TLC2543电压检测
- 格式:doc
- 大小:27.00 KB
- 文档页数:6
tlc2543课程设计一、课程目标知识目标:1. 学生能理解tlc2543芯片的基本原理和工作方式。
2. 学生能掌握tlc2543的引脚功能、内部结构及其在模拟信号处理中的应用。
3. 学生能运用已学知识,分析tlc2543与其他电子元件的连接方式和电路设计。
技能目标:1. 学生能运用所学知识,正确操作tlc2543进行模拟信号的转换。
2. 学生能通过实验和调试,掌握tlc2543的编程方法,实现信号的采集和处理。
3. 学生能结合实际问题,设计并搭建简单的基于tlc2543的模拟信号处理电路。
情感态度价值观目标:1. 学生能积极参与课程学习和实验操作,培养对电子技术和工程实践的兴趣。
2. 学生在团队合作中,学会相互尊重、沟通与协作,培养解决问题的能力和责任感。
3. 学生通过学习tlc2543的应用,认识到电子技术在实际生活中的重要性,激发创新意识。
本课程针对高年级电子技术相关专业学生,结合课程性质,强调理论与实践相结合,注重培养学生的实际操作能力和创新思维。
课程目标的设定,旨在帮助学生掌握tlc2543芯片相关知识,提高电子电路设计和编程能力,同时注重培养积极的情感态度和价值观。
通过具体的学习成果分解,教师可进行有效的教学设计和评估,确保课程目标的实现。
二、教学内容本章节教学内容围绕tlc2543芯片的原理与应用展开,主要包括以下部分:1. tlc2543芯片基本原理:介绍芯片的工作方式、转换原理以及其特点与应用领域。
- 教材章节:模拟电子技术基础,第五章“模数转换器”2. tlc2543引脚功能与内部结构:详细解析各引脚的功能、内部结构及其在电路中的作用。
- 教材章节:第五章“模数转换器”中的5.3节“tlc2543引脚功能及内部结构”3. tlc2543编程与操作:介绍芯片的编程方法、操作流程以及相关注意事项。
- 教材章节:第五章“模数转换器”中的5.4节“tlc2543编程与操作”4. tlc2543应用电路设计:分析tlc2543在实际电路中的应用,包括与其他电子元件的连接方式。
重金买的一篇好资料1 引言实验和工程实际中我们要进行大量的数据处理。
运用单片机采集系统能很好的解决这些问题。
基本的采集系统一般由MCU,A/D,PC 构成,MCU是整个系统的核心,A/D是数据的源头,PC是数据的归宿地。
A/D转换器的选择直接关系到采集精度是否理想。
现在TLC2543这款A/D转换器运用很广泛。
TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。
由于是串行输入结构, 能够节省51 系列单片机I/O 资源;且价格适中, 分辨率较高。
2 TLC2543的引脚排列及说明(1) TLC2543 的封装形式TLC2543的封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚的排列及说明见图 1 。
⑵TLC2543的简要工作过程TLC2543的工作过程分为两个周期:1/0周期和转换周期。
a ) I/O 周期I/O 周期由外部提供的I/O CLOCK 定义,延续8 12或16个时钟周期,决 定于选定的输出数据长度。
器件进入I/O 周期后同时进行两种操作。
I 在I/O CLOCK 的前8个脉冲的上升沿,以MSB 前导方式从 DATA INPUT 端输入8位数据流到输入寄存器。
其中前 4位为模拟通道地址,控制14 通道模拟多路器从11个模拟输入和三个内部测电压中选通一路送到采样 保持电路,该电路从第4个I/O CLOCK 脉冲的下降沿开始对所选信号进行 采样,直到最后一个I/O CLOCK 脉冲的下降沿。
I/O 周期的时钟脉冲个数 与输出数据长度(位数)同时由输入数据的D3 D2位选择为& 12或16。
当工作于12或16位时,在前8个时钟脉冲之后,DATA INPUT 无效。
l 在DATA OU 端串行输出8、12或16位数据。
当CS 保持为低时,第一 个数据出现在EOC 勺上升沿。
若转换由CS 控制,则第一个输出数据发生 在CS 的下降沿。
摘要:TLC2543是德州仪器公司生产的12位开关电容型逐次逼近模数转换器,它具有三个控制输入端,采用简单的3线SPI串行接口可方便地与微机进行连接,是12位数据采集系统的最佳选择器件之一。
本文介绍了该芯片的功能、时序,并给出了8051单片机的接口电路。
关键词:模数转换器; SPI串行接口; TLC25431. 概述A/D、D/A转换器是过程及仪器仪表、设备等检测与控制装置中应用比较广泛的器件。
随着大规模集成电路技术的发展,各种高精度、低功耗、可编程、低成本的A/D转换器不断推出,使得微机控制系统的电路更加简洁,可靠性更高。
TLC2543与外围电路的连线简单,三个控制输入端为CS(片选)、输入/输出时钟(I/O CLOCK)以及串行数据输入端(DATA INPUT)。
片内的14通道多路器可以选择11个输入中的任何一个或3个内部自测试电压中的一个,采样-保持是自动的,转换结束,EOC输出变高。
TLC2543的主要特性如下:●11个模拟输入通道;●66ksps的采样速率;●最大转换时间为10μs;●SPI串行接口;●线性度误差最大为±1LSB;●低供电电流(1mA典型值);●掉电模式电流为4μA。
2. TLC2543引脚功能与接口时序2.1 TLC2543引脚排列TLC2543的引脚排列如图1所示。
引脚功能说明如下:AIN0~AIN10:模拟输入端,由内部多路器选择。
对4.1MHz的I/O CLOCK,驱动源阻抗必须小于或等于50Ω;CS:片选端,CS由高到低变化将复位内部计数器,并控制和使能DATA OUT、DATA INPUT 和I/O CLOCK。
CS由低到高的变化将在一个设置时间内禁止DATA INPUT和I/O CLOCK;DATA INPUT:串行数据输入端,串行数据以MSB为前导并在I/O CLOCK的前4个上升沿移入4位地址,用来选择下一个要转换的模拟输入信号或测试电压,之后I/O CLOCK将余下的几位依次输入;DATA OUT:A/D转换结果三态输出端,在CS为高时,该引脚处于高阻状态;当CS为低时,该引脚由前一次转换结果的MSB值置成相应的逻辑电平;EOC:转换结束端。
数控直流电流源实验报告目录一.题目要求…………………………一.题目要求1.1、任务设计并制作数控直流电流源。
输入交流200~240V,50Hz;输出直流电压≤10V。
其原理示意图如下所示。
1.2、要求1、基本要求(1)输出电流范围:200mA~2000mA;(2)可设置并显示输出电流给定值,要求输出电流与给定值偏差的绝对值≤给定值的1%+10 mA;(3)具有“+”、“-”步进调整功能,步进≤10mA;(4)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的1%+10 mA;(5)纹波电流≤2mA;(6)自制电源。
2、发挥部分(1)输出电流范围为20mA~2000mA,步进1mA;(2)设计、制作测量并显示输出电流的装置(可同时或交替显示电流的给定值和实测值),测量误差的绝对值≤测量值的0.1%+3个字;(3)改变负载电阻,输出电压在10V以内变化时,要求输出电流变化的绝对值≤输出电流值的0.1%+1 mA;(4)纹波电流≤0.2mA;(5)其他。
1.3、评分标准项目满分基本要求设计与总结报告:方案比较、设计与论证,理论分析与计算,电路图及有关设计文件,测试方法与仪器,测试数据及测试结50键盘控制器电流源负载显示器电源果分析。
实际完成情况 50 发挥部分完成第(1)项 4 完成第(2)项20 完成第(3)项 16 完成第(4)项 5 其他51.4、说明1、需留出输出电流和电压测量端子;2、输出电流可用高精度电流表测量;如果没有高精度电流表,可在采样电阻上测量电压换算成电流;3、纹波电流的测量可用低频毫伏表测量输出纹波电压,换算成纹波电流。
二,总框图三,硬件系统设计2.1单片机最小系统2.1.1时钟电路单片机必须在时钟的驱动下才能工作,在单片机内部有一个时钟振荡电路,只需要再外接一个振荡源就能产生一定的时钟信号送到单片机内部的各个单元,确定单片机的工作速度。
一般选用石英晶体振荡器。
TLC2543 中文资料TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D转换过程。
由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。
2 TLC254 ...TLC2543是TI公司的12位串行模数转换器,使用开关电容逐次逼近技术完成A/D 转换过程。
由于是串行输入结构,能够节省51系列单片机I/O资源;且价格适中,分辨率较高,因此在仪器仪表中有较为广泛的应用。
2 TLC2543的特点(1)12位分辩率A/D转换器;(2)在工作温度范围内10μs转换时间;(3)11个模拟输入通道;(4)3路内置自测试方式;(5)采样率为66kbps;(6)线性误差±1LSBmax;(7)有转换结束输出EOC;(8)具有单、双极性输出;(9)可编程的MSB或LSB前导;(10)可编程输出数据长度。
3TLC2543的引脚图(管脚图)及说明TLC2543有两种封装形式:DB、DW或N封装以及FN封装,这两种封装的引脚排列如图1,引脚说明见表1。
表1 TLC2543引脚说明引脚号名称I/O 说明1~9,11,12 AIN0~AIN10 I 模拟量输入端。
11路输入信号由内部多路器选通。
对于4.1MHz的I/OCLOCK,驱动源阻抗必须小于或等于50Ω,而且用60pF电容来限制模拟输入电压的斜率15 I 片选端。
在端由高变低时,内部计数器复位。
由低变高时,在设定时间内禁止DATAINPUT和I/O CLOCK17 DATAINPUT I 串行数据输入端。
由4位的串行地址输入来选择模拟量输入通道16 DATA OUT O A/D转换结果的三态串行输出端。
为高时处于高阻抗状态,为低时处于激活状态19 EOC O 转换结束端。
在最后的I/OCLOCK下降沿之后,EOC从高电平变为低电平并保持到转换完成和数据准备传输为止10 GND 地。
课程设计题目: 基于单片机的数字电压表设计专业:电气工程及其自动化班级:学号:学生姓名:指导教师:2010年9月8日数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。
目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。
与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。
本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。
关键词:数字电压表 A/D 转换器 PC 电压测量AbstractDigital voltage meter (Digital V oltmeter) referred to as DVM, it is the use of digital measuring technology, the continuous analog (DC input voltage) into a non-continuous, discrete digital form and to display the instrument.Analog voltage meter features a traditional single, low accuracy, can not meet the digital age, using the single chip digital voltage meter, from the high precision, anti-interference ability, scalability, Ji Cheng convenience, and PC can communicate in real time.At present, by a variety of single A / D converter consisting of digital voltage meter, has been widely used in electronic and electrical measurement, industrial automation, instrumentation, automated test systems, intelligent measurement, showing strong vitality.At the same time, the DVM extension to the various general and specific digital instruments, but also the power and non-power measurement up to a new level.This chapter focuses on single-chip A / D converter, and they form by the microcontroller-based digital voltmeter works.Keywords: digital voltmeter A / D converter voltage measurement PC目录1 设计方案 (6)1.1 A/D转换部分 (6)1.2 电源部分 (7)2 系统硬件电路设计 (8)2.1 单片机芯片 (8)2.2 89C51与外围电路的接口 (10)3 详细设计 (14)3.1复位电路 (14)3.2电源电路 (16)3.3 程序框图 (17)3.4 源程序 (19)4 总结 (28)参考文献 (29)1 设计方案在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。
关于TLC2543的一些问题TLC2543是我调的第四个模块,严格意义上说第三个,因为A/D与D/A是相互配合使用的,在原理上有很多相同的地方。
比如逐次逼近式的A/D转换芯片,内部就存在一个D/A转换器。
总之二者在原理上有相通的地方,下面是我在调试芯片过程中遇到的一些问题:1、下面是它的管脚图以及结构框图:图1、TLC2543NC管脚图图2、2543的结构框图2、它有0~10共11个输入端口,也就是有11个通道,这11个通道是由DA TA IN的高四位决定的,而DA TA IN的低四位决定了是采用8位、12位还是16位数据输出格式,以及输出是单极性输出还是双极性输出,详见表1.需要注意的是这里的DATA IN并不是用于转换的输入数据,而是对输入通道,及一些相关格式的选择数据,相当于命令数据。
DATA OUT是一个串行的输出端,将输入的模拟量转换为数字量后,一位一位输出出来。
转换结束的信号是由EOC决定的,当它为低时表示转换结束,为高时表示正在转换,这里需要注意的是,现在转换的信号,并须在下一次有效输出信号来临时,才被输出;而当前输出的数据世上一次操作转换的结果,所以要输出当前的转换结果,至少要执行两次有效输出,才能得到正确结果。
表1、2543的输入数据功能表3、下面是2543在使用时的两种不同模式,一种是使用~CS端进行控制,一种是不使用。
很显然,第二种,2543时刻都被选通,时刻都在准备进行数据的转换,这样必然会有一定的功耗,所以如果能合理地设计~CS的选通状态,就可以减少电路的功耗。
同样的,还有以8位数据及16位数据格式输出,原理及时序图都与12位的相同,只有输出结果的位数不同,当然,相应的精度也就不同。
可根据具体需要,进行设置。
图3、采用12位输出数据并使用~CS时的序图图4、采用12位输出数据并不使用~CS时的序图。
图3.5TLC2543芯片引脚图图3.6内部结构图3.6 TLC2543芯片引脚及内部结构TLC2543是德州仪器公司生产的12位开关电容型逐次逼近模数转换器,最大转换时间10us,11个模拟输入通道,3路内置自测试方式,采样率为66KSPS,线性误差±1LSBmax,有转换结束输出EOC,具有单极、双极性输出,可编程的MSB或LSB前导,可编程输出数据长度。
它具有三个控制输入端,采用简单三线SPI串行接口可方便的与微机进行连接,图3.5和图3.6分别是TLC2543的引脚排列图和内部结构图。
表3.2是TLC2543的引脚功能说明。
3.7 TLC2543的工作方式和输入通道的选择TLC2543是一个多通道和多工作方式的模数转换器件。
图3.5为其芯片引脚图,图3.6是它的内部结构图。
其工作方式和输入通道的选择是通过向TLC2543的控制寄存器写入一个八位的控制字来实现的。
这个八位控制字由四个部分组成:D7D6D5D4选择输入通道,D3D2选择输出数据长度,D1选择输出数据顺序,D0选择转换结果的极性。
八位控制字的各位的含义如表3.3所示。
主机以MSB为前导方式将控制字写入TLC2543的控制寄存器,每个数据位都是在CLOCK序列的上升沿被写入控制器。
表3.2引脚功能说明3.7.1 TLC2543的读写时序当片选信号/CS为高电平时,CLOCK和DATA-IN被禁止、DATA-OUT为高阻状态,以便SPI总线上的其它器件让出总线。
在片选信号/CS的下降沿,A/D转换结果的第一位数据出现在DATA-OUT引脚上,A/D转换结果的其他数据位在时钟信号CLOCK的下降沿被串行输出到DATA-OUT。
在片选信号/CS下降以后,时钟信号CLOCK的前八个上升沿将八位控制字从DATA_IN引脚串行输入到TLC2543的控制寄存器。
在片选信号/CS下降以后,经历8个(12个或16个)时钟信号完成对A/D转换器的一次读写。
tlc2543引足、功效及时序中文资料转[精彩] TLC2543引脚、功能及时序中文资料(转)应用 2010-01-26 10:03:30 阅读825 评论0 字号:大中小一、引脚:TLC2543为20脚DIP封装,引脚图如下图所示。
TLC2543具有4线制串行接口,分别为片选端(CS),串行时钟输入端(I/O CLOCK),串行数据输入端(DATA IN)和串行数据输出端(DATA OUT)。
它可以直接与SPI器件进行连接,不需要其他外部逻辑。
同时,它还在高达4MHz的串行速率下与主机进行通信。
TLC2543除了具有高速的转换速度外,片内还集成了14路多路开关。
其中n路为外部模拟量输入,3路为片内自测电压输入。
在转换结束后,EOC引脚变为高电平,转换过程中由片内时钟系统提供时钟,无需外部时钟。
在AD转换器空闲期间,可以通过编程方式进入断电模式,此时器件耗电只有25pA。
二、控制字:TLC2543的工作过程如下:首先在8、12或16时钟周期里向片内控制寄存器写入8位的控制字,控制字中的2位决定时钟长度,在最后一个时钟周期的下降沿启动AD转换过程,经过一段转换时间,在随后的8、12或16个时钟周期里,从DATA OUT脚读出数据。
控制字的定义见下表:控制字的前四位(D7-D4)代表11个模拟通道的地址;当其为1100-1110时,选择片内检测电压;当其为1111时,为软件选择的断电模式,此时,AD转换器的工作电流只有25uA.控制字的第3位和第4位(D3一D2)决定输出数据的长度,01表示输出数据长度为8位;11表示输出数据长度为16位;X1表示输出数据长度为12位,X可以为1或0。
控制字的第2位(D1)决定输出数据的格式,0表示高位在前,1表示低位在前。
控制字的第1位(D0)决定转换结果输出的格式。
当其为0时,为无极性输出(无符号二进制数),即模拟电压为Vnef+,时,转换的结果为0FFFH;模拟电压为Vnef-时,转换的结果为0000H。