企业每月生产的一种核心产品的产量x (吨)与相应的生产总成本y (万元)的五组对照数据. ˆˆˆybx a =+;参考公式:1221ˆni ii nii x y nxyb xnx ==-=-∑∑,ˆˆay bx =-. (2)记第(1)问中所求y 与x 的线性回归直线方程ˆˆˆybx a =+为模型①,同时该企业科研人员利用计算机根据数据又建立了y 与x 的回归模型②:2112ˆyx =+.其中模型②的残差图(残差=实际值-预报值)如图所示:请完成模型①的残差表与残差图,并根据残差图,判断哪一个模型更适宜作为y 关于x 的回归方程?并说明理由;(3)根据模型①中y 与x 的线性回归方程,预测产量为6吨时生产总成本为多少万元? 26.某植物学家培养出一种观赏性植物,会开出红花或黄花,已知该植物第一代开红花和黄花的概率都是12,从第二代开始,若上一代开红花,则这一代开红花的概率是13,开黄花的概率是23;若上一代开黄花,则这一代开红花的概率是35,开黄花的概率是25.记第n 代开红花的概率为n p ,第n 代开黄花的概率为n q . (1)求2p ;(2)①证明:数列9()19n p n N *⎧⎫-∈⎨⎬⎩⎭为等比数列; ②第*(,2)n n N n ∈≥代开哪种颜色花的概率更大?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】因为()()2210014341636100103020403070505030705050⨯⨯-⨯⨯⨯-⨯<⨯⨯⨯⨯⨯⨯()2100254552530705050⨯⨯-⨯<⨯⨯⨯,所以英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小. 故选C 【点睛】本题考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目.2.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.3.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.4.B解析:B 【解析】【分析】设男生人数为,女生人数为,完善列联表,计算解不等式得到答案.【详解】设男生人数为,女生人数为喜欢抖音 不喜欢抖音 总计 男生女生总计男女人数为整数 故答案选B 【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.5.A解析:A 【分析】由题,设男生人数x ,然后列联表,求得观测值,可得x 的范围,再利用人数比为整数,可得结果. 【详解】设男生人数为x ,则女生人数为2x , 则列联表如下:喜欢抖音不喜欢抖音总计男生6x 56x x女生3x 6x 2x若有的把握认为是否喜欢抖音和性别有关,则 3.841K >即2235()326636 3.841822x x x x x x K x x x x ⨯-⨯==>⨯⨯⨯ 解得10.24x > 又因为,,,236x x x为整数,所以男生至少有12人故选A 【点睛】本题是一道关于独立性检验的题目,总体方法是运用列联表进行分析求解,属于中档题.6.B解析:B 【分析】根据表格中的数据,求得样本中心为97(,)22,代入回归直线方程,求得ˆ0.35a =,得到回归直线的方程为ˆ0.70.35yx =+,即可作出预测,得到答案. 【详解】由题意,根据表格中的数据,可得34569 2.534 4.57,4242x y ++++++====, 即样本中心为97(,)22,代入回归直线方程ˆˆ0.7yx a =+,即79ˆ0.722a=⨯+, 解得ˆ0.35a=,即回归直线的方程为ˆ0.70.35y x =+, 当7x =时,ˆ0.770.35 5.25y=⨯+=,故选B . 【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.7.A解析:A 【解析】分析:根据所给的观测值,对照临界值表中的数据,即可得出正确的结论. 详解:∵观测值 4.328 3.841k ≈>, 而在观测值表中对应于3.841的是0.05,∴在犯错误的概率不超过0.05的前提下认为变量,X Y 有关系. 故选:A .点睛:本题考查了独立性检验的应用问题,是基础题.8.D解析:D 【分析】小球落入A 袋中的概率为P (A )1P =-(B ),由此利用对立事件概率计算公式能求出小球落入A 袋中的概率. 【详解】 解:将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由落下,小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,小球每次遇到黑色障碍物时,向左、右两边下落的概率分别为21,33, 小球落入A 袋中的概率为:P (A )1P =-(B )1112221()333333=-⨯⨯+⨯⨯23=. 故选:D . 【点睛】 本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.9.A解析:A 【解析】因为22()()()()()()a b c d ad bc K a c b d a b c d +++-=++++,所以当2K 的值越小说明两个分类变量之间的有关系的把握程度越小,反之,当2K 的值越小说明两个分类变量之间的有关系的把握程度越大,即两个分类变量之间的关系应该越强,()()a b ad bc a c b d a c b d --=++++与2K 的关系等价,则()()a b ad bc a c b d a c b d --=++++值相差越大,可判断两个分类变量之间的关系应该越强,应选答案A .10.D解析:D 【解析】因为事件A 的基本事件分别为A(1,1),(1,3),(3,1),(2,2),(2,4),(4,2),(3,3),(4,4),(4,6),(6,4),(5,5),(1,5),(5,1),(6,6),(3,5),(5,3),(2,6),(6,2),共18种情形;其中x y =的情形(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6种情形,所以事件B 为x y ≠的情形有12种,则所求条件事件的概率()122|183P B A ==,应选答案D 。
高新一中2013高考数学一轮复习单元练习--统计案例I 卷一、选择题1. 在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( )A .总偏差平方和B .残差平方和C .回归平方和D .相关指数R 2【答案】B2.对于线性相关系数r ,下列说法正确的是( )A .|r |∈(-∞,+∞),|r |越大,相关程度越大;反之,相关程度越小B .|r |≤1,r 越大,相关程度越大;反之,相关程度越小C .|r |≤1,且|r |越接近于1,相关程度越大;|r |越接近于0,相关程度越小D .以上说法都不正确 【答案】C3.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值计算,得∑i =18x i =52,∑i =18y i =228,∑i =18x 2i =478,∑i =18x i y i =1849,则其回归直线方程为()A .=11.47+2.62xB .=-11.47+2.62xC .=2.62+11.47xD .=11.47-2.62x 【答案】A4.已知两个变量x 和y 之间具有线性相关性,甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归的方法求得回归直线分别为l 1和l 2.已知两个人在试验中发现对变量x 的观测数据的平均数都为s ,对变量y 的观测数据的平均数都是t ,则下列说法正确的是( ) A .l 1与l 2可能有交点(s ,t )B .l 1与l 2相交,但交点一定不是(s ,t )C .l 1与l 2必定平行D .l 1与l 2必定重合 【答案】A5. 在画两个变量的散点图时,下面哪个叙述是正确的( )A .预报变量在x 轴上,解释变量在y 轴上B .解释变量在x 轴上,预报变量在y 轴上C .可以选择两个变量中任意一个变量在x 轴上D .可以选择两个变量中任意一个变量在y 轴上【答案】B6.对两个分类变量A 、B 的下列说法中正确的个数为( ) ①A 与B 无关,即A 与B 互不影响;②A 与B 关系越密切,则K 2的值就越大;③K 2的大小是判定A 与B 是否相关的唯一依据A .1B .2C .3D .4 【答案】A7.身高与体重有关系可以用( )分析来分析.( )A .残差B .回归C .二维条形图D .独立检验 【答案】A8.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若统计员计算无误,则数字x 应该是( )A .5B .4C .3D .2【答案】D 9. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( )A .模型1的相关指数2R 为0.98B .模型2的相关指数2R 为0.80 C .模型3的相关指数2R 为0.50D .模型4的相关指数2R 为0.25 【答案】A10.在两个变量y 与x 的回归模型中,分别选择了4个不同的模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( )A .模型1的相关指数R 2为0.98B .模型2的相关指数R 2为0.90C .模型3的相关指数R 2为0.60D .模型4的相关指数R 2为0.25 【答案】A11. 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )A . 1.234y x =+B . 1.235y x =+C . 1.230.08y x =+D .0.08 1.23y x =+【答案】C12.给出假设0H ,下列结论中不能对0H 成立与否作出明确判断的是( )A . 22.535χ=B . 27.723χ=C . 210.321χ=D . 220.125χ=【答案】AII卷二、填空题13.对于回归方程=4.75x+257,当x=28时,的估计值是________.【答案】39014.下列说法:①回归方程适用于一切样本和总体;②样本取值的范围会影响回归方程的适用范围;③回归方程得到的预报值,是预报变量的精确值.其中正确的是________.【答案】②15①种子经过处理跟是否生病有关;②种子经过处理跟是否生病无关;③种子是否经过处理决定是否生病.【答案】①②③16【答案】95%三、解答题17.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表.试问能以多大把握认为婴儿的性别与出生时间有关系?【答案】K2=89×(24×26-31×8)255×34×32×57≈3.689<3.841,所以有90%的把握认为“婴儿的性别与出生时间有关”.18.某农场对单位面积化肥用量x(kg)和水稻相应产量y(kg)的关系作了统计,得到数据如下:如果x与y之间具有线性相关关系,求出回归直线方程,并预测当单位面积化肥用量为32kg时水稻的产量大约是多少?(精确到0.01kg)【答案】列表如下:x=17×210=30y=17×2795≈399.3=87175-7×30×399.37000-7×302≈4.746=399.3-4.746×30=256.92y对x的回归直线方程为=256.92+4.746x当x=32时,=256.92+4.746×32≈408.79答:回归直线方程为=256.92+4.746x,当单位面积化肥用量为32kg时,水稻的产量约为408.79kg. 19.为了研究三月下旬的平均气温(x)与四月二十号前棉花害虫化蛹高峰日(y)的关系,某地区观察了2005年至2010年的情况,得到下面的数据:据气象预测,该地区在2011年三月下旬平均气温为27℃,试估计2011年四月化蛹高峰日为哪天?【答案】x=16∑i=16x i=19.13,y=16∑i=16y i=7.5,=5130.92,∑i =16x i y i =1222.6,∴=∑i =16x i y i -6x y∑i =16x 2i -6x2=-2.2,=y -x =7.5-(-2.2)×29.13=71.6.∴回归直线方程=-2.2x +71.6.当x =27时,=-2.2×27+71.6=12.2.据此,可估计该地区2011年4月12日或13日为化蛹高峰日. 20. 假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:若由资料可知y 对x 呈线性相关关系试求: (1)线性回归方程;(2)估计使用年限为10年时,维修费用是多少? 【答案】(1)列表如下:于是23.145905453.112552251251=⨯-⨯⨯-=--=∑∑==xx yx yx bi i i ii , 08.0423.15=⨯-=-=bx y a ∴线性回归方程为:08.023.1^+=+=x a bx y(2)当x=10时,38.1208.01023.1^=+⨯=y (万元)即估计使用10年时维修费用是1238万元21.在研究某种新措施对猪白痢的防治效果问题时,得到了以下数据:试判断新措施对防治猪白痢是否有效?【答案】由列联表可知,a=132,b=18,c=114,d=36,a+b=150,c+d=150,a+c=246,b+d=54,n=300,代入K2=n(ad-bc)2(a+b)(a+c)(c+d)(b+d),得K2=300×(132×36-18×114)2150×150×54×246≈7.317,由于K2≈7.317>6.635,因此我们有99%的把握认为新措施对预防猪白痢是有效的.22.某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.附:χ2=n n11n22-n12n212 n1+n2+n+1n+2【答案】(1)设“抽出的两个均‘成绩优秀’”为事件A.从不低于86分的成绩中随机抽取2个的基本事件为(86,93),(86,96),(86,97),(86,99),(86,99),(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共15个.而事件A包含基本事件:(93,96),(93,97),(93,99),(93,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共10个.所以所求概率为P(A)=1015=23.(2)由已知数据得根据列联表中数据,χ2=40×1×15-5×1926×34×20×20≈3.137,由于3.137>2.706,所以有90%的把握认为“成绩优秀”与教学方式有关.。