5讲连接体问题与典型例题
- 格式:pdf
- 大小:132.46 KB
- 文档页数:5
牛顿运动定律典型例题参考答案一、连接体问题(整体法与隔离法):1.二体连接问题例题1:F=(M+m)g F=(M+m)g F=(M+m)g F=(M+m)g例题2:例题3:2.多体连接问题:例题4:例题5:二、 超失重问题:例题1:BC例题2:A 例题3:C 例题4:A例题5:D三、 等环境问题(力的质量分配原则):例题1.例题2.D四、 临界值问题: 例题1. 解析:(1)ma sin N cos T =α-αmg cos N sin T =α+α当g 31a =时,N=68.4(N ) T=77.3(N ) (2) 若N=0,则有'm a cos T =αm g sin T =α )s /m (17g 3gctg 'a ==α=例题2.五、 瞬时值问题:例题1:解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
例题2:C例题3,D 例题4: (a=gsinθ ,a=gtanθ ) 例题5、BD 六、 分离问题:例题1:例题2:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma ,当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-= 例题3:七、 相对滑动问题:例题1:例题2:BC 例题3:ABC例题4:例题5:例题6:例题7:八、 传送带问题:例题1:D例题2:解析: 物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。
专题05 连接体问题、板块模型、传送带问题【窗口导航】高频考法1 连接体问题 ........................................................................................................................................... 1 角度1:叠放连接体问题 ....................................................................................................................................... 2 角度2:轻绳连接体问题 ....................................................................................................................................... 3 角度3:轻弹簧连接体问题 ................................................................................................................................... 3 高频考法2 板块模型 ............................................................................................................................................... 4 高频考法3 传送带问题 ........................................................................................................................................... 7 角度1:水平传送带模型 ....................................................................................................................................... 8 角度2:倾斜传送带模型 . (11)高频考法1连接体问题1.常见连接体三种情况中弹簧弹力、绳的张力相同(接触面光滑,或A 、B 与接触面间的动摩擦因数相等)常用隔离法常会出现临界条件2. 连接体的运动特点(1)叠放连接体——常出现临界条件,加速度可能不相等、速度可能不相等。
如图1-15所示:把质量为M的的物体放在光滑的水平高台上,用一条可以忽略质量而且不变形的细绳绕过定滑轮把它与质量为m的物体连接起来,求:物体M和物体m的运动加速度各是多大?⒈“整体法”解题采用此法解题时,把物体M和m看作一个整体,它们的总质量为(M+m)。
把通过细绳连接着的M与m之间的相互作用力看作是内力,既然水平高台是光滑无阻力的,那么这个整体所受的外力就只有mg了。
又因细绳不发生形变,所以M与m应具有共同的加速度a。
现将牛顿第二定律用于本题,则可写出下列关系式:mg=(M+m)a所以,物体M和物体m所共有的加速度为:⒉“隔离法”解题采用此法解题时,要把物体M和m作为两个物体隔离开分别进行受力分析,因此通过细绳连接着的M与m之间的相互作用力T必须标出,而且对M和m单独来看都是外力(如图1-16所示)。
根据牛顿第二定律对物体M可列出下式:T=Ma ①根据牛顿第二定律对物体m可列出下式:mg-T=ma ②将①式代入②式:mg-Ma=ma mg=(M+m)a所以物体M和物体m所共有的加速度为:最后我们还有一个建议:请教师给学生讲完上述的例题后,让学生自己独立推导如图1-17所示的另一个例题:用细绳连接绕过定滑轮的物体M和m,已知M>m,可忽略阻力,求物体M和m的共同加速度a。
:【思路整理】⒈既然采用“整体法”求连接体运动的加速度比较简便?为什么还要学习“隔离法”解题呢?这有两方面的原因:①采用“整体法”解题只能求加速度a,而不能直接求出物体M与m之间的相互作用力T。
采用“隔离法”解联立方程,可以同时解出a与T。
因此在解答比较复杂的连接体运动问题时,还是采用“隔离法”比较全面。
②通过“隔离法”的受力分析,可以复习巩固作用力和反作用力的性质,能够使学生加深对“牛顿第三定律”的理解。
⒉在“连接体运动”的问题中,比较常见的连接方式有哪几种?比较常见的连接方式有三种:①用细绳将两个物体连接,物体间的相互作用是通过细绳的“张力”体现的。
连接体问题1. 连接体:两个或两个以上相互联系的物体组成连接体。
2. 整体法:当两个或两个以上有相互联系的物体相对同一参考系具有相同加速度时,可选整体为研究对象。
3. 隔离法:把题目中每一物体隔离出来分别进行受力分析、列方程4. 选取研究对象的原则有两点:(1)受力情况简单,与已知量、未知量关系密切。
(2)先整体后隔离。
构成连接体的各部分之间的重要的联系纽带之一就是加速度,当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。
【典型例题】例1. 光滑水平面上A、B两物体m A=2kg、m B=3kg,在水平外力F=20N作用下向右加速运动。
求(1)A、B两物体的加速度多大?(2)A对B的作用力多大?解:设两物体加速度大小为a,A对B作用力为F1,由牛顿第三定律得B对A的作用力F2=F1。
对A受力如图由牛顿第二定律F合A=m A a 得:F-F2=m A a20-F2=2a ①对B受力如图由牛顿第二定律F合B=m B a 得:F1=m B aF1=3a ②由①、②联立得:a=4m/s2 F1=12NF=20N 而F1=12N ,所以不能说力F通过物体A传递给物体B。
分析:(1)(2)①+②得 F=(m A+m B)a即:因为A、B具有相同加速度,所以可把A、B看作一个整体应用牛顿第二定律思考:本题应怎样解更简单?对AB 整体受力如图竖直方向平衡,故F N =(m A +m B )g由牛顿第二定律F 合=(m A +m B )a 得: a=2204/32A B F m s m m ==++ 对B 受力如图由牛顿第二定律F 合B =m B a 得:F 1= m B a=3⨯4=12N例2. 如图所示,质量为m 的物块放在倾角为θ的斜面上,斜面体的质量为M ,斜面与物块无摩擦,地面光滑,现对斜面施一个水平推力F ,要使物块相对斜面静止,力F 应多大?解析:两物体无相对滑动,说明两物体加速度相同,方向水平。
牛顿运动定律(2)——连接体问题【例1】.如图所示,置于水平面上的相同材料的m和M用细绳连接,在M上施一水平力F(恒力)使两物体做匀加速直线运动.则下列对两物体间的细绳拉力的说法中正确的是( AB )A .水平面光滑时,绳拉力等于mFm M+B .水平面不光滑时,绳拉力等于mFm M+C.水平面不光滑时,绳拉力大于mFm M+D.水平面不光滑时,绳拉力小于mFm M+【变式1】.如图所示,物体A、B、C放在光滑水平面上用细线a b连接,力F作用在A上,使三物体在水平面上运动,若在B上放一小物体D,D随B一起运动,且原来的拉力F保持不变,那么加上物体D后两绳中拉力的变化是( A )A.T a增大B.T b增大C.T a变小D.T b不变【例2】.两块叠放的长方体滑块A和B,置于固定的倾角为θ的斜面上,如图所示,滑块A和B的质量分别为m1和m2,A与斜面间的动摩擦因数为μ1,B与A之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,则滑块B受到的摩擦力(BC )A.等于零B.方向沿斜面向上C.大小等于μ1m2g cos θD.大小等于μ2m2g cos θ【变式2】.如图所示,A、B两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B受到的摩擦力( A )A.方向向左,大小不变B.方向向左,逐渐减小C.方向向右,大小不变D.方向向右,逐渐减小【例3】.如图所示,一辆小车静止在水平地面上,bc是固定在小车上的水平横杆,物块M穿在杆上,M通过细线悬吊着小物体m,m在小车的水平底板上,小车未动时细线恰好在竖直方向上。
现使小车向右运动,全过程中M始终未相对杆bc移动,M、m与小车保持相对静止,已知a1∶a2∶a3∶a4=1∶2∶4∶8,M受到的摩擦力大小依次为F1、F2、F3、F4,则以下结论正确的是(ACD)A.F1∶F2=1∶2 B.F2∶F3=1∶2C.F3∶F4=1∶2 D.tan α=2tan θ【变式3】.如图所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1的物体1,与物体1相连接的绳与竖直方向成θ角,则(AB) A.车厢的加速度为g sin θB.绳对物体1的拉力为m1gcos θC.底板对物体2的支持力为(m2-m1)g D.物体2所受底板的摩擦力为0A B C Fa b【例4】.如图在倾斜的滑杆上套一个质量为m 的圆环,圆环通过轻绳拉着一个质量为M 的物体,在圆环沿滑杆向下滑动的过程中,悬挂物体的轻绳始终处于竖直方向( B )A .环只受三个力作用B .环一定受四个力作用C .物体做匀加速运动D .悬绳对物体的拉力小于物体的重力【变式4】.如图所示,一固定光滑杆与水平方向夹角为θ,将一质量为m 1的小环套在杆上,通过轻绳悬挂一个质量为m 2的小球,静止释放后,小环与小球保持相对静止以相同的加速度a 一起下滑,此时绳子与竖直方向夹角为β,则下列说法正确的是( C )A .杆对小环的作用力大于m 1g +m 2gB .m 1不变,则m 2越大,β越小C .θ=β,与m 1、m 2无关D .若杆不光滑,β可能大于θ【例5】.如图所示,甲图为光滑水平面上质量为M 的物体,用细线通过定滑轮与质量为m 的物体相连,m 所受重力为5N ;乙图为同一物体M 在光滑水平面上用细线通过定滑轮竖直向下受到拉力F 的作用,拉力F 的大小也是5N ,开始时M 距桌边的距离相等,则( D )A .M 到达桌边时的速度相等,所用的时间也相等B .甲图中M 到达桌边用的时间较长,速度较大C .甲图中M 到达桌边时的速度较大,所用时间较短D .乙图中绳子受到的拉力较大【变式5】.如图所示,已知M >m ,不计滑轮及绳子的质量,物体M 和m 恰好做匀速运动,若将M 与m 互换,M 、m 与桌面的动摩因数相同,则( D )A .物体M 与m 仍做匀速运动B .物体M 与m 做加速运动,加速度a =()m M g M+ C .物体M 与m 做加速运动,加速度a =Mg m M+ D .绳子中张力不变【例6】.如图所示,质量M 的斜面体置于水平面上,其上有质量为m 的小物块,各接触面均无摩擦。
牛顿运动定律——连接体问题(整体法与隔离法)一、连接体:当两个或两个以上的物体通过绳、杆、弹簧相连,或多个物体直接叠放在一起的系统二、处理方法——整体法与隔离法系统运动状态相同整体法问题不涉及物体间的内力 使用原则系统各物体运动状态不同 隔离法问题涉及物体间的内力【练1】如图所示,质量为M 的斜面A 置于粗糙水平地面上,动摩擦因数为μ,物体B 与斜面间无摩擦。
在水平向左的推力F 作用下,A 与B 一起做匀加速直线运动,两者无相对滑动。
已知斜面的倾角为θ,物体B 的质量为m ,则它们的加速度a 及推力F 的大小为( )A. )sin ()(,sin θμθ++==g m M F g aB. θθcos )(,cos g m M F g a +==C. )tan ()(,tan θμθ++==g m M F g aD. g m M F g a )(,cot +==μθ【练2】如图所示,质量为2m 的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为1m 的物体,与物体1相连接的绳与竖直方向成θ角,则( )A. 车厢的加速度为θsin gB. B. 绳对物体1的拉力为θcos 1gmC. 底板对物体2的支持力为g m m )(12-D. 物体2所受底板的摩擦力为θtan 2g m2、连接体整体内部各部分有不同的加速度:(不能用整体法来定量分析)【例2】如图所示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套BθAF有一个环,箱和杆的总质量为M ,环的质量为m 。
已知环沿着杆向下加速运动,当加速度大小为a 时(a <g ),则箱对地面的压力为( )A. Mg + mgB. Mg —maC. Mg + maD. Mg + mg – ma【练3】如图所示,一只质量为m 的小猴抓住用绳吊在天花板上的一根质量为M 的竖直杆。
当悬绳突然断裂时,小猴急速沿杆竖直上爬,以保持它离地面的高度不变。
5讲牛顿运动定律与连接体问题
一、连接体概述
相互连接并且有共同的加速度的两个或多个物体组成的系统可以看作连接体。
如下图所示:
还有各种不同形式的连接体的模型图,不一一描述。
只以常见的模型为例。
二、问题分类
1.已知外力求内力(先整体后隔离)
如果已知连接体在合外力的作用下一起运动,可以先把连接体系统作为一个整体,根据牛顿第二定律求出他们共同的加速度;再隔离其中的一个物体,求相互作用力。
2.已知内力求外力(先隔离后整体)
如果已知连接体物体间的相互作用力,可以先隔离其中一个物体,根据牛顿第二定律求出他们共同的加速度;再把连接体系统看成一个整体,求解外力的大小。
三、典型例题(以图1模型为例)
【例题1】如上图所示,质量分别为m 1、m 2的两个物块放在光滑的水平面上,中间用细绳相连,在F 拉力的作用下一起向右做匀加速运动,求中间细绳的拉力为多大?
解析:两个物块组成连接体系统,具有共同的加速度,把他们看作整体,根据牛顿第二定律可得:
12()F m m a
解得:加速度12F
a
m m 再隔离后面的物块
m 1,它受重力G 、支持力N 和拉力T 三个力作用,根据牛顿第二
定律可得:1
T ma 带入可得:1
12m T F m m F 图1 F
图2
θ
图3 θ
图4
m 1m 2 F。