086面面垂直当堂检测卷
- 格式:doc
- 大小:77.50 KB
- 文档页数:5
面面垂直基础训练题(有详解)一、单选题1.平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,2CD =,132C C =,则二面角1C BD C --的平面角的余弦值为( )A .12B .13C .3D 2.如图,在长方体1111ABCD A B C D -中,11AA =,3AD =,4AB =,则点B 到平面1D AC 的距离为( )A B .1213C D .253.在正四面体P ABC -中,,,D E F 分别是,,AB BC CA 的中点,下面四个结论中不成立的是( ) A .//BC 平面PDF B .DF ⊥平面PAE C .平面PDF ⊥平面ABC D .平面PDF ⊥平面PAE二、解答题4.如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.(1)求证:DG ⊥平面ABCE ; (2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由.5.如图,四棱锥P ABCD -的底面是菱形,PO ⊥底面ABCD ,O 、E 分别是AD 、AB 的中点,6AB =,5AP =,60BAD ∠=︒.(1)求证:平面PAC ⊥平面POE ;(2)求直线PB 与平面POE 所成角的正弦值;(3)若F 是边DC 的中点,求异面直线BF 与PA 所成角的正切值.6.如图1所示,在矩形ABCD 中, 2,4AB AD ==, E 为 C D 的中点,沿 AE 将AED∆折起,如图2所示, O H M 、、分别为AE BD AB 、、的中点,且 2DM =.(1)求证: //OH 平面DEC ; (2)求证:平面ADE ⊥平面 ABCE .7.如图,在三棱锥P —ABC 中,△PBC 为等边三角形,点O 为BC 的中点,AC⊥PB,平面PBC⊥平面ABC .(1)求直线PB 和平面ABC 所成的角的大小; (2)求证:平面PAC⊥平面PBC ;(3)已知E 为PO 的中点,F 是AB 上的点,AF =λAB .若EF∥平面PAC ,求λ的值. 8.如图,三棱柱111ABC A B C -中,1BC CC =,平面11A BC ⊥平面11BCC B .证明:(1) //AC 平面11A BC ; (2) 平面1AB C ⊥平面11A BC .9.如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为直角梯形,AD CD ⊥,//AB CD ,2CD AB =.(Ⅰ)求证:平面PAB ⊥平面PAD ; (Ⅱ)在侧棱PC 上是否存在点M ,使得//BM 平面PAD ,若存在,确定点M 位置;若不存在,说明理由.10.如图,ABC ∆是边长为2的正三角形.若1AE =,AE ⊥平面ABC ,平面BCD ⊥平面ABC ,BD CD =,且BD CD ⊥.(1)求证:AE 平面BCD ;(2)求证:平面BDE ⊥平面CDE .11.如图所示,在三棱柱111ABC A B C -中,V ABC 与111A B C △都为正三角形,且1AA ⊥平面ABC ,1F F ,分别是11AC A C ,的中点.求证:(1)平面11AB F ∥平面1C BF ; (2)平面11AB F ⊥平面11ACC A .12.如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将ACM ∆折起,使点M 到达点D 的位置,且AB DA ⊥.(Ⅰ)证明:平面ACD ⊥平面ABC ;(Ⅱ)Q 为线段AD 上一点,P 为线段BC 上一点,且13BP DQ DA ==,求二面角Q PA C --的大小的正切值.13.在如图所示的几何体中,四边形ABCD 是正方形, MA ⊥平面ABCD ,//,PD MA E G F 、、分别为MB PB PC 、、的中点,且2AD PD MA ==.(1)求证:平面//EFG 平面PMA ; (2)求证:平面P DC EFG ⊥平面;14.在四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,1AB =,2BC =,60ABC ∠=(Ⅰ)设平面PBC ⋂平面PAD l =,求证://BC l (II )求证:平面PAC ⊥平面PAB15.如图,四棱锥P -ABCD 的底面是矩形,PA ⊥平面ABCD ,E ,F 分别是AB ,PD 的(Ⅱ)求证:平面PEC⊥平面PCD.参考答案1.D 【解析】 【分析】作出二面角1C BD C --的平面角,利用余弦定理计算出二面角的余弦值. 【详解】连接AC 交BD 于O ,连接1C O ,由于四边形ABCD 是菱形,所以BD CO ⊥.由于1111CD CB C CD C CB C C C C=⎧⎪∠=∠⎨⎪=⎩,所以11C CD C CB ∆≅∆,所以11C D C B =,所以1BD C O ⊥.故1C OC ∠是二面角1C BD C --的平面角.由于1160C CB C CD BCD ∠=∠=∠=︒,2CD =,132C C =,所以2,1BD OB OD ===,1113602C B C D===,所以132C O ==,而OC =在三角形1C OC中,由余弦定理得199344cos 3322C OC +-∠==.故选D.【点睛】本小题主要考查利用几何法求二面角的余弦值,考查空间想象能力和逻辑推理能力,属于中档题. 2.B【解析】 【分析】根据等体积法:11D ACD D ACD V V --=得到1111,33ACD ACD S h S DD ⨯=⨯分别求出三角形的面积代入上式得到结果. 【详解】连接BD 交AC 于O 点,根据长方形对角线互相平分得到O 点为BD 的中点,故点B 到面1D AC 的距离等于点D 到面1D AC 的距离,根据11D ACD D ACD V V --=,设点D 到面1D AC 的距离为h,故得到1111,33ACD ACD S h S DD ⨯=⨯115,AC AD CD == 根据余弦定理得到11113cos 2AD CAD C AD C S ===,6ACDS =将面积代入上式得到h=1213. 故答案为:B. 【点睛】本题考查了点面距离的求法,点面距可以通过建立空间直角坐标系来求得点面距离,或者寻找面面垂直,再直接过点做交线的垂线即可;当点面距离不好求时,还可以等体积转化. 3.C 【解析】 【分析】由//DF BC ,能证明//BC 平面PDF ;由已知推导出AE BC ⊥,PE BC ⊥,从而BC ⊥平面PAE ,进而DF ⊥平面PAE ;由已知得平面PAE ⊥平面ABC ,从而平面PDE 与平面ABC 不垂直;由DF ⊥平面PAE ,推导出平面PDF ⊥平面PAE . 【详解】∵在正四面体P ABC -中,,,D E F 分别是,,AB BC CA 的中点, ∴//DF BC ,∵DF ⊂平面PDF ,BC ⊄平面PDF , ∴//BC 平面PDF ,故A 正确;∵AB AC PB PC ===,E 是BC 中点, ∴AE BC ⊥,PE BC ⊥, ∵AE PE E ⋂=, ∴BC ⊥平面PAE , ∵//DF BC ,∴DF ⊥平面PAE ,故B 正确; ∵DF ⊥平面PAE ,DF ⊂平面ABC , ∴平面PAE ⊥平面ABC ,∵平面PAE ⋂平面PDE PE =,且PE 与平面ABC 不垂直, ∴平面PDE 与平面ABC 不垂直,故C 错误; ∵DF ⊥平面PAE ,且DF ⊂平面PDF , ∴平面PDF ⊥平面PAE ,故D 正确,故选C . 【点睛】本题通过对多个命题真假的判断,综合考查线面平行、线面垂直、面面垂直,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题. .4.(1)见证明;(2) (3)34BP BD = 【解析】 【分析】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ; (2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证平面//CFP 平面ADE ,故//CP 平面ADE ,根据//FP AD 计算BPBD的值. 【详解】(1)证明:因为G 为AE 中点,2AD DE ==, 所以DG AE ⊥.因为平面ADE ⊥平面ABCE , 平面ADE平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .(2)在直角三角形ADE 中,易求AE =则AD DEDG AE⋅==. 所以四棱锥D ABCE -的体积为1(14)232D ABCE V -+⨯=⨯=(3) 过点C 作//CF AE 交AB 于点F ,则:1:3AF FB =.过点F 作//FP AD 交DB 于点P ,连接PC ,则:1:3DP PB =. 又因为CF//A E ,AE ⊂平面,ADE CF ⊄平面ADE , 所以CF //平面ADE . 同理//FP 平面ADE . 又因为CF PF F ⋂=, 所以平面CFP //平面ADE .因为CP ⊂平面CFP ,所以//CP 平面ADE .所以在BD 上存在点P ,使得//CP 平面ADE ,且34BP BD =. 【点睛】本题主要考查线面垂直的性质与判定,线面平行的性质与判定以及四棱锥的体积,考查学生的空间想象能力和推理论证能力.计算柱锥台的体积的关键是根据条件找出相应的底面积和高,如果给出的几何体不规则,需要利用求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法.5.(1)见解析;(2)86;(3)9【解析】【分析】(1)根据四边形ABCD 是菱形,证得AC BD ⊥,由平行得到OE AC ⊥,结合PO AC ⊥,证得AC ⊥平面POE ,由此证得平面PAC ⊥平面POE .(2)作出线面角,然后解直角三角形求得线面角的正弦值.(3)作出异面直线所成的角,然后利用余弦定理求得角的余弦值,进而求得其正切值.【详解】(1)证明:ABCD 是菱形,AC BD ⊥,//OE BD OE AC ∴⊥,PO ⊥底面ABCD ,PO AC ⊥,OE ,OP ⊂平面POEOE OP O =,AC ∴⊥平面POE ,AC ⊂平面PAC∴平面PAC ⊥平面POE(2)过点B 作BM OE ⊥于M ,易证PO BM ⊥,OE ,OP ⊂平面POEOE OP O =,BM ∴⊥平面POE ,PM ∴是PB 在平面POE 上的射影BPM ∠即为所求,在Rt PMB ∆中,2BM =,PB =sin BM BPM PB ∠==(3)分别取AB ,PB 中点H ,T ,易证//DH BF ,//TH PADHT ∴∠即为异面直线BF 与PA 所成角或其补角在DHT ∆中,DH =,52HT =,DT =cos 10DHT ∴∠= tan 9DHT ∴∠=【点睛】本小题主要考查面面垂直的证明,考查线面角的正弦值的求法,考查线线角的正切值的求法,考查空间想象能力和逻辑推理能力,属于中档题.6.(1)见解析;(2)见解析【解析】【分析】(1)取BC 中点Q ,连接OQ ,通过证明线线平行,证得平面//DEC 平面OHQ ,由此证得 //OH 平面DEC .(2)连接OD ,OM ,根据等腰三角形的性质,证得DO AE ⊥,利用勾股定理证得DO OM ⊥,由此证得OD ⊥平面ABCE ,进而证得平面ADE ⊥平面 ABCE .【详解】(1)证明:取BC 中点Q ,连接OQ (如图),易证//OQ 平面DEC//HQ 平面DEC ,OQ ,HQ ⊂平面OHQ ,OQ HQ Q =∴平面//DEC 平面OHQ ,OH ⊂平面OHQ ,//OH ∴平面DEC(2)证明:连接OD ,OM ,DA DE =,O 为AE 中点DO AE ∴⊥,222DO OM DM +=,DO OM ∴⊥AE ,OM ⊂平面ABCE ,AE OM O =,OD ∴⊥平面ABCEOD ⊂平面ADE ∴平面ADE ⊥平面ABCE【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.7.(1)060;(2)证明见解析;(3)13λ=【解析】【分析】(1)先找到直线PB 与平面ABC 所成的角为PBO ∠,再求其大小;(2)先证明PO AC ⊥, 再证明平面PAC⊥平面PBC ;(3)取CO 的中点G,连接EG ,过点G 作FG||AC,再求出λ的值.【详解】(1)因为平面PBC⊥平面ABC ,PO⊥BC, 平面PBC∩平面ABC=BC,PO PBC ⊂平面, 所以PO ⊥平面ABC,所以直线PB 与平面ABC 所成的角为PBO ∠,因为0=60PBO ∠,所以直线PB 与平面ABC 所成的角为060.(2)因为PO ⊥平面ABC,所以PO AC ⊥,因为AC ⊥PB ,,,PO PB PBC POPB P ⊂=平面,所以AC ⊥平面PBC,因为AC ⊂平面PAC,所以平面PAC⊥平面PBC.(3)取CO 的中点G ,连接EG ,过点G 作FG||AC,由题得EG||PC,所以EG||平面APC,因为FG||AC ,所以FG||平面PAC,EG,FG ⊂平面EFO,EG ∩FG=G ,所以平面EFO||平面PAC,因为EF ⊂平面EFO,所以EF||平面PAC.此时AF=11,33AB λ∴=. 【点睛】本题主要考查空间几何元素垂直关系的证明,考查线面角的求法,考查空间几何中的探究性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.8.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据三棱柱特点可知11//AC A C ,根据线面平行判定定理证得结论;(2)由四边形11BCC B 为菱形可得11B C BC ⊥,根据面面垂直的性质可知1B C ⊥平面11A BC ,根据面面垂直的判定定理证得结论.【详解】(1)几何体为三棱柱 ⇒四边形11ACC A 为平行四边形 11//AC A C ⇒又11A C ⊂平面11A BC ,AC ⊄平面11A BC //AC ∴平面11A BC(2)1BC CC =且四边形11BCC B 为平行四边形∴四边形11BCC B 为菱形 11B C BC ⊥∴又平面11A BC ⊥平面11BCC B ,平面11A BC ⋂平面111BCC B BC =1B C ∴⊥平面11A BC又1B C ⊂平面1AB C ∴平面1AB C ⊥平面11A BC【点睛】本题考查直线与平面平行、平面与平面垂直关系的证明,涉及到空间几何体的结构、面面垂直性质定理的应用等知识,属于常考题型.9.(Ⅰ)见解析;(Ⅱ)见解析【解析】【分析】(Ⅰ)先证明PD AB ⊥和AD AB ⊥,进而求出AB ⊥平面PAD ,然后就可以证出平面PAB ⊥平面PAD(Ⅱ)连接MN ,AN ,易得MN 是PCD ∆的中位线,即可证明四边形ABMN 为平行四边形,然后,利用定义,即可求证//BM平面PAD 【详解】(Ⅰ)证明:因为PD ⊥平面ABCD ,所以PD AB ⊥.又因为AD CD ⊥,//AB CD ,所以AD AB ⊥.又AD PD D =I ,,AD PD ⊂平面PAD .可得AB ⊥平面PAD .又AB Ì平面PAB ,所以平面PAB ⊥平面PAD .(Ⅱ)当点M 是PC 的中点时,//BM 平面PAD .证明如下:设PD 的中点为N ,连接MN ,AN ,易得MN 是PCD ∆的中位线, 所以//MN CD ,12MN CD =. 由题设可得//AB CD ,2CD AB =,所以//MN AB ,MN AB =.所以四边形ABMN 为平行四边形,所以//BMAN .又BM ⊄平面PAD ,AN ⊂平面PAD ,所以//BM 平面PAD .【点睛】本题考查面面垂直与线面平行的证明,属于基础题10.(1)见解析;(2)见解析【解析】【分析】(1)取BC 的中点M ,连接DM ,由平面BCD ⊥平面ABC ,得DM ⊥平面ABC ,再证AE DM 即可证明(2)证明CD ⊥平面BDE ,再根据面面垂直的判定定理从而进行证明.【详解】(1)取BC 的中点M ,连接DM ,因为BD CD =,且BD CD ⊥,2BC =.所以1DM =,DM BC ⊥.又因为平面BCD ⊥平面ABC ,所以DM ⊥平面ABC ,又AE ⊥平面ABC ,所以AE DM又因为AE ⊄平面BCD ,DM ⊂平面BCD ,所以AE 平面BCD .(2)连接AM ,由(1)知AE DM ,又1AE =,1DM =,所以四边形DMAE 是平行四边形,所以DE AM .又ABC ∆是正三角形,M 为BC 的中点,∴AM BC ⊥,因为平面BCD ⊥平面ABC ,所以AM ⊥平面BCD ,所以DE ⊥平面BCD .又CD ⊂平面BCD ,所以DE CD ⊥.因为BD CD ⊥,BD DE D ⋂=,所以CD ⊥平面BDE .因为CD ⊂平面CDE ,所以平面BDE ⊥平面CDE .【点睛】本题考查了线面平行的证明,线面垂直,面面垂直的判定定理,考查空间想象和推理能力,熟记定理是关键,是一道中档题.11.(1)见解析.(2)见解析.【解析】【分析】(1)由1,F F 分别是11,AC A C 的中点,证得1111,B F BF AF C F ∥∥,由线面平行的判定定理,可得11B F //平面1C BF ,1AF //平面1C BF ,再根据面面平行的判定定理,即可证得平面11AB F ∥平面1C BF .(2)利用线面垂直的判定定理,可得11B F ⊥平面11ACC A ,再利用面面垂直的判定定理,即可得到平面11AB F ⊥平面11ACC A .【详解】(1)在三棱柱111ABC A B C -中,因为1,F F 分别是11,AC A C 的中点,所以1111,B F BF AF C F ∥∥,根据线面平行的判定定理,可得11B F //平面1C BF ,1AF //平面1C BF又11111,B F AF F C F BF F ==,∴平面11AB F ∥平面1C BF .(2)在三棱柱111ABC A B C -中,1AA ⊥平面111A B C ,所以111B F AA ⊥,又1111B F AC ⊥,1111A C AA A =,所以11B F ⊥平面11ACC A ,而11B F ⊂平面11AB F ,所以平面11AB F ⊥平面11ACC A .【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.12.(Ⅰ)详见解析;【解析】【分析】(Ⅰ)证明AB AC ⊥,结合AB DA ⊥,证明AB ⊥平面ACD ,然后证明平面ACD ⊥平面ABC ;(Ⅱ)过Q 作//QN DC 交AC 于点N ,过N 作NO AP ⊥交AP 于点O ;证明DC ⊥平面ABC ,推出QN AP ⊥,结合NO AP ⊥,推出AP ⊥平面QNO ,即可证明QO AP ⊥,NOQ ∠就是二面角Q PA C --的平面角;通过求解三角形的相关知识即可求解二面角Q PA C --大小的正切值.【详解】 (Ⅰ)平行四边形ABCM 中,90ACM ∠= 90BAC ∴∠=,即AB AC ⊥ 又AB DA ⊥,DA AB A = AB ∴⊥平面ACDAB ⊂平面ABC ∴平面ACD ⊥平面ABC(Ⅱ)在ACD ∆中,过Q 作//QN DC 交AC 于点N ,过N 作NO AP ⊥交AP 于点O 由(Ⅰ)知平面ACD ⊥平面ABC平面ACD ⋂平面ABC AC =,90DCA ∠=o DC ∴⊥平面ABC//QN DC QN ∴⊥平面ABC ,AP ⊂平面ABC QN AP ∴⊥又NO AP ⊥,QN NO N = AP ∴⊥平面QNOQO ⊂平面NQO QO AP ∴⊥NOQ ∴∠就是二面角Q PA C --的平面角在CAP ∆中,3CA =,23CP CB ==45ACP ∠=(2222232342co 5s 5AP AC CP AC CP ACP ∴=+-⋅⋅∠=+-⨯⨯︒=AP ∴=在CAP ∆中,sin sin CP AP CAP ACP=∠∠,即:sin 2CAP =∠sin sin CAP NAO ∴∠==∠ ACD ∆中,//QN DC ,且223DQ AC ==,223QN CD == 在Rt NAO ∆中,sin 2NO AN NAO =∠==. 在Rt NOQ ∆中,2tan 4NQ NOQ NO ∠===∴二面角Q PA C --大小的正切值2【点睛】本题考查二面角的平面角的求法,直线与平面垂直的判定定理的应用,考查空间想象能力以及计算能力;准确找到二面角的平面角是解决本题的关键.13.(1)证明过程详见解析(2)证明过程详见解析;【解析】【分析】(1)由三角形中位线定理可得//,//EG PM GF BC ,由正方形的性质可得//BC AD ,GF AD //,由线面平行的判定定理可得//EG 平面PMA , //GF 平面PMA ,从而可得结果;(2)由线面垂直的性质证明PD BC ⊥,正方形的性质可得BC DC ⊥,结合//GF BC ,可得GF ⊥平面PDC ,从而可得平面EFG ⊥平面PDC ;【详解】(1)∵E G F 、、分别为MB PB PC 、、的中点,∴//,//EG PM GF BC ,又∵四边形ABCD 是正方形,∴//BC AD ,∴GF AD //,∵EG GF 、在平面PMA 外, PM AD 、在平面PMA 内,∴//EG 平面PMA , //GF 平面PMA ,又∵EG GF 、都在平面EFG 内且相交,∴平面//EFG 平面PMA .(2)证明:由已知MA ⊥平面,//ABCD PD MA ,∴PD ⊥平面ABCD .又BC ⊂平面ABCD ,∴PD BC ⊥.∵四边形ABCD 为正方形,∴BC DC ⊥,又PD DC D =,∴BC ⊥平面PDC ,在PBC ∆中,∵G F 、分别为PB PC 、的中点,∴//GF BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .【点睛】本题主要考查正方体的性质、线面垂直的判定定理及面面垂直的判定定理以及线面平行、面面平行的判定定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论()||,a b a b αα⊥⇒⊥;(3)利用面面平行的性质(),||a a ααββ⊥⇒⊥;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.14.(Ⅰ)见解析;(II )见解析.【解析】【分析】(Ⅰ)根据线面平行判定定理可知//BC 平面PAD ;利用线面平行性质定理可证得结论;(II )根据线面垂直性质定理可得PA AC ⊥,利用余弦定理求得AC ,根据勾股定理可证得AC AB ⊥,利用线面垂直判定定理证得AC ⊥平面PAB ,根据面面垂直判定定理可证得结论.【详解】(Ⅰ)//BC AD ,AD ⊂平面PAD ,BC Ë平面PAD//BC ∴平面PADBC ⊂平面PBC ,且平面PBC ⋂平面PAD l =//BC l ∴(II )PA ⊥平面ABCD ,AC ⊂平面ABCD PA AC∴⊥ 1AB =,2BC =,60ABC ∠=,由余弦定理得:3AC ==222AB AC BC ∴+= AC AB∴⊥ 又AC PA ⊥,PA AB A =,PA ⊂平面PAB ,AB Ì平面PABAC ∴⊥平面PAB又AC ⊂平面PAC ∴平面PAC ⊥平面PAB【点睛】本题考查立体几何中的线面平行的证明与性质、面面垂直的证明、线面垂直的证明与性质应用,考查学生对于空间中直线与平面、平面与平面位置关系相关定理的掌握情况.15.(Ⅰ)见解析(Ⅱ)见解析【解析】【分析】(Ⅰ)取PC 的中点G ,连结FG 、EG ,AF ∥EG 又EG⊂平面PCE ,AF ⊄平面PCE ,AF ∥平面PCE ; (Ⅱ)由(Ⅰ)得EG ∥AF ,只需证明AF ⊥面PDC ,即可得到平面PEC ⊥平面PCD .【详解】证明:(Ⅰ)取PC 的中点G ,连结FG 、EG ,∴FG 为△CDP 的中位线,FG ∥CD ,FG =12CD . ∵四边形ABCD 为矩形,E 为AB 的中点,∴AE ∥CD ,AE =12CD . ∴FG =AE ,FG ∥AE ,∴四边形AEGF 是平行四边形,∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG⊂平面PCE,∴平面PEC⊥平面PCD.【点睛】本题考查了空间线面平行、面面垂直的判定,属于中档题.。
2.3线面垂直和面面垂直线面垂直专题练习一、定理填空:1.直线和平面垂直如果一条直线和,就说这条直线和这个平面垂直. 2.线面垂直判定定理和性质定理线面垂直判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理1:如果两条平行线中的一条垂直于一个平面,那么判定定理2:如果一条直线垂直于两个平行平面中的一个平面,那么.线面垂直性质定理:垂直于同一个平面的两条直线互相平行.性质定理1:垂直于同一条直线的两个平面互相平行。
二、精选习题:1.设M表示平面,a、b表示直线,给出下列四个命题:①MbMaba⊥⇒⎭⎬⎫⊥//②baMbMa//⇒⎭⎬⎫⊥⊥③⇒⎭⎬⎫⊥⊥baMab∥M④⇒⎭⎬⎫⊥baMa//b⊥M.其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF 中,必有( )A.DP⊥平面PEFB.DM⊥平面PEFC.PM⊥平面DEFD.PF⊥平面DEF3.设a、b是异面直线,下列命题正确的是( )A.过不在a、b上的一点P一定可以作一条直线和a、b都相交B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行4.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么必有( )A.α⊥γ且l⊥mB.α⊥γ且m∥βC.m∥β且l⊥mD.α∥β且α⊥γ5.有三个命题:第3题图①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直其中正确命题的个数为( )A.0 B.1 C.2 D.36.设l、m为直线,α为平面,且l⊥α,给出下列命题①若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α,其中真命题...的序号是( )A.①②③B.①②④C.②③④D.①③④7.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高.求证:VC⊥AB;8.如图所示,P A⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.10.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.11.如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.12. 已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.13.在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角.14.如图,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.15.如图11(1),在直四棱柱ABCD—A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.16.如图12,在正方体ABCD—A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD.17.如图,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点.求证:(1)AB⊥MN;(2)MN的长是定值.18.如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.面面垂直专题练习一、定理填空面面垂直的判定定理: 面面垂直的性质定理:二、精选习题1、正方形ABCD 沿对角线AC 折成直二面角后,AB 与CD 所成的角等于____________2、三棱锥P ABC -的三条侧棱相等,则点P 在平面ABC 上的射影是△ABC 的____心.3、一条直线与两个平面所成角相等,那么这两个平面的位置关系为______________4、在正三棱锥中,相邻两面所成二面角的取值范围为___________________5、已知l αβ--是直二面角,,,A B A B l αβ∈∈∉、,设直线AB 与α成30角,AB=2,B到A 在l 上的射影N,则AB 与β所成角为______________.6、在直二面角βα--AB 棱AB 上取一点P ,过P 分别在βα,平面内作与棱成45°角的斜线PC 、PD ,则∠CPD 的大小是_____________7、正四面体中相邻两侧面所成的二面角的余弦值为___________________.8. 如图,在正方体ABCD-A 1B 1C 1D 1 中. 求证:平面ACD 1 ⊥ 平面BB 1D 1DD 1C 1B 1A 1D CBA10、如图,三棱锥P ABC -中,PA ⊥平面ABC ,AC ⊥BC ,求证:平面PAC ⊥平面PBC .11、如图,三棱锥P ABC -中,PA ⊥平面ABC ,平面PAC ⊥平面PBC .问△ABC 是否为直角三角形,若是,请给出证明;若不是,请举出反例.A B C P AB P。
线面垂直、面面垂直过关检测1、若直线l 上有两点P 、Q 到平面α的距离相等,则直线l 与平面α的位置关系是( )A 、平行B 、相交C 、平行或相交D 、平行、相交或在平面α内2、如果直线l ⊥平面α,①若直线m ⊥l,则m∥α;②若m⊥α,则m∥l ;③若m∥α,则m⊥l ;④若m∥l,则m⊥α,上述判断正确的是 ( )A 、①②③B 、②③④C 、①③④D 、②④3、如图,设P 是正方形ABCD 外一点,且PA ⊥平面ABCD,则平面PAB 与平面PBC 、平面PAD 的位置关系是( )A.平面PAB 与平面PBC 、平面PAD 都垂直B.它们两两都垂直C.平面PAB 与平面PBC 垂直、与平面PAD 不垂直D.平面PAB 与平面PBC 、平面PAD 都不垂直4、线段AB 的长等于它在平面α内射影长的2倍,则AB 所在直线与平面α所成的角为( )A.30°B.45°C.60°D.120°5、如图2.3.1-2,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个空间图形,使B 、C 、D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A 、AH⊥△EFH 所在平面B 、AD⊥△EFH 所在平面C 、HF⊥△AEF 所在平面D 、HD⊥△AEF 所在平面6、如图,在正三棱柱ABC —A 1B 1C 1中,已知AB=1,D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则α=( )A 、3πB 、4π C 、410arcsin D 、46arcsin7、正方形ABCD 沿对角线AC 折成直二面角后,AB 与CD 所成的角等于__________8、.设l 、m 为直线,α为平面,且l ⊥α,给出下列命题① 若m ⊥α,则m ∥l ;②若m ⊥l ,则m ∥α;③若m ∥α,则m ⊥l ;④若m ∥l ,则m ⊥α, 其中真命题...的序号是 ( )A.①②③B.①②④C.②③④D.①③④9、已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC=21AB=1,M 是PB 的中点。
第五讲 面面垂直的判定及性质、二面角【要点梳理】 1、线面垂直判定定理.一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。
2、面面垂直判定定理.一个平面过另一个平面的垂线,则两个平面垂直。
3、线面垂直的性质定理:垂直于同一个平面的两条直线平行。
4.面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
5、理解并掌握二面角的概念及求法(定义法、垂线法、垂面法) 【典例讲解】题型一 垂直关系的证明例1如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面1AB C ⊥平面11A BC ;(Ⅱ)设D 是11AC 上的点,且1//A B 平面1B CD ,求11:A D DC 的值.(中点)变式1:如图,△ABC 为正三角形,CE ⊥平面ABC ,BD//CE,且CE=AC=2BD ,M 是AE 的中点,求证:(1)DE=DA ; (2)平面BDM ⊥平面ECA (3)平面DEA ⊥平面ECA.变式2 :在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABC D ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==.(I )求证:平面EFG ⊥平面PDC ;(II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比.(1:4)题型二 二面角例2.如图,△ABC 是简易遮阳棚,A ,B 是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角应为( c ). A .90° B .60° C .50° D .45°变式 如图:二面角α-l -β为锐角,P 为二面角内一点,P 到α的 距离为22,到面β的距离为4,到棱l 的距离为24,求二面角α-l -β的大小.(75度)例3:如图所示,在四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点 E 在线段PC 上,PC ⊥平面BDE .(1) 证明:BD ⊥平面PAC ;(2) 若PA=1,AD=2,求二面角B-PC-A 及B-PC-D 的正切值;3,-3/4变式1. 点O 是边长为4的正方形ABCD 的中心,点E ,F 分别是AD ,BC 的中点.沿对角线AC 把正方形ABCD 折成直二面角D -AC -B .(1)求EOF ∠的大小;(120度) (2)求二面角E OFA --余弦值的大小.(三分之根号三)变式2:如图,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(I)求证:PAC PBC ⊥平面平面;(II)2.AB AC PA C PB A ===--若,1,1,求证:二面角的余弦值(4分之根号6)例4.如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2.(Ⅰ)证明:平面PBE ⊥平面P AB ;(Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)正弦值的大小.分析:本题的平面P AD 和平面PBE 没有明确的交线,依本法显然要补充完整(延长AD 、BE 相交于点F ,连结PF .)再在完整图形中的PF .上找一个适合的点形成二面角的平面角解之。
线面、面面垂直性质练习试题一、选择题1在空间,如果一个角的两边分别与另一个角的两边垂直,那么这两个角的关系是( )A.相等B.互补C.相等或互补D.无法确定 2下列命题正确的是…………………………………………( ) A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 3.知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影; (2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直; (4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是( ).A .(1)、(2)B .(2)、(3)C .(3)、(4)D .(2)、(4) 4.列图形中,满足唯一性的是( ).A .过直线外一点作与该直线垂直的直线B .过直线外一点与该直线平行的平面C .过平面外一点与平面平行的直线D .过一点作已知平面的垂线 5.平面α、β与另一平面所成的角相等,则( )A.α∥βB.α与β相交C.α∥β或α与β相交D.以上都不对6.个平面γβα,,,之间有α⊥γ,β⊥γ,则α与β ( ) ()A 垂直 ()B 平行()C 相交 ()D 以上三种可能都有 7.α,β是两个平面,直线l ⊄α,l ⊄β,设(1)l α⊥,(2)//l β,(3)αβ⊥,若以其中两个作为条件,另一个作为结论,则正确命题的个数是 ( ) ()A 0 ()B 1 ()C 2 ()D 3 8.一点的三条直线两两垂直,则它们确定的平面互相垂直的对数有( D ). A .0 B .1 C .2 D .3 9.线m 、n 与平面α、β,给出下列三个命题:①若m ∥α,n ∥α,则m ∥n;②若m ∥α,n ⊥α,则n ⊥m;③若m ⊥α,m ∥β,则α⊥β. 其中真命题的个数是( )A.0B.1C.2D.310.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点, 下面四个结论不成立的是……………………………………( )A.BC ∥平面PDFB.DF ⊥平面PAEC.平面PDF ⊥平面PAED.平面PDE ⊥平面ABC 11.四个命题: ①若直线a //平面α,则α内任何直线都与a 平行; ②若直线a ⊥平面α,则α内任何直线都与a 垂直; ③若平面α//平面β,则β内任何直线都与α平行;④若平面α⊥平面β,则β内任何直线都与α垂直.其中正确的两个命题是( ) A.①与②B.②与③C.③与④D.②与④12.如图、—ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是…( )A.AC ⊥SBB.AB ∥平面SCDC.SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D.AB 与SC 所成的角等于DC 与SA 所成的角二、解答题13.已知平面α⊥平面β,交线为BC,P∈α,A∈β,且AC⊥BC,AC=6cm, BC=8cm,PA=PB=7cm.求点P到平面β的距离.14.如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=a,F、G分别为EB和AB的中点。
面面垂直测试题2.证明:(1)∵E,F分别为PB,PC的中点,∴EF//BC,又∵BC平面ABC,∴EF平面ABC,即EF//平面ABC2)∵PA平面ABC,∴平面PAB与平面ABC垂直,又∵E,F分别为PB,PC的中点,∴EF//BC,∴平面EFB与平面ABC垂直,又∵平面EFB与平面PAB共线,∴平面EFB与平面PAB垂直,即平面AEF平面PAB3.证明:(1)∵D,E,F分别为棱PC,AC,AB的中点,∴DF//AC,又∵PA AC,∴PA//DF,又∵DF平面DEF,∴PA平面DEF,即直线PA//平面DEF2)∵D,E,F分别为棱PC,AC,AB的中点,∴平面DEF为平面ABC的中位平面,∴平面DEF平面ABC,又∵BC平面ABC,∴平面DEF与平面BCD垂直,而平面BDE与平面BCD共线,∴平面BDE与平面DEF垂直,即平面BDE平面ABC4.证明:(Ⅰ)∵E,F分别为PC,BD的中点,∴EF//PC,又∵PC平面PAD,∴EF平面PAD,即EF∥平面PAD Ⅱ)∵底面ABCD是正方形,∴PA底面ABCD,又∵侧面PAD底面ABCD,∴PA CDⅢ)∵PA=PD=2AD,∴AD=PA/2,又∵底面ABCD是正方形,∴BD=AD√2,又∵E,F分别为PC,BD的中点,∴EF=BD/2=AD√2/2,又∵AD=PA/2,∴EF=PA√2/4,又∵底面ABCD是正方形,∴平面PAD与平面PCD垂直,∴平面PAB与平面PCD垂直,即平面PAB平面PCD5.证明:(1)∵AC=BC,∴平面CAD为平面CBD的中位平面,∴平面CAD平面CBD,又∵D是AB的中点,∴CD AB,∴CD平面CBD,∴平面CAD与平面CBD垂直,即BC1∥平面CAD2)∵D是AB的中点,∴CD AB,又∵底面ABC为正三角形,∴AB BC,∴AB平面ABC,∴CD与平面ABC垂直,又∵CD平面CBD,∴平面CBD与平面ABC垂直,即平面CA1D⊥平面AA1B3)∵底面ABC为正三角形,∴BB1=AB/2=1,又∵BB1CD为平行四边形,∴CD=BB1=1,又∵平面CAD与平面CBD垂直,∴三棱锥B1-ACD为直角三角形,∴B1C=√3,∴B1-ACD的体积为1/3*√3*1*1=√3/36.证明:(1)∵BE∥CD,∴BE∥平面ABC,又∵EF为AD的中点,∴EF AD,又∵AD平面ABC,∴EF平面ABC,即EF∥平面ABC2)∵CD平面ABC,∴平面ACD与平面ABC垂直,又∵PA AC,∴PA与平面ACD垂直,又∵F为AD的中点,∴EF AD,∴EF与平面ACD垂直,∴平面ADE与平面ACD垂直,又∵平面ADE与平面ABC共线,∴平面ADE与平面ABC垂直,即平面ADE平面ACD3)∵AB=BC=AC=BE=1,CD=2,∠BCD=90,∴三棱锥BCD为直角三角形,∴BCD的体积为1/3*2*1*2=4/3,又∵BE∥CD,∴三棱锥B-EDC与三棱锥BCD全等,∴B-EDC的体积也为4/3,又∵EF为AD的中点,∴EF=1/2,∴平面EFC与平面BCD平行,且EF∥CD,∴EFCB为平行四边形,∴EF=BC=1,又∵平面EFC与平面ADE垂直,∴四棱锥A-BCDE的高为EF,∴四棱锥A-BCDE的体积为1/3*1*1*EF=1/3*EF7.(1)∵PA底面ABCD,BD PC,E为XXX的中点,∴PE BD,又∵E为PC的中点,∴PE PC,∴PE为平面PAC与平面EBD的公垂线,∴平面PAC与平面EBD垂直,即平面PAC平面EBD2)∵底面ABCD为平行四边形,∴XXX为底面ABCD的高,又∵E为PA的中点,∴BE=EA=1,又∵底面ABCD为平行四边形,∴AB=CD,∴平面ABC与平面ACD平行,且∠PAB=∠PCD,∴三角形PAB与三角形PCD全等,∴PD=PB=2,又∵BD PC,∴三棱锥P-EBD为直角三角形,∴P-EBD的高为BD=√5,∴三棱锥P-EBD的体积为1/3*1*1*√5=√5/3证明:(1)连接AC并交于点E,连接DE。
8.6.3平面与平面垂直·当堂练习新课程标准新学法解读借助长方体,通过直观感知、了解空间中平面与平面垂直的判定定理与性质定理.1.在对面面垂直判定时,既可以从平面与平面的夹角为直角的角度讨论,又可以从已有的线面垂直关系出发进行推理论证.2.利用面面垂直的性质定理时,注意找准两平面的交线是解题关键.第一课时平面与平面垂直的判定1.如图所示的二面角可记为()A.α-β-l B.M-l-NC.l-M-N D.l-β-α2.直线l⊥平面α,l⊂平面β,则α与β的位置关系是()A.平行B.可能重合C.相交且垂直D.相交不垂直3.在三棱锥P-ABC中,已知P A⊥PB,PB⊥PC,PC⊥P A,如图所示,则在三棱锥P-ABC的四个面中,互相垂直的面有________对.5.在正方体ABCD-A1B1C1D1中,二面角A-BC-A1的平面角等于______.[例1]如图,四边形ABCD是正方形,P A⊥平面ABCD,且P A=AB.(1)求二面角A-PD-C平面角的度数;(2)求二面角B-P A-C平面角的度数..[变式训练1]如图,AB是⊙O的直径,P A垂直于⊙O所在的平面,C是圆周上的一点,且P A=AC,求二面角P-BC-A的大小.[例2]如图所示,在四面体ABCS中,已知∠BSC=90°,∠BSA=∠CSA=60°,又SA=SB=SC.求证:平面ABC⊥平面SBC.若SA=SB=SC=2,其他条件不变,如何求三棱锥S-ABC的体积呢?1.经过平面α外一点和平面α内一点与平面α垂直的平面有()A.0个B.1个C.无数个D.1个或无数个2.若一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的大小关系是()A.相等B.互补C.相等或互补D.不确定3.如图所示,在△ABC中,AD⊥BC,△ABD的面积是△ACD的面积的2倍,沿AD将△ABC 翻折,使翻折后BC⊥平面ACD,此时二面角B-AD-C的大小为()A.30°B.45°C.60°D.90°第二课时平面与平面垂直的性质1.若平面α⊥平面β,平面β⊥平面γ,则()A.α∥γB.α⊥γC.α与γ相交但不垂直D.以上都有可能2.平面α⊥平面β,α∩β=l,m⊂α,m⊥l,则()A.m∥βB.m⊂βC.m⊥βD.m与β相交但不一定垂直3.若两个平面互相垂直,在第一个平面内的一条直线a垂直于第二个平面内的一条直线b,那么()A.直线a垂直于第二个平面B.直线b垂直于第一个平面C.直线a不一定垂直于第二个平面D.过a的平面必垂直于过b的平面4.平面α⊥平面β,α∩β=l,n⊂β,n⊥l,直线m⊥α,则直线m与n的位置关系是________.[例1]如图,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形.△P AD为正三角形,其所在平面垂直于平面ABCD.若G为AD边的中点.求证:平面PBG⊥平面P AD.[变式训练1]如图所示,在三棱锥P-ABC中,P A⊥平面ABC,平面P AC⊥平面PBC.求证:BC⊥AC.[例2]如图,在四棱锥P-ABCD中,侧面P AD是正三角形,且与底面ABCD垂直,底面ABCD 是边长为2的菱形,∠BAD=60°,N是PB的中点,过A,D,N三点的平面交PC于M,E为AD 的中点.求证:(1)EN∥平面PDC;(2)BC⊥平面PEB;(3)平面PBC⊥平面ADMN.[变式训练2]如图,平面P AB⊥平面ABC,平面P AC⊥平面ABC,AE⊥平面PBC,E为垂足.求证:(1)P A⊥平面ABC;(2)当E为△PBC的垂心时,△ABC是直角三角形.。
空间中直线与平面纸垂直复习课检测1.如图,在正方体ABCD-A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直2.在正方体ABCD-A1B1C1D1中,与直线AA1垂直的棱有________条.()A.2B.4C.6 D.83.直线l⊥平面α,直线m⊂α,则l与m不可能()A.平行B.相交C.异面D.垂直4.正方体ABCD-A1B1C1D1中与AD1垂直的平面是()A.平面DD1C1CB.平面A1DBC.平面A1B1C1D1D.平面A1DB15.在正方体ABCD-A1B1C1D1中,直线l(与直线BB1不重合)⊥平面A1C1,则() A.B1B⊥lB.B1B∥lC.B1B与l异面但不垂直D.B1B与l相交但不垂直6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是() A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β7.经过平面α外一点和平面α内一点与平面α垂直的平面有()A.0个B.1个C.无数个D.1个或无数个8.若一个二面角的两个半平面分别平行于另一个二面角的两个半平面,则这两个二面角的大小关系是()A.相等B.互补C.相等或互补D.不确定9.如图所示,在四棱锥S-ABCD中,底面ABCD是矩形,侧面SDC⊥底面ABCD,求证:平面SCD⊥平面SBC.答案1.解析:选D因为正方体的对面平行,所以直线BD与A1C1异面,连接AC,则AC ∥A1C1,AC⊥BD,所以直线BD与A1C1垂直,所以直线BD与A1C1异面且垂直.故选D.2.解析:选D∵AD1⊥A1D,AD1⊥A1B1,A1D∩A1B1=A1,∴AD1⊥平面A1DB1. 故选D.3.解析:选A∵直线l⊥平面α,∴l与α相交,又∵m⊂α,∴l与m相交或异面,由直线与平面垂直的定义,可知l⊥m.故l与m不可能平行.故选A.4.解析:选D在正方体AC1中,与AA1垂直的棱为A1B1,B1C1,C1D1,D1A1,AB,BC,CD,DA,共8条.故选D.5.解析:选C∵m∥n,m⊥α,则n⊥α,故选C.6.解析:选B因为B1B⊥平面A1C1,又因为l⊥平面A1C1,所以l∥B1B.故选B.7.解析:选D当两点连线与平面α垂直时,可作无数个垂面,否则,只有1个.故选D.8.解析:选C若方向相同则相等,若方向相反则互补.故选C.9.证明:∵底面ABCD是矩形,∴BC⊥CD.又平面SDC⊥平面ABCD,平面SDC∩平面ABCD=CD,BC⊂平面ABCD,∴BC⊥平面SCD.又∵BC⊂平面SBC,∴平面SCD⊥平面SBC.。
线面垂直和面面垂直线面垂直专题练习一、定理填空:1.直线和平面垂直如果一条直线和,就说这条直线和这个平面垂直. 2.线面垂直判定定理和性质定理线面垂直判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.判定定理1:如果两条平行线中的一条垂直于一个平面,那么判定定理2:如果一条直线垂直于两个平行平面中的一个平面,那么.线面垂直性质定理:垂直于同一个平面的两条直线互相平行.性质定理1:垂直于同一条直线的两个平面互相平行。
二、精选习题:1.设M表示平面,a、b表示直线,给出下列四个命题:①MbMaba⊥⇒⎭⎬⎫⊥//②baMbMa//⇒⎭⎬⎫⊥⊥③⇒⎭⎬⎫⊥⊥baMab∥M④⇒⎭⎬⎫⊥baMa//b⊥M.其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.如图所示,在正方形ABCD中,E、F分别是AB、BC的中点.现在沿DE、DF及EF把△ADE、△CDF和△BEF折起,使A、B、C三点重合,重合后的点记为P.那么,在四面体P—DEF 中,必有( )⊥平面PEF ⊥平面PEF ⊥平面DEF ⊥平面DEF3.设a、b是异面直线,下列命题正确的是( )A.过不在a、b上的一点P一定可以作一条直线和a、b都相交B.过不在a、b上的一点P一定可以作一个平面和a、b都垂直C.过a一定可以作一个平面与b垂直D.过a一定可以作一个平面与b平行4.如果直线l,m与平面α,β,γ满足:l=β∩γ,l∥α,m⊂α和m⊥γ,那么必有( )A.α⊥γ且l⊥mB.α⊥γ且m∥β ∥β且l⊥m D.α∥β且α⊥γ5.有三个命题:第3题图①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的任一个平面与b都不垂直其中正确命题的个数为( ) .1 C6.设l、m为直线,α为平面,且l⊥α,给出下列命题①若m⊥α,则m∥l;②若m⊥l,则m∥α;③若m∥α,则m⊥l;④若m∥l,则m⊥α,其中真命题...的序号是( )A.①②③B.①②④C.②③④D.①③④7.如图所示,三棱锥V-ABC中,AH⊥侧面VBC,且H是△VBC的垂心,BE是VC边上的高.求证:VC⊥AB;8.如图所示,P A⊥矩形ABCD所在平面,M、N分别是AB、PC的中点.(1)求证:MN∥平面P AD.(2)求证:MN⊥CD.(3)若∠PDA=45°,求证:MN⊥平面PCD.9.已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=6,M是CC1的中点,求证:AB1⊥A1M.10.如图所示,正方体ABCD—A′B′C′D′的棱长为a,M是AD的中点,N是BD′上一点,且D′N∶NB=1∶2,MC与BD交于P.(1)求证:NP⊥平面ABCD.(2)求平面PNC与平面CC′D′D所成的角.11.如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.解:已知a∥b,a⊥α.求证:b⊥α.12. 已知点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.13.在正方体ABCD—A1B1C1D1中,求直线A1B和平面A1B1CD所成的角.14.如图,四面体A—BCD的棱长都相等,Q是AD的中点,求CQ与平面DBC所成的角的正弦值.15.如图11(1),在直四棱柱ABCD—A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.16.如图12,在正方体ABCD—A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.求证:A1O⊥平面GBD.17.如图,已知a、b是两条相互垂直的异面直线,线段AB与两异面直线a、b垂直且相交,线段AB的长为定值m,定长为n(n>m)的线段PQ的两个端点分别在a、b上移动,M、N分别是AB、PQ的中点.求证:(1)AB⊥MN;(2)MN的长是定值.18.如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点.(1)求证:AC⊥BC1;(2)求证:AC1∥平面CDB1.面面垂直专题练习一、定理填空面面垂直的判定定理: 面面垂直的性质定理:二、精选习题1、正方形ABCD 沿对角线AC 折成直二面角后,AB 与CD 所成的角等于____________2、三棱锥P ABC -的三条侧棱相等,则点P 在平面ABC 上的射影是△ABC 的____心.3、一条直线与两个平面所成角相等,那么这两个平面的位置关系为______________4、在正三棱锥中,相邻两面所成二面角的取值范围为___________________5、已知l αβ--是直二面角,,,A B A B l αβ∈∈∉、,设直线AB 与α成30角,AB=2,B到A 在l 上的射影N 2,则AB 与β所成角为______________.6、在直二面角βα--AB 棱AB 上取一点P ,过P 分别在βα,平面内作与棱成45°角的斜线PC 、PD ,则∠CPD 的大小是_____________7、正四面体中相邻两侧面所成的二面角的余弦值为___________________.8. 如图,在正方体ABCD-A 1B 1C 1D 1 中. 求证:平面ACD 1 ⊥ 平面BB 1D 1DD 1C 1B 1A 1D CBA10、如图,三棱锥P ABC -中,PA ⊥平面ABC ,AC ⊥BC ,求证:平面PAC ⊥平面PBC .11、如图,三棱锥P ABC -中,PA ⊥平面ABC ,平面PAC ⊥平面PBC .问△ABC 是否为直角三角形,若是,请给出证明;若不是,请举出反例.A B CP P。
抚顺德才高中高三北大班当堂检测卷(086试卷)师
课题: 面面垂直
命题人:杨波 试卷总分:25 分
班级:______ 学生姓名:________ 检测时间: 月 日星期 第 节 检测重点:面面垂直
1.如图,在立体图形D -ABC 中,若AB =CB ,AD =CD ,E 是AC
的
中点,则下列结论正确的是( C )
A .平面ABC ⊥平面ABD
B .平面ABD ⊥平面BDC
C .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDE
D .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE
2.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M
是PC 上的一动点,当点M 满足 时,平面MBD ⊥平
面PCD .(只要填写一个你认为是正确的条件即可)
[答案] DM ⊥PC (或BM ⊥PC 等)(不唯一)
3. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件 [解析] ①∵α∩β=m ,b ⊂β,α⊥β,b ⊥m ,∴b ⊥α,又∵a ⊂α,∴b ⊥a .②当a ⊂α,a ∥m 时,∵b ⊥m ,∴b ⊥a ,而此时平面α与平面β不一定垂直,故选A.
4.已知四棱锥P -ABCD 的顶点都在球O 的球面上,底面ABCD 是矩形,平面PAD ⊥底面ABCD ,△PAD 为正三角形,AB =2AD =4,则球O 的表面积为________.
[答案] 643
π [解析] 过P 作PE ∥AB 交球面于E ,连接BE 、CE ,则BE ∥AP ,CE ∥DP ,
∴三棱柱APD -BEC 为正三棱柱,
∵△PAD 为正三角形,∴△PAD 外接圆的半径为233
,
∴球O 的半径R =222332=43
,∴球O 的表面积S =4πR 2=643π. 5.在正三棱柱ABC -A 1B 1C 1中,若AB =2,AA 1=1,则点A 到平面A 1BC 的距离为( B ) A.34 B.32 C.334 D. 3
[解析] 解法1:取BC 中点E ,连接AE 、A 1E ,过点A 作AF ⊥A 1E ,垂足为F .
∵A 1A ⊥平面ABC ,∴A 1A ⊥BC ,∵AB =AC .∴AE ⊥BC .∴BC ⊥平面AEA 1.
∴BC ⊥AF ,又AF ⊥A 1E ,∴AF ⊥平面A 1BC .∴AF 的长即为所求点A 到平面A 1BC 的距离.∵AA 1=1,AE =3,∴AF =32
. 解法2:VA 1-ABC =13S △ABC ·AA 1=13×3×1=33
.又∵A 1B =A 1C =5, 在△A 1BE 中,A 1E =A 1B 2-BE 2=2.∴S △A 1BC =12
×2×2=2. ∴VA -A 1BC =13×S △A 1BC ·h =23
h . ∴23h =33,∴h =32.∴点A 到平面A 1BC 距离为32
.
命题人:杨波试卷总分:25 分
班级:______ 学生姓名:________ 检测时间:月日星期第节
检测重点:面面垂直
1.如图,在立体图形D-ABC中,若AB=CB,AD=CD,E是AC的中点,则
下列结论正确的是( )
A.平面ABC⊥平面ABD
B.平面ABD⊥平面BDC
C.平面ABC⊥平面BDE,且平面ADC⊥平面BDE
D.平面ABC⊥平面ADC,且平面ADC⊥平面BDE
2.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是
PC上的一动点,当点M满足时,平面MBD⊥平面
PCD.(只要填写一个你认为是正确的条件即可)
3. 设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
4.已知四棱锥P-ABCD的顶点都在球O的球面上,底面ABCD是矩形,平面PAD⊥底面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为________.
5.在正三棱柱ABC-A1B1C1中,若AB=2,AA1=1,则点A到平面A1BC的距离为( )
A.
3
4
B.
3
2
C.
33
4
D. 3
命题人:杨波 试卷总分:25 分
班级:______ 学生姓名:________ 检测时间: 月 日星期 第 节 检测重点:面面垂直
1.如图,在立体图形D -ABC 中,若AB =CB ,AD =CD ,E 是AC 的中点,则
下列结论正确的是( )
A .平面ABC ⊥平面ABD
B .平面ABD ⊥平面BDC
C .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDE
D .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE
2.在正三棱柱ABC -A 1B 1C 1中,若AB =2,AA 1=1,则点A 到平面A 1BC 的距离为( ) A.34 B.32 C.334 D. 3
3. 设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
4.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足 时,平面MBD ⊥平面
PCD .(只要填写一个你认为是正确的条件即可)
5.(附加)已知四棱锥P -ABCD 的顶点都在球O 的球面上,底面ABCD 是矩形,平面PAD ⊥底面ABCD ,△PAD 为正三角形,AB =2AD =4,则球O 的表面积为________.。