成型工艺流程及条件介绍
- 格式:doc
- 大小:69.50 KB
- 文档页数:17
模压成型工艺流程模压成型工艺流程模压成型是一种常见的塑料制品加工工艺,通过热塑性塑料在高温和高压的条件下,使其在模具中快速冷却固化,形成所需的产品形状。
模压成型通常适用于生产大批量的塑料产品,具有生产效率高、产品质量稳定等优点。
下面将详细介绍一下模压成型的工艺流程。
首先,模压成型的第一步是准备原材料。
通常情况下,模压成型使用的是热塑性塑料颗粒。
在生产之前,需要对原料进行检查和筛选,确保原料无异物、无杂质。
第二步是将选好的原料放入料斗中。
料斗是一个用于存放和输送塑料颗粒的设备,其底部连接着一个加热器。
原料通过料斗进入加热器,在加热器的作用下,原料被加热至熔点。
第三步是将熔化好的塑料料利用螺杆输送机送进模具中。
螺杆输送机是一个直径逐渐变小的圆柱形装置,螺杆在内壁上旋转,将熔化好的塑料颗粒从料斗中带到模具中。
在螺杆的作用下,塑料颗粒逐渐被推入到模具的加压区域。
第四步是施加高温高压。
当塑料颗粒填满模具加压区域后,需要施加高温高压。
通过加热元件给模具加热,使模具中的塑料保持在熔化状态。
同时,通过液压系统给模具施加高压,使塑料颗粒充分融合,并填满整个模具的空腔。
第五步是冷却固化。
在塑料充分融化并填满整个模具之后,需要将模具和塑料冷却至固化状态,使产品形成所需的形状。
通常情况下,可以通过给模具注入冷却水、冷风等方式进行快速冷却。
第六步是模具开启和取出成品。
当塑料完全冷却固化后,可以将模具开启,取出成品。
通常情况下,需要用工具将成品从模具中取出,并进行后续的检验和包装操作。
最后,整个模压成型的工艺流程就完成了。
需要注意的是,模压成型工艺中需要控制好加热温度、压力和冷却速度等参数,以保证产品质量的稳定和一致性。
总的来说,模压成型是一种常见的塑料制品加工工艺,通过一系列的步骤将熔化的塑料填充到模具中,并进行高温高压和冷却固化等操作,最终形成所需的产品。
模压成型工艺具有生产效率高、产品质量稳定等优点,被广泛应用于塑料制品的生产中。
ptfe等静压成型工艺流程PTFE是聚四氟乙烯的缩写,是一种具有优异性能的高分子材料。
静压成型工艺是一种常用的PTFE制造工艺,它通过将PTFE粉末在高温和高压的条件下进行成型,得到各种形状的制品。
本文将详细介绍PTFE静压成型的工艺流程和相关特点。
一、PTFE静压成型工艺流程PTFE静压成型的工艺流程主要包括粉末制备、预压、烧结和后处理等环节。
1. 粉末制备:首先需要将PTFE树脂经过研磨和分级,得到细小的PTFE粉末。
粉末的粒径和分布对最终制品的性能有很大影响,因此在粉末制备过程中需要严格控制粉末的质量和粒度。
2. 预压:将PTFE粉末放入模具中,然后施加一定的压力进行预压。
预压的目的是使粉末颗粒更加紧密地结合在一起,并排除空隙和气泡。
预压的压力一般在20~30MPa之间,时间根据制品的大小和形状而定。
3. 烧结:将预压得到的PTFE制品放入烧结炉中进行烧结。
烧结的温度和时间是影响制品性能的重要因素。
一般情况下,烧结温度为340~380℃,烧结时间约为1~2小时。
烧结过程中,PTFE粉末颗粒会融化并与周围颗粒结合,形成致密的结构。
4. 后处理:烧结后的PTFE制品需要进行后处理,主要包括冷却、修整和检测等步骤。
冷却是将烧结的制品从烧结炉中取出后放置在自然环境中进行冷却。
修整是对制品进行切割和修整,使其达到设计要求的形状和尺寸。
检测是对制品进行外观和性能的检测,确保制品质量符合要求。
二、PTFE静压成型的特点1. 良好的化学稳定性:PTFE具有优异的化学稳定性,可以耐受酸、碱和大部分有机溶剂的侵蚀。
2. 优异的耐高温性能:PTFE的使用温度范围广,可以在-200℃~260℃的温度下长期使用。
3. 低摩擦系数:PTFE具有极低的摩擦系数,在润滑条件下能够实现良好的自润滑效果。
4. 良好的绝缘性能:PTFE具有良好的绝缘性能,可以在高压和高频率下保持稳定的绝缘性能。
5. 良好的耐磨性:PTFE具有良好的耐磨性,可以在高速和高负载条件下长期使用。
注塑成型工艺流程及工艺参数塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程.1、填充阶段填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。
理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。
高速填充。
如图1—2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。
因此在流动控制阶段,填充行为往往取决于待填充的体积大小。
即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。
λ低速填充。
如图1—3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。
由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。
加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。
λ由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。
因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。
在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。
熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。
一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。
2、保压阶段保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。
八大金属材料成形工艺1铸造液态金属浇注到与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法,通常称为金属液态成形或铸造。
工艺流程:液体金属→充型→凝固收缩→铸件。
工艺特点:1)可生产形状任意复杂的制件,特别是内腔形状复杂的制件。
2)适应性强,合金种类不受限制,铸件大小几乎不受限制。
3)材料来源广,废品可重熔,设备投资低。
4)废品率高、表面质量较低、劳动条件差。
铸造分类:(1)砂型铸造(sand casting)砂型铸造:在砂型中生产铸件的铸造方法。
钢、铁和大多数有色合金铸件都可用砂型铸造方法获得。
工艺流程:技术特点:1)适合于制成形状复杂,特别是具有复杂内腔的毛坯;2)适应性广,成本低;3)对于某些塑性很差的材料,如铸铁等,砂型铸造是制造其零件或,毛坯的唯一的成形工艺。
应用:汽车的发动机气缸体、气缸盖、曲轴等铸件。
(2)熔模铸造(investmentcasting)熔模铸造:通常是指在易熔材料制成模样,在模样表面包覆若干层耐火材料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填砂浇注的铸造方案。
常称为“失蜡铸造”。
工艺流程:优点:1)尺寸精度和几何精度高;2)表面粗糙度高;3)能够铸造外型复杂的铸件,且铸造的合金不受限制。
缺点:工序繁杂,费用较高。
应用:适用于生产形状复杂、精度要求高、或很难进行其它加工的小型零件,如涡轮发动机的叶片等。
(3)压力铸造(die casting)压铸:是利用高压将金属液高速压入一精密金属模具型腔内,金属液在压力作用下冷却凝固而形成铸件。
工艺流程:优点:1)压铸时金属液体承受压力高,流速快2)产品质量好,尺寸稳定,互换性好;3)生产效率高,压铸模使用次数多;4)适合大批大量生产,经济效益好。
缺点:1)铸件容易产生细小的气孔和缩松。
2)压铸件塑性低,不宜在冲击载荷及有震动的情况下工作;3)高熔点合金压铸时,铸型寿命低,影响压铸生产的扩大。
塑胶成型工艺流程塑胶成型是一种常见的制造工艺,用于生产各种塑料制品,如塑料容器、零件、玩具等。
塑胶成型工艺流程通常包括原料准备、塑胶成型、冷却、脱模和后处理等步骤。
本文将详细介绍塑胶成型工艺的流程及各个步骤的具体操作。
1. 原料准备。
塑胶成型的第一步是原料准备。
塑胶原料通常以颗粒或粉末的形式存在,需要根据产品的要求选择合适的塑料原料。
在原料准备阶段,操作人员需要将塑料原料加入到注塑机的料斗中,并根据产品的要求设置好注塑机的参数,如温度、压力等。
2. 塑胶成型。
一旦原料准备就绪,接下来就是塑胶成型的阶段。
在注塑机中,塑料原料会被加热融化,然后通过射出系统注入到模具中。
模具通常由两个部分组成,分别是上模和下模。
当塑料原料进入模具后,会根据模具的形状和尺寸进行冷却,最终形成所需的产品。
3. 冷却。
在塑胶成型过程中,冷却是一个非常重要的步骤。
冷却的速度和方式会直接影响产品的质量和性能。
通常情况下,模具中的冷却系统会通过水或其他介质来降低模具的温度,以便快速固化塑料原料,确保产品的尺寸和形状稳定。
4. 脱模。
当产品完成冷却后,就需要进行脱模操作。
脱模是指将成型好的产品从模具中取出的过程。
通常情况下,脱模操作需要小心谨慎,以避免产品的损坏。
有些复杂的产品可能需要采用特殊的脱模工艺,如气动脱模、液压脱模等。
5. 后处理。
最后,成型好的产品通常还需要进行一些后处理工艺,如修边、去毛刺、喷漆等。
这些后处理工艺可以提高产品的外观和性能,使其更加符合市场需求。
总结。
塑胶成型工艺流程包括原料准备、塑胶成型、冷却、脱模和后处理等步骤。
每个步骤都需要严格控制和操作,以确保产品的质量和性能。
随着科技的不断进步,塑胶成型工艺也在不断创新和改进,为各行各业提供更高质量的塑料制品。
希望本文能够对塑胶成型工艺有所了解,并能够对相关行业的从业人员提供一定的参考和帮助。
真空导入成型工艺工艺流程1. 真空导入成型工艺介绍真空导入成型工艺是一种先进的高温工艺,适用于多种材料的成型和加工。
该工艺通过在真空条件下进行成型,可以避免材料在高温下的氧化和变质,保证制品质量的稳定性和可靠性。
2. 真空导入成型工艺流程真空导入成型工艺一般包括以下几个步骤:2.1 准备工作在进行真空导入成型之前,需要进行一系列的准备工作。
首先,准备好需要加工成型的材料和模具。
然后,清洁模具表面,并确保表面没有任何杂质。
接下来,将模具安装到成型机上,并确认其位置是否正确。
2.2 加热在准备好材料和模具之后,将需要加工的材料放置在模具中。
然后,将模具加热至适当的温度。
加热的温度和时间取决于材料的性质和要求。
2.3 真空处理一旦模具和材料达到适当的温度,开始进行真空处理。
打开真空泵,将模具和材料置于真空腔室中。
通过抽取气体,将腔室内的压力降低至适当的真空度。
真空处理的时间取决于材料和成型要求,一般需要几分钟到几小时不等。
2.4 压力导入真空处理完成后,开始进行压力导入。
通过控制导入系统中的压力,将材料从模具中挤出,并填充到所需的形状中。
导入的压力和时间取决于材料的性质和成型要求。
2.5 冷却压力导入完成后,进行材料冷却。
将模具和材料冷却至室温,以保证制品完全固化和形状稳定。
冷却的时间根据材料的性质和大小而定,一般需要几分钟到几小时不等。
2.6 脱模材料完全冷却后,开始进行脱模操作。
打开模具,取出成型的材料。
在脱模过程中,需要注意避免材料损坏或变形。
3. 真空导入成型工艺的优势真空导入成型工艺相比传统成型工艺具有以下优势:•高质量成品:真空导入成型避免了材料在高温下的氧化和变质,可以获得高质量的成品。
•复杂形状成型:真空导入成型可以实现复杂形状的精确成型,满足不同产品的需求。
•节约材料:真空导入成型可以将材料的浪费降到最低,节约生产成本。
•环保节能:真空导入成型过程中无需使用过多的添加剂,减少了对环境的污染,并且能有效节能。
模具成型工艺模具成型工艺是现代制造业中不可或缺的一环。
模具成型工艺是指通过模具将原材料加工成所需形状的零件或产品的过程。
模具成型工艺的应用范围非常广泛,包括汽车、电子、家电、航空航天等领域。
本文将从模具成型的基本原理、工艺流程、常见问题及解决方法等方面进行探讨。
一、模具成型的基本原理模具成型的基本原理是利用模具对原材料进行加工成型。
模具是一种用于制造产品或零件的工具,通过模具的加工,可以将原材料变成所需形状的零件或产品。
模具成型的基本原理是将原材料放入模具中,然后施加压力,使原材料变形,最终得到所需形状的零件或产品。
模具成型可以分为热成型和冷成型两种。
热成型是指在高温条件下将原材料加热,然后放入模具中进行成型。
热成型的优点是可以制造出高精度、高质量的产品,但也存在一些问题,如成本高、生产周期长等。
冷成型是指在常温条件下,将原材料放入模具中进行成型。
冷成型的优点是成本低、生产周期短,但也存在一些问题,如难以制造高精度、高质量的产品等。
二、模具成型的工艺流程模具成型的工艺流程包括原材料准备、模具设计、模具加工、成型、检验等环节。
其中,模具设计是模具成型的关键环节之一,模具设计的好坏直接影响到成品的质量和生产效率。
原材料准备是模具成型的第一步,原材料的质量和性能直接影响到成品的质量和生产效率。
原材料的选择应根据所需产品的要求进行选择,包括材料的强度、韧性、耐腐蚀性等。
模具设计是模具成型的关键环节之一,模具设计的好坏直接影响到成品的质量和生产效率。
模具设计需要考虑到产品的形状、尺寸、工艺要求、生产效率等因素。
模具加工是模具成型的关键环节之一,模具加工的质量直接影响到成品的质量和生产效率。
模具加工需要进行精密加工,以保证模具的精度和可靠性。
成型是模具成型的核心环节之一,成型的质量直接影响到成品的质量和生产效率。
成型时需要控制好成型温度、成型压力、成型时间等因素,以保证产品的质量和稳定性。
检验是模具成型的最后环节,检验的质量直接影响到成品的质量和生产效率。
注塑成型工艺流程及工艺参数塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。
1、填充阶段填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。
理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。
高速填充。
如图1-2所示,高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。
因此在流动控制阶段,填充行为往往取决于待填充的体积大小。
即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。
λ低速填充。
如图1-3所示,热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。
由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。
加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。
λ由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。
因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。
在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。
熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。
一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。
2、保压阶段保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。
注塑成型工艺流程及工艺参数详解注塑成型塑件的注塑成型工艺过程主要包括填充——保压——冷却——脱模等4个阶段,这4个阶段直接决定着制品的成型质量,而且这4个阶段是一个完整的连续过程。
◆◆1.填充阶段◆◆填充是整个注塑循环过程中的第一步,时间从模具闭合开始注塑算起,到模具型腔填充到大约95%为止。
理论上,填充时间越短,成型效率越高,但是实际中,成型时间或者注塑速度要受到很多条件的制约。
高速填充。
高速填充时剪切率较高,塑料由于剪切变稀的作用而存在粘度下降的情形,使整体流动阻力降低;局部的粘滞加热影响也会使固化层厚度变薄。
因此在流动控制阶段,填充行为往往取决于待填充的体积大小。
即在流动控制阶段,由于高速填充,熔体的剪切变稀效果往往很大,而薄壁的冷却作用并不明显,于是速率的效用占了上风。
低速填充。
热传导控制低速填充时,剪切率较低,局部粘度较高,流动阻力较大。
由于热塑料补充速率较慢,流动较为缓慢,使热传导效应较为明显,热量迅速为冷模壁带走。
加上较少量的粘滞加热现象,固化层厚度较厚,又进一步增加壁部较薄处的流动阻力。
由于喷泉流动的原因,在流动波前面的塑料高分子链排向几乎平行流动波前。
因此两股塑料熔胶在交汇时,接触面的高分子链互相平行;加上两股熔胶性质各异(在模腔中滞留时间不同,温度、压力也不同),造成熔胶交汇区域在微观上结构强度较差。
在光线下将零件摆放适当的角度用肉眼观察,可以发现有明显的接合线产生,这就是熔接痕的形成机理。
熔接痕不仅影响塑件外观,同时由于微观结构的松散,易造成应力集中,从而使得该部分的强度降低而发生断裂。
一般而言,在高温区产生熔接的熔接痕强度较佳,因为高温情形下,高分子链活动性较佳,可以互相穿透缠绕,此外高温度区域两股熔体的温度较为接近,熔体的热性质几乎相同,增加了熔接区域的强度;反之在低温区域,熔接强度较差。
◆◆2.保压阶段◆◆保压阶段的作用是持续施加压力,压实熔体,增加塑料密度(增密),以补偿塑料的收缩行为。
成型工艺流程及条件成型常见产品缺陷一.成型工艺流程及条件介绍第一節成型工艺1.成型工艺参数类型(1). 注塑参数a.注射量b.计量行程c.余料量d.防诞量e.螺杆转速f.塑化量g.预塑背压h.注射压力和保压压力i.注射速度(2)合模参数a.合模力b.合模速度c.合模行程.d.开模力e.开模速度f.开模行程g.顶出压力h.顶出速度i.顶出行程2.温控参数a.烘料温度b.料向与喷嘴温度c.模具温度d.油温3.成型周期a.循环周期b.冷却时间c.注射时间d.保压时间e.塑化时间f.顶出及停留时间g.低压保护时间成型工艺参数的设定须根据产品的不同设置.第二节成型条件设定按成型步骤:可分为开锁模,加热,射出,顶出四个过程.开锁模条件:快速段中速度低压高压速度锁模条件设定:1锁模一般分: 快速→中速→低压→高压2.快锁模一般按模具情况分,如果是平面二板模具,快速锁模段可用较快速度,甚至于用到特快,当用到一般快速时,速度设到55-75%,完全平面模可设定到80-90%,如果用到特快就只能设定在45-55%,压力则可设定于50-75%,位置段视产品的深浅(或长短)不同,一般是开模宽度的1/3.3.中速段,在快速段结束后即转换成中速,中速的位置一般是到模板(包括三板模,二板模)合在一块为止,具体长度应视模板板间隔,速度一般设置在30%-50%间,压力则是20%-45%间.4.低压设定,低速设定一般是在模板接触的一瞬间,具体位置就设在机台显示屏显示的一瞬间的数字为准,这个数字一般是以这点为标准,,即于此点则起不了高压,高于此点则大,轻易起高压.设定的速度一般是15%-25%,视乎不同机种而定,压力一般设定于1-2%,有些机则可设于5-15%,也是视乎不同机种不同.5.高压设定,按一般机台而言,高压位置机台在出厂时都已作了设定,相对来讲,是不可以随便更改的,比如震雄机在50P.速度相对低压略高,大约在30-35%左右,而压力则视乎模具而定,可在55-85%中取,比如完全平面之新模,模具排气良好,甚至于设在55%即可,如果是滑块较多,原来生产时毛边也较多,甚至于可设在90%还略显不足.加热工艺条件设定1.加热段温度设定必须按照产品所使用的原料的不同而不同,但却必须遵循一个这样的规则,即由射口筒到进科段温度是逐步递减的.且递减温度是以10.度为单位.2特殊情况下.如料头抽丝,则射口筒温度应降低,如果是比较特殊的原料冷凝比较快的.则射口筒温度则不止比第二节法兰温度高10度.比如PPS.尼龙等.3.机台马达启动温度视乎机台不同而不同,一般出于对机台油路中的油封保护需要,油温最好能控制在40度-60度,以免油封长期高压而变化,缩短使用寿命,造成成型不稳定.第三节注射及熔胶(加料)工艺条件设定一.注射第四节常见塑料原料的有关温度值.原料Resin名称Name熔点℃Melt’s成型温度℃Molding Temperature(’c)分解温度℃Decomposing Temperature(‘C)模具温度℃Mold Temperature(‘c)干燥温度℃注射是把塑料原料经加热后射进模腔的过程,它一般可分为第一级,第二级,第三级,第四级及保压几段:1.第一级注射一般是注射料头段.具注射量一般可根据料头的轻重来估计其行程,当然也可以依据公式来计算,如公式:L=Si=Vi/0.785Ds2L:注射行程; Si: 注射行程;L: injection stroke Si: injection strokeVi:理论注射容积; Ds:螺杆直径;Vi: injection volume of theoretical Ds: diameter of screw0.785:是Ω/4的值.0. 785: value of Ω/4.当然,如果我们在成型时每设定一个参数都要计算一次,要成型出一个产品就要几个小时才能完成了.2.第二级是注塑产品约2/3的阶段,当然,根据产品特殊需要,也允许成型不到2/3阶段,比如避免结合线问题,这一阶段的成型速度及压力一般是整个成型段的最大值段,如果排的产品与机台基本是相吻合的.模具结构合理,排气良好,这一段的压力一般也不会超过80%.速度侧视产品需变,可能大到95%也可,自然一般都是在55%-80%间.3.第三段是注射余下的1/3段,其速度和压力根据产品的需要,一般是小于第二段,速度和压力存在于一个往下降的过程.主要是为了防止产品毛边的产生,但同时又必须把产品充填饱满.4.第四段:一般有机台还有第五,第六段,这段的成型速度和压力相同前,都存在两段一个递减过程.其作用都是起到一个再次充满的作用.5.保压段:不论成型什么产品,都存在一个保压过程.任何产品都不同程度的存在一个厚薄不一的问题,正常情况下,较厚的部分都可能存在一个收缩凹陷的现象,为了解决这种现象,就应应用到保压,保压一般来讲都应用较慢的射速,而压力的设置则应看缩水的情况如何,小到25%,大到80%都有可能.二.熔胶段工艺1.再复杂的熔胶旋转过程最多不会超过三段,因为熔胶本身就是存在于把胶熔进料筒的过程,如果原料粘度大,熔胶压力则大,但速度则应取决于原料的分解温度,熔胶速度越快,原料中的剪切力则会越大,料管温度则越高,局部原料产生分解的可能性则会越大,故一般熔胶会采用中速为宜,如45%-75%,熔胶同时会碰到一个比较重要的环节,那就是背压的使用,产品精度要求越大,背压的使用则更大,背压可使原料分子间结构更紧密,成型出的产品则尺寸更稳定,外观越好.当然,背压太大,则会产生流涎,所以背压的使用又应考虙到其它原因.2.熔胶过程还有一个比较重要的环节,那就是松退,松退分前松退和后松退,其作用一般是为了防止流涎和抽丝,设定值速度和压力都在20%-50%间,设定的行程一般在2-5cm间,太长的行程可能会使料筒里面贮存空气,导致下一模出现不期望的气泡.顶出的工艺设定产品经冷却定型后则有一个开模的过程,开模基本上是合模的反过程.开模的未段则有一个慢速设置,开模完成后,产品必须顶出的过程.一.顶前:顶前最好分两个阶级,第一阶可分为中压慢速,即是把产品轻轻顶出一部分,然后是中压中速顶,中压中速一般指的是35%-55%,而低速则有可能低到5%,这需视产品不同而言,顶出行程设定是顶出长度稍比产品垂直深度大1-2cm即可.二.退针Back顶退包括两个过程与顶落的过程基本一致,顶退的终点应预留1-3cm的空间,以保护顶针油管不被顶坏.三.顶针方式还包括一个多次顶,单次顶及顶针停留的选择,机械手取产品,脱模顺利的情况都采取多项,为了顶针油缸寿命的延长,多次顶就以不超过三次为宜,顶针停留一般用在顶针带着产品退回有可能对增品产生损伤的模具,同时为配合机械手使用,有时也需要较短的顶针停留.成型时间的设定在保证产品质量的前提下,周期时间是越短越好,周期时间又包括如下几项:射胶时间,保压时间,熔胶时间,冷却时间,顶出时间,锁模低压时间,甚至乎关系到时间因素的还有还开模与锁模,及顶出的快慢.1. 射胶时间包含保压时间,一般看起来,射胶时间越长,产品越饱和,但我们在讲求质量时,同时也须考虑产能,更何况,射胶时间过长,有可能会造成产品过于饱满而寻致粘模顶的变形呎寸偏大等一系列问题,故我们在设置射胶时间时应综合考虑,尽量在合乎质量要求时缩短射胶时间.2.熔胶时间的长短取决于熔胶速度设定的快慢,背压设定的大小,但有一点,熔胶时间控制的长短一定要比冷却时间短.3.冷却时间:冷却时间的长短直接影响到成型的周期,冷却时间越长,成型时间就越长,造成产能就越低,故我们在设定高压冷却时间时,只要能保证到产品成型顺利,不会直接影响到变形等问题,设定的时间也是越短越好4. 在大量使用机械手的塑胶公司,我们的顶出时间一般是与机械手配合为宜,全自动使用机械手时顶出停留时间一般保持1.5-2秒,半自动生产,如因顶针退回会导致产品掉落或卡紧,而取不下产品,停留时间则应保持5秒左右.5.低压保护时间对保护我们人身安全,模具安全起很大作用,配合好模具低压位置和低压压力的调整,低压保护的时间应取1-3秒,保护时间越短,可能造成的危害则越小.二.成型常见产品缺陷一、白斑:物料没有被完全干燥,有水份对策:需物料排气性好,故成型条件改变,射胶周期放慢。
二、充填不足:(不饱模)1、定义:冲填不足(SHOT SHORT)是熔融塑料未完全流遍成型空间(模穴)的各个角落之现象。
2、原因及对策:A、原因:成型品与射出机匹配不当,可塑化能力或射出量不足。
对策:更换机台B、原因:喷嘴射出品径太小,冷料阻塞。
对策:加大喷嘴射出口尺寸,以3.5OZ(80-90TONS)射出喷嘴口径应为2-2.2m/mC、原因:流道设计不良时,塑料流动阻力大。
对策:修改流道尺寸以符合实际需要。
D、原因:塑料熔化不均匀,造成射出压力降遇所致。
对策:适当调整背压与螺杆转速,使塑料混合均匀。
E、原因:流道中冷料井预留不足或不当,冷料头进入成型品而阴碍塑料之正常流动充满模穴。
对策:增加冷料井储存空间或打多段射出,移开冷料头使塑料充填顺畅。
F、原因:模具温度太冷,塑料在某一特定压力下流动困难。
对策:斟酌生产上实际需要,提高模具温度。
G、原因:模具排气不良时,空气无法排除。
对策:防火级ABS成型时,挥发性气体残渣,易造成模垢而发生排气口堵塞现象,应定期清除之。
三、毛边:(批锋)1、原因与对策A、原因:模具的锁模力不足,塑料高压射入模具内时会在分模面发生间隙,塑料料由此流出。
对策:调整锁模力,提高锁模吨数,如已调至最大则换机台(更大型)B、原因:模具未充分接触喷嘴,模具发生间隙时。
对策:调整足射座顶力。
C、原因:模具导锁磨损,分模面偏移或模具安装板受损,导杆(大柱)强度不足发生弯曲时。
对策:1、更换模具销;2、模具安装板整修;3、模具重量超重应更换较大机台成型。
D、原因:异物附着模面时。
对策:清除模面异物E、原因:成型品投影面过大或树脂温度太高。
对策:更换较大机台,降低塑料温度。
四、收缩下陷:1、定义:成型品表面产生凹陷的现象,这是体绩收缩所致,通常见于肉厚部分,肋或凸出的背面,直接浇口肉厚不均的部分。
2、凹陷与真空泡同时发生之状况:成型品的中心部位,肉较厚,冷却较慢,外部冷却较快,此时内部(肉厚处)熔融塑料被外侧拉伸,中心部发后空隙,实际为真空泡不易冷却的肉厚部发后于表面者为缺陷。
3、原因及对策A、原因:射出压低的场合对策:射出压低则树脂的压缩不完全而产生收缩下陷,最好是提高射出压。
B、原因:射出压保持时间短的场合。
对策:射出压保持时间短,则无法弥补树脂的热收缩量,另外也容易造成回流(BACK FLOW)而发生压缩不完全,因此延长射出保持时间。