基于抛物线求积公式的土石方计算方法
- 格式:pdf
- 大小:137.56 KB
- 文档页数:3
路基⼟⽯⽅计算⽅法和公式及常规⼟⽅计价规则路基⼟⽯⽅计算⽅法及公式路基⼟⽯⽅是公路⼯程的⼀项主要⼯程量,在公路设计和路线⽅案⽐较中,路基⼟⽯⽅数量的多少是评价公路测设质量的主要技术经济指标之⼀。
在编制公路施⼯组织计划和⼯程概预算时,还需要确定分段和全线路基⼟⽯⽅数量。
地⾯形状是很复杂的,填、挖⽅不是简单的⼏何体,所以其计算只能是近似的,计算的精确度取决于中桩间距、测绘横断⾯时采点的密度和计算公式与实际情况的接近程度等。
计算时⼀般应按⼯程的要求,在保证使⽤精度的前提下⼒求简化。
⼀、横断⾯⾯积计算路基的填挖断⾯⾯积,是指断⾯图中原地⾯线与路基设计线所包围的⾯积,⾼于地⾯线者为填,低于地⾯线者为挖,两者应分别计算。
通常采⽤积距法和坐标法。
1.积距法:如图4-5将断⾯按单位横宽划分为若⼲个梯形和三⾓形,每个⼩条块的⾯积近似按每个⼩条块中⼼⾼度与单位宽度的乘积:Ai=b hi则横断⾯⾯积: A =b h1+b h2 +b h3 +… +b hn =b ∑ hi当 b = 1m 时,则 A 在数值上就等于各⼩条块平均⾼度之和∑ hi 。
2.坐标法:如图4-6已知断⾯图上各转折点坐标(xi,yi), 则断⾯⾯积为:A = [∑(xi yi+1-xi+1yi ) ] 1/2坐标法的计算精度较⾼,适宜⽤计算机计算。
⼆、⼟⽯⽅数量计算路基⼟⽯⽅计算⼯作量较⼤,加之路基填挖变化的不规则性,要精确计算⼟⽯⽅体积是⼗分困难的。
在⼯程上通常采⽤近似计算。
即假定相邻断⾯间为⼀棱柱体,则其体积为:V=(A1+A2)式中:V —体积,即⼟⽯⽅数量(m3);A1、A2 —分别为相邻两断⾯的⾯积(m2);L —相邻断⾯之间的距离(m)。
此种⽅法称为平均断⾯法,如图4-7。
⽤平均断⾯法计算⼟⽯⽅体积简便、实⽤,是公路上常采⽤的⽅法。
但其精度较差,只有当A1、A2相差不⼤时才较准确。
当A1、A2相差较⼤时,则按棱台体公式计算更为接近,其公式如下:V= (A1+A2) L (1+ )式中:m = A1 / A2 ,其中A1 <A2 。
土石方工程算量方法土石方工程算量其实没那么神秘啦。
咱先说挖方量的计算。
如果是规则的长方体形状的土石方,那就简单得很,直接用长乘以宽乘以高就成。
比如说,要挖一个长10米、宽5米、深2米的坑,那挖方量就是10×5×2 = 100立方米。
就像搭积木一样,一块一块的体积加起来嘛。
要是遇到那种梯形的坑呢?这时候就有个小公式啦。
V = [S1 + S2 + √(S1×S2)]×h÷3。
这里的S1和S2是梯形上下底的面积,h是高。
你可别被这个公式吓着,其实就是把梯形分成好几个简单的形状来算体积,然后加起来。
就好比把一个怪形状的蛋糕切成几块规则的,再算总体积。
填方量的计算呢,和挖方量有点类似。
不过要考虑到土的压实系数哦。
比如说,你挖出来100立方米的土,填回去的时候因为要压实,可能就不是100立方米了。
如果压实系数是0.9,那实际需要填方的松散土体积就是100÷0.9≈111.11立方米。
这就像把棉花压实,原本松松的一大团,压实了就变小了,但是你要填回原来的坑,就得准备更多松松的棉花。
还有一种情况是边坡的土石方量计算。
边坡是斜着的,这时候就要用到三角体的体积计算啦。
边坡的坡度不同,计算也会有点小复杂。
但是只要记住三角形面积公式和三棱柱的体积公式就好。
想象一下,边坡就像好多三棱柱堆起来的,算出一个三棱柱的体积,再乘以个数就差不多啦。
在实际工程里呀,可不会都是这么规规矩矩的形状。
有时候地形坑坑洼洼的,这时候就可以用方格网法来计算。
把要计算的区域划分成好多小方格,然后分别测量每个方格角点的高程,根据这些高程差来计算每个方格的土石方量,最后把所有方格的量加起来。
这就像是把一大块地分成好多小格子,一格一格算清楚,再汇总。
土石方工程算量虽然有点小麻烦,但只要掌握了这些方法,就像找到了打开宝藏的钥匙一样。
多做几个项目,算量就会越来越熟练啦。
加油哦,。
一般土石方计算公式好的,以下是为您生成的关于“一般土石方计算公式”的文章:在咱们的日常生活和各种工程建设中,土石方计算可是个相当重要的环节。
就像上次我去参观一个建筑工地,那场面可真是热闹非凡。
工人们忙忙碌碌,各种大型机械轰鸣作响。
而在这一片繁忙之中,土石方计算的准确性就显得尤为关键。
咱们先来说说常见的长方体形状的土石方量计算。
这就好比一个规整的大箱子,体积等于长乘以宽乘以高。
假设咱们有一块长方形的土地,长 50 米,宽 30 米,要挖深 2 米的坑,那这土石方量就是50×30×2 = 3000 立方米。
这个计算简单直接,就像我们去菜市场买菜算价格一样,清清楚楚。
还有一种常见的是棱台形状的土石方计算。
这有点像一个被削了尖的大土堆。
计算公式是V = 1/3×H×(S1 + S2 + √(S1×S2)) 。
这里面 H 是棱台的高,S1 和 S2 分别是上下底面的面积。
比如说,有个土堆,上面底面是 20 平方米,下面底面是 50 平方米,高是 5 米,那计算起来就是1/3×5×(20 + 50 + √(20×50)) 。
在实际的工程中,地形往往不会那么规整。
这时候就得用到更复杂一点的方法,比如三角网法。
想象一下把这块地划分成好多小三角形,然后分别计算每个三角形的土石方量,最后加起来。
这就像是拼拼图,一块一块地算清楚。
说到这,我想起之前在一个山区修路的项目。
那地形高低起伏,特别复杂。
工程师们拿着测量仪器,这儿测测,那儿量量,然后在图纸上标记各种数据。
回到办公室,就开始用这些公式埋头计算,那认真劲儿,就好像在解一道超级难的数学谜题。
另外,还有平均断面法。
就是先算出相邻两个断面的面积,然后取平均值,再乘以两个断面之间的距离。
这就好比我们切蛋糕,一段一段地算体积。
总之,一般土石方计算公式虽然看起来有点复杂,但只要咱们理解了原理,多做几道题,多去实地观察观察,就能熟练掌握。
土方量计算方法土方工程是指利用土方机械进行土壤的开挖、运输和填筑的工程。
在土方工程中,土方量的计算是非常重要的,它直接关系到工程的预算和施工进度。
因此,掌握土方量的计算方法对于土方工程的顺利进行至关重要。
本文将介绍土方量的计算方法,希望能对相关人员有所帮助。
首先,我们来看土方量计算的基本原理。
土方量的计算是通过测量工程现场的地形和土壤的特征参数,结合工程设计要求,确定土方工程的开挖和填方范围,然后根据土方工程的平面图和剖面图,计算出土方量。
土方量的计算主要包括挖方量和填方量两部分。
挖方量的计算方法如下,首先,利用测量仪器对工程现场的地形进行测量,得到地面高程数据;然后根据设计要求,确定挖方的范围和深度;最后,利用挖方的平面图和剖面图,计算出挖方量。
挖方量的计算公式为,挖方量 = 挖方面积×挖方深度。
填方量的计算方法如下,首先,利用测量仪器对工程现场的地形进行测量,得到地面高程数据;然后根据设计要求,确定填方的范围和高度;最后,利用填方的平面图和剖面图,计算出填方量。
填方量的计算公式为,填方量 = 填方面积×填方高度。
除了挖方量和填方量的计算方法外,还需要注意以下几点,首先,在进行土方量计算时,要根据实际情况选择合适的计算方法,例如对于不规则形状的挖填方区域,可以采用分块计算的方法;其次,要注意测量数据的准确性,尽量减小误差;最后,在进行土方量计算时,要结合工程实际情况,合理确定土方工程的施工方案,以确保土方工程的顺利进行。
综上所述,土方量的计算方法是土方工程中非常重要的一部分,它直接关系到工程的预算和施工进度。
通过对挖方量和填方量的计算方法的介绍,希望能对相关人员有所帮助,使土方工程能够顺利进行。
土石方工程量计算公式土石方工程一、人工平整场地:S=S底+2*L外+16二、挖沟槽:1. 垫层底部放坡:V=L*(a+2c+kH)*H2. 垫层表面放坡V=L*{(a+2c+KH1)H1+(a+2c)H2}三、挖基坑(放坡)方形: V=( a+2c+KH)* ( b+2c+KH)*H+1/3*K2H3圆形: V=∏/3*h*(R2+Rr+r2)放坡系数类别放坡起点人工挖土机械挖土坑内作业坑上作业一、二类别 1.20 1:0.5 1:0.33 1:0.75三类土 1.50 1:0.33 1:0.25 1:0.67四类土 2.00 1:0.25 1:0.10 1:0.33一、基坑土方工程量计算(一)基坑土方量计算基坑土方量的计算,可近似地按拟柱体体积公式计算(图1—8)。
图1—8基坑土方量计算图1—9基坑土方量计算V=H*(A'+4A+A'')/6H ——基坑深度(m)。
A1、A2——基坑上下两底面积(m2)。
A0 ——基坑中截面面积(m2)。
二、计算平整场地土方工程量①四棱柱法A、方格四个角点全部为挖或填方时(图1—16),其挖方或填方体积为:式中:h1、h2、h3、h4、——方格四个角点挖或填的施工高度,以绝对值带入(m);a ——方格边长(m)。
图1—16 角点全填或全挖;图1—17角点二填或二挖;图1—18角点一填三挖B、方格四个角点中,部分是挖方,部分是填方时(图1—17),其挖方或填方体积分别为:C、方格三个角点为挖方,另一个角点为填方时(图1—18),其填方体积为:其挖方体积为:②三棱柱法计算时先把方格网顺地形等高线将各个方格划分成三角形(图1—19)图1—19 按地形方格划分成三角形每个三角形的三个角点的填挖施工高度,用h1、h2、h3表示。
A、当三角形三个角点全部为挖或填时(图1—20a),其挖填方体积为:式中:a——方格边长(m);h1、h2、h3——三角形各角点的施工高度,用绝对值(m)代入。
路基土石方计算方法及公式路基土石方是公路工程的一项主要工程量,在公路设计和路线方案比较中,路基土石方数量的多少是评价公路测设质量的主要技术经济指标之一。
在编制公路施工组织计划和工程概预算时,还需要确定分段和全线路基土石方数量。
地面形状是很复杂的,填、挖方不是简单的几何体,所以其计算只能是近似的,计算的精确度取决于中桩间距、测绘横断面时采点的密度和计算公式与实际情况的接近程度等。
计算时一般应按工程的要求,在保证使用精度的前提下力求简化。
一、横断面面积计算路基的填挖断面面积,是指断面图中原地面线与路基设计线所包围的面积,高于地面线者为填,低于地面线者为挖,两者应分别计算。
通常采用积距法和坐标法。
1.积距法:如图4-5将断面按单位横宽划分为若干个梯形和三角形,每个小条块的面积近似按每个小条块中心高度与单位宽度的乘积:Ai=b hi则横断面面积:A =b h1+b h2 +b h3 +…+b hn =b∑hi当b = 1m 时,则A 在数值上就等于各小条块平均高度之和∑hi 。
2.坐标法:如图4-6已知断面图上各转折点坐标(xi,yi), 则断面面积为:A = [∑(xi yi+1-xi+1yi ) ] 1/2坐标法的计算精度较高,适宜用计算机计算。
二、土石方数量计算路基土石方计算工作量较大,加之路基填挖变化的不规则性,要精确计算土石方体积是十分困难的。
在工程上通常采用近似计算。
即假定相邻断面间为一棱柱体,则其体积为:V=(A1+A2)式中:V —体积,即土石方数量(m3);A1、A2 —分别为相邻两断面的面积(m2);L —相邻断面之间的距离(m)。
此种方法称为平均断面法,如图4-7。
用平均断面法计算土石方体积简便、实用,是公路上常采用的方法。
但其精度较差,只有当A1、A2相差不大时才较准确。
当A1、A2相差较大时,则按棱台体公式计算更为接近,其公式如下:V=(A1+A2) L (1+ )式中:m = A1 / A2 ,其中A1 <A2 。
土地平整挖填土方量计算方法选择与应用
土地平整挖填土方量计算方法选择与应用
由于项目对土方的需求,土地平整挖填土方量的计算就显得尤为重要,它是每一项工程必备的组成部分之一,对于土地平整挖填等项目都有着不可或缺的作用,土地平整挖填土方量的计算必须要准确,这也正是根据不同地形情况,选择最佳的土地平整挖填土方量计算方法的重要性的体现。
一般来说,土地平整挖填土方量计算方法可分为抛物线法、界站表格连续法和分段曲线法。
抛物线法,也称自动灌积法,是通过自动控制灌溉面积来进行计算的,它可以在比较快的时间里得到准确的结果,并且通过简单的操作控制灌溉的面积,可以有效的避免因为技术不熟练而出现的误差。
抛物线法能够获得较高的计算精度,且其计算速度也比较快,故在一定条件下,采用抛物线法计算土地平整挖填排水量比较合适。
界站表格连续法是根据蓄水池的外河岸线上的多个界站之间的
水位高差来进行计算的,通过连续表格的方法可以获得准确的结果。
但由于界站表格连续法需要在多个界站点上进行重复的工作,因此使用起来较为繁琐,它的效率也相对较低,而且随着采样点的增加,该方法会出现较大的误差。
分段曲线法由于只需在给定的等高点上采样,可以减少不必要的误差,它除了能计算出比较准确的挖填土方量之外,还可以明确指出土地的最大可填方量,所以在土地平整挖填工程中采用此方法来实施更为合适。
土石方常用计算方法摘要:土石方工程是建筑工程中的重要环节之一,其合理的计算方法对于工程的顺利进行至关重要。
本文将介绍土石方工程中常用的计算方法,包括土方开挖量计算、填方体积计算、土方运输量计算等。
一、土方开挖量计算土方开挖量计算是土石方工程的首要任务,准确的计算结果能够有效指导开挖工作的进行。
常用的土方开挖量计算方法主要有以下几种:1. 交界点法:按照建筑工程规范,将土方挖方区域划分为多个小块,并确定交界点。
通过测量交界点处的高程,计算每个小块的土方开挖量,然后将各个小块的开挖量累加即可得到总开挖量。
2. 等高线法:根据工程图纸上的等高线,将土方开挖区域划分为多个等高线间的区域,并计算每个区域的土方开挖量,然后将各个等高线间的开挖量累加即可得到总开挖量。
3. 平均地面高程法:根据工程图纸上标注的平均地面高程,结合土方开挖深度,计算每个土方开挖区域的土方开挖量,然后将各个区域的开挖量累加即可得到总开挖量。
二、填方体积计算填方体积计算是土石方工程中的另一个重要计算环节,它直接关系到土方工程的设计和施工进度。
常用的填方体积计算方法主要有以下几种:1. 积分法:将填方区域划分为多个小块,并在每个小块上测量地面高程和填方高程,然后计算每个小块的填方体积,最后将各个小块的体积累加即可得到总填方体积。
2. 梯形法:根据填方区域的地面高程和填方高程,将填方区域视为一系列梯形,计算每个梯形的面积,然后将各个梯形的面积相加即可得到总填方体积。
3. 等高线法:根据工程图纸上的等高线,将填方区域划分为多个等高线间的区域,并计算每个区域的填方体积,然后将各个等高线间的体积累加即可得到总填方体积。
三、土方运输量计算土方运输是土石方工程中的一个重要环节,准确计算土方运输量有助于合理安排施工进度和资源调配。
常用的土方运输量计算方法主要有以下几种:1. 单车运输量法:根据工程图纸上填方和挖方区域的体积计算结果,以及每车的装载量,计算每一车所需的运输量,然后将各个区域的运输量累加即可得到总运输量。