高中数学函数组卷
- 格式:doc
- 大小:140.00 KB
- 文档页数:5
第三章 函数的概念与性质(单元检测卷)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =-x 2+2x +3的定义域为( )A.[-3,1] B.[-1,3]C.(-∞,-3]∪[1,+∞)D.(-∞,-1]∪[3,+∞)2.已知函数y =f(x +1)定义域是[-2,3],则函数y =f(x -1)的定义域是( )A.[0,5] B.[-1,4]C.[-3,2]D.[-2,3]3.已知函数f(x)=Error!若f(-a)+f(a)≤0,则实数a 的取值范围是( )A.[-1,1] B.[-2,0]C.[0,2]D.[-2,2]4.设f(x)是定义域为R 的奇函数,且f(1+x)=f(-x).若f =13,则f =( )A.-53B.-13C.13D.535.二次函数的图象的顶点为(0,-1),对称轴为y 轴,则二次函数的解析式可以为( )A .y =-14x 2+1B.y =14x 2-1C .y =4x 2-16 D.y =-4x 2+166.拟定从甲地到乙地通话m min的话费(单位:元)符合f(m)={3.71,0<m ≤4,1.06×(0.5×[m]+2),m >4,其中[m]表示不超过m 的最大整数,从甲地到乙地通话5.2min 的话费是A.3.71元 B.4.24元C.4.77元D.7.95元7.若函数f(x)在R 上是减函数,则下列关系式一定成立的是( )A.f(a)>f(2a) B.f(a 2)<f(a)C.f(a 2+a)<f(a)D.f(a 2+1)<f(a 2)8.若函数f (x)是奇函数,且当x>0时,f (x)=x 3+x +1,则当x<0时,f (x)的解析式为( )A .f (x)=x 3+x -1B .f (x)=-x 3-x -11()3 5()3C .f (x)=x 3-x +1D .f (x)=-x 3-x +1二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.9.已知f (2x -1)=4x 2,则下列结论正确的是( )A .f (3)=9 B.f (-3)=4C .f (x)=x 2D.f (x)=(x +1)210.函数f(x)的图象是折线段ABC ,如图所示,其中点A ,B ,C 的坐标分别为(-1,2),(1,0),(3,2),以下说法正确的是( )A.f(x)=Error!B.f(x -1)的定义域为[-1,3]C.f(x +1)为偶函数D.若f(x)在[m ,3]上单调递增,则m 的最小值为111.下列说法正确的是( )A.若幂函数的图象经过点,则该幂函数的解析式为y =x -3B.若函数f(x)=,则f(x)在区间(-∞,0)上单调递减C.幂函数y =x α(α>0)始终经过点(0,0)和(1,1)D.若函数f(x)=x ,则对于任意的x 1,x 2∈[0,+∞)有f(x 1)+f(x 2)2≤f 三、填空题:本题共3小题,每小题5分,共15分.把答案填在题中横线上.12.设f(x)=11-x,则f(f(x))=__________13.已知二次函数f(x)=ax 2+2ax +1在区间[-3,2]上的最大值为4,则a 的值为________14.若函数f(x)=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a],则a =________,b =________四、解答题:本题共5小题,共77分.解答时应写出文字说明、证明过程或演算步骤.1(,2)845x-12x x ()2+15.(13分)已知幂函数f(x)=(m2-5m+7)x-m-1(m∈R)为偶函数.(1)求f的值;(2)若f(2a+1)=f(a),求实数a的值.16.(14分)已知函数f(x)=Error!(1)求f(f(f(5)))的值;(2)画出函数的图象.17.(16分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)={400x-12x2,0≤x≤400,80 000,x>400,其中x是仪器的月产量.(1)将利润表示为月产量的函数f(x);(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)18.(16分)已知函数f(x)=x21+x2+1,x∈R.1 () 2(1)判断并证明函数的奇偶性;(2)求f(x)+f 的值;(3)计算f(1)+f(2)+f(3)+f(4)+f +f +f .19.(18分)已知二次函数f(x)=x 2-2(a -1)x +4.(1)若a =2,求f(x)在[-2,3]上的最值;(2)若f(x)在区间(-∞,2]上单调单减,求实数a 的取值范围;(3)若x ∈[1,2],求函数f(x)的最小值.参考答案及解析:一、单选题1()x 1()21()31()41.B 解析:由题意,令-x 2+2x +3≥0,即x 2-2x -3≤0,解得-1≤x ≤3,所以函数的定义域为[-1,3].故选B .2.A 解析:由题意知-2≤x ≤3,所以-1≤x +1≤4,所以-1≤x -1≤4,得0≤x ≤5,即y =f(x -1)的定义域为[0,5].3.D 解析:依题意,可得Error!或Error!或Error!解得-2≤a ≤2.4.C 解析:由题意,f =f =f =-f =-f =-f =f =13.5.B 解析:把点(0,-1)代入四个选项可知,只有B 正确.故选B .6.C 解析:f(5.2)=1.06×(0.5×[5.2]+2)=1.06×(0.5×5+2)=4.77.7.D 解析:因为f(x)是R 上的减函数,且a 2+1>a 2,所以f(a 2+1)<f(a 2).故选D .8.A 解析:∵函数f (x)是奇函数,∴f (-x)=-f (x),当x<0时,-x>0,∵x>0时,f (x)=x 3+x +1,∴f (-x)=(-x)3-x +1=-x 3-x +1,∴-f (x)=-x 3-x +1,∴f (x)=x 3+x -1.即x<0时,f (x)=x 3+x -1.故选A .二、多选题9.BD 解析:令t =2x -1,则x =t +12,∴f (t)=4=(t +1)2.∴f (3)=16,f (-3)=4,f (x)=(x +1)2.故选BD .10.ACD 解析:由图可得当-1≤x <1时,图象过(1,0),(-1,2)两点,设f(x)=kx +b ,∴Error!解得Error!=-x +1,当1≤x ≤3时,根据图象过点(1,0),(3,2),同理可得f(x)=x -1,∴f(x)=Error!A 正确;由图可得f(x)的定义域为[-1,3],关于x =1对称,∴f(x -1)的定义域为[0,4],f(x +1)为偶函数,即B 错误,C 正确;当f(x)在[m ,3]上单调递增,则1≤m <3,故m 的最小值为1,D 正确.故选ACD .11.CD 解析:若幂函数的图象经过点,则该幂函数的解析式为y =,故A 错误;函数f(x)=是偶函数且在(0,+∞)上单调递减,故在(-∞,0)上单调递增,故B 错误;幂函数y =x α(α>0)始终经过点(0,0)和(1,1),故C 正确;对任意的x 1,x 2∈[0,+∞),要证f(x 1)+f(x 2)2≤f ,即x 1+x 22≤x 1+x 22,即x 1+x 2+2x 1x 24≤x 1+x 22,即(x 1-x 2)2≥0,易知成立,故D 正确.三、填空题5()32(1)3+2()3-2(31[1(3+-1()31()3-2t 1()2+1(,2)813x -45x -12x x ()2+12.答案:x -1x (x ≠0且x ≠1)解析:f(f(x))=11-11-x =11-x -11-x=x -1x .13.答案:-3或38解析:f(x)的对称轴为直线x =-1.当a >0时,f(x)max =f(2)=4,解得a =38;当a <0时,f(x)max =f(-1)=4,解得a =-3.综上所述,a =38或a =-3.14.答案:13,0解析:因为偶函数的定义域关于原点对称,所以a -1=-2a ,解得a =13.又函数f(x)=13x 2+bx+b +1为二次函数,结合偶函数图象的特点,则-b2×73=0,易得b =0.四、解答题15.解:(1)由m 2-5m +7=1,得m =2或m =3.当m =2时,f(x)=x -3是奇函数,所以不满足题意,所以m =2舍去;当m =3时,f(x)=x -4,满足题意,所以f(x)=x -4.所以f ==16.(2)由f(x)=x -4为偶函数且f(2a +1)=f(a),得|2a +1|=|a|,即2a +1=a 或2a +1=-a ,解得a =-1或a =-13.16.解:(1)因为5>4,所以f(5)=-5+2=-3.因为-3<0,所以f(f(5))=f(-3)=-3+4=1.因为0<1<4,所以f(f(f(5)))=f(1)=12-2×1=-1,即f(f(f(5)))=-1.(2)图象如图所示.1()241()217.解:(1)设月产量为x 台,则总成本为(20 000+100x)元,从而f(x)={-12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时,f(x)=-12(x -300)2+25 000,所以当x =300时,f(x)max =25 000.当x >400时,f(x)=60 000-100x 单调递减,f(x)<60 000-100×400=20 000<25 000.所以当x =300时 ,f(x)max =25 000,即每月生产300台仪器时利润最大,最大利润为25 000元.18.解:(1)f(x)是偶函数,理由如下.f(x)的定义域为R ,关于y 轴对称.因为f(-x)=(-x)21+(-x)2+1=x 21+x 2+1=f(x),所以f(x)=x 21+x 2+1是偶函数.(2)因为f(x)=x 21+x 2+1,所以f =+1=1x 2+1+1,所以f(x)+f =3.(3)由(2)可知f(x)+f =3,又因为f(1)=32,所以f(1)+f(2)+f(3)+f(4)+ff +f +f =f(1)+=32+3×3=21219.解:(1)当a =2时,f(x)=x 2-2x +4,x ∈[-2,3],因为f(x)的对称轴为x =1,所以f(x)在[-2,1]上单调递减,在[1,3]上单调递增,所以当x =1时,f(x)取得最小值为f(1)=1-2+4=3,当x =-2时,f(x)取得最大值为f(-2)=22+4+4=12.1()x 221()x 11()x +1(x 1()x 1()21()31()4111[f (2)f ()][f (3)f ()][f (4)f ()]234+++++(2)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,f(x)在区间(-∞,2]单调递减,则a -1≥2,解得a≥3.所以实数a 的取值范围为[3,+∞).(3)二次函数f(x)=x 2-2(a -1)x +4的对称轴为x =a -1,当a -1≤1,则a≤2,此时f(x)在[1,2]上单调递增,所以f(x)min =f(1)=1-2(a -1)+4=7-2a .当1<a -1<2,则2<a <3,此时f(x)在[1,a -1]上单调递减,在[a -1,2]上单调递增,所以f(x)min =f(a -1)=(a -1)2-2(a -1)2+4=-a 2+2a +3.当a -1≥2,则a ≥3,此时f(x)在[1,2]上单调递减,所以f(x)min =f(2)=22-4(a -1)+4=12-4a .综上,f(x)min ={7-2a ,a ≤2,-a 2+2a +3,2<a <3,12-4a ,a ≥3.。
高中函数测试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=2时的值为:A. 5B. 7C. 9D. 112. 函数y = |x|的图像是:A. 一条直线B. 一个V形C. 一个倒V形D. 一个S形3. 若f(x) = x^2 + 1,求f(-1)的值:A. 0B. 1C. 2D. 34. 函数y = 1/x的图像在第一象限和第三象限是:A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数5. 函数y = log2(x)的定义域是:A. x > 0B. x < 0C. x ≥ 0D. x ≤ 06. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π7. 若f(x) = x^3 - 3x^2 + 2x,求f'(x)的值:A. 3x^2 - 6x + 2B. x^2 - 2x + 1C. 3x^2 - 6xD. x^2 - 2x8. 函数y = cos(x)的图像在x = π/2时的值为:A. 1B. 0C. -1D. 不确定9. 若f(x) = 2^x,求f'(x)的值:A. 2^xB. ln(2) * 2^xC. 1D. 2^(x-1)10. 函数y = x^3的图像是:A. 关于原点对称B. 关于y轴对称C. 关于x轴对称D. 都不是答案:1. B2. B3. C4. B5. A6. B7. A8. B9. B10. A二、填空题(每题4分,共20分)11. 若函数f(x) = x^3 - 6x^2 + 9x + 2,求f(3)的值。
答案:-112. 若函数g(x) = √x,求g(16)的值。
答案:413. 若函数h(x) = 2^x,求h(-1)的值。
答案:1/214. 函数y = 3x - 5的斜率是:答案:315. 若函数k(x) = log10(x) + 1,求k(100)的值。
高中生数学函数试题及答案一、选择题(每题3分,共15分)1. 函数\( f(x) = x^2 - 4x + 4 \)的顶点坐标是:A. (0, 0)B. (2, 0)C. (2, 4)D. (-2, 4)2. 函数\( y = \log_{2}x \)的定义域是:A. \( (0, +\infty) \)B. \( (-\infty, 0) \)C. \( (-\infty, +\infty) \)D. \( [0, +\infty) \)3. 若\( f(x) = 2x - 1 \),求\( f(-2) \)的值:A. -5B. -4C. -3D. 34. 函数\( y = \frac{1}{x} \)的图像关于:A. 原点对称B. x轴对称C. y轴对称D. 对角线y=x对称5. 函数\( y = 3^x \)的值域是:A. \( (-\infty, 0) \)B. \( (0, 1) \)C. \( (1, +\infty) \)D. \( (-\infty, +\infty) \)二、填空题(每题2分,共10分)6. 若\( f(x) = x^3 + 2x^2 - x - 2 \),则\( f(-1) = ________ 。
7. 函数\( y = \log_{10}x \)的反函数是 ________ 。
8. 若\( g(x) = 5x + 7 \),则\( g^{-1}(x) = ________ 。
9. 函数\( y = \sqrt{x} \)的值域是 ________ 。
10. 函数\( y = \sin x \)的周期是 ________ 。
三、解答题(每题5分,共20分)11. 求函数\( f(x) = x^3 - 6x^2 + 11x - 6 \)的极值点。
12. 已知函数\( y = 2x^2 + 6x + 7 \),求其在x轴的截距。
13. 求函数\( y = \frac{2}{x} + 1 \)的渐近线。
高中数学组卷一.选择题(共12小题)1.(2016•宝鸡一模)下列函数中,奇函数是()A.f(x)=2x B.f(x)=log2x C.f(x)=sinx+1 D.f(x)=sinx+tanx2.(2016•呼伦贝尔一模)下列函数中,在(0,+∞)内单调递增,并且是偶函数的是()A.y=﹣(x﹣1)2B.y=cosx+1 C.y=lg|x|+2 D.y=2x3.(2016•河南模拟)已知i为虚数单位,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(2016•焦作一模)i是虚数单位,复数的虚部是()A.0 B.﹣1 C.1 D.﹣i5.(2016•信阳一模)执行如图所示的程序框图,输出s的值为()A.2 B.﹣C.3 D.6.(2016•榆林一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A.80 B.40 C.D.7.(2016•南开区模拟)已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100 B.210 C.380 D.4008.(2016•福建模拟)下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx9.(2016•眉山模拟)已知两点A(l,2),B(4,﹣2),则与向量共线的单位向量e是()A.(3,﹣4)B.(3,﹣4),(﹣3,4)C.(,一)D.(,一),(一,)10.(2016•大连模拟)△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.11.(2016•宁城县一模)设F1和F2为双曲线的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则△F1PF2的面积是()A.1 B.C.2 D.12.(2016•郴州模拟)已知向量=(4,2),=(x,3),且∥,则x的值是()A.﹣6 B.6 C.﹣D.二.填空题(共5小题)13.(2016•哈尔滨校级一模)若p是q的充分不必要条件,则¬p是¬q的条件14.(2016•潍坊一模)已知函数f(x)=,若f(a)=3,则a=•15.(2016•永州二模)在平面直角坐标系中,角α的终边过点P(1,2),则cos2α+sin2α的值为.16.(2016•黄冈模拟)已知向量=(cosθ,sinθ),=(1,﹣2),若∥,则代数式=.17.(2016•上海二模)△ABC中,,BC=3,,则∠C=.三.解答题(共5小题)18.(2016•北京)已知,且.(Ⅰ)tanθ=;(Ⅱ)求的值.19.(2016•北海一模)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.20.(2016•抚顺一模)已知椭圆的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于M、N两点,直线A1M的斜率为.(Ⅰ)求椭圆的离心率;(Ⅱ)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为,求椭圆方程.21.(2015•南市区校级模拟)已知等差数列{a n}的前n项和为S n,且a2=3,S15=225.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.22.(2016•静安区一模)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,E为AB的中点.求:(1)异面直线BD1与CE所成角的余弦值;(2)点A到平面A1EC的距离.参考答案与试题解析一.选择题(共12小题)1.(2016•宝鸡一模)下列函数中,奇函数是()A.f(x)=2x B.f(x)=log2x C.f(x)=sinx+1 D.f(x)=sinx+tanx【解答】解:A.f(x)=2x为增函数,非奇非偶函数,B.f(x)=log2x的定义域为(0,+∞),为非奇非偶函数,C.f(﹣x)=﹣sinx+1,则f(﹣x)≠﹣f(x)且f(﹣x)≠f(x),则函数f(x)为非奇非偶函数,D.f(﹣x)=﹣sinx﹣tanx=﹣(sinx+tanx)=﹣f(x),则函数f(x)为奇函数,满足条件.故选:D2.(2016•呼伦贝尔一模)下列函数中,在(0,+∞)内单调递增,并且是偶函数的是()A.y=﹣(x﹣1)2B.y=cosx+1 C.y=lg|x|+2 D.y=2x【解答】解:A.y=﹣(x﹣1)2的对称轴为x=1,为非奇非偶函数,不满足条件.B.y=cosx+1是偶函数,但在(0,+∞)内不是单调函数,不满足条件.C.y=lg|x|+2为偶函数,在(0,+∞)内单调递增,满足条件,D.y=2x,(0,+∞)内单调递增,为非奇非偶函数,不满足条件.故选:C3.(2016•河南模拟)已知i为虚数单位,则在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【解答】解:所以z在复平面内对应的点为(1,﹣1)位于第四象限故选D4.(2016•焦作一模)i是虚数单位,复数的虚部是()A.0 B.﹣1 C.1 D.﹣i【解答】解:.所以复数z的虚部是﹣1.故选B.5.(2016•信阳一模)执行如图所示的程序框图,输出s的值为()A.2 B.﹣C.3 D.【解答】解:根据题意,本程序框图为求S的值第一次进入循环体后,i=1,S=;第二次进入循环体后,i=2,S=﹣;第三次进入循环体后,i=3,S=3第四次进入循环体后,i=4,S=;退出循环故选D.6.(2016•榆林一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A.80 B.40 C.D.【解答】解:由三视图可知该几何体是如图所示的三棱锥:PO⊥平面ABC,PO=4,AO=2,CO=3,BC⊥AC,BC=4.从图中可知,三棱锥的底是两直角边分别为4和5的直角三角形,高为4,体积为V=.故选D.7.(2016•南开区模拟)已知等差数列{a n}中,a2=7,a4=15,则前10项的和S10=()A.100 B.210 C.380 D.400【解答】解:d=,a1=3,∴S10=10×3+\frac{10×9×4}{2}=210,故选B8.(2016•福建模拟)下列函数中,最小正周期为π的奇函数是()A.y=sin(2x+)B.y=cos(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【解答】解:由于函数y=sin(2x+)=cos2x为偶函数,故排除A;由于函数y=cos(2x+)=﹣sin2x为奇函数,且周期为,故B满足条件;由于函数y=sin2x+cos2x=sin(2x+)为非奇非偶函数,故排除C;由于函数y=sinx+cosx=sin(x+)为非奇非偶函数,故排除D,故选:B.9.(2016•眉山模拟)已知两点A(l,2),B(4,﹣2),则与向量共线的单位向量e是()A.(3,﹣4)B.(3,﹣4),(﹣3,4)C.(,一)D.(,一),(一,)【解答】解:=(3,﹣4),设与共线的单位向量是(x,y),则有,解得或,故选:D.10.(2016•大连模拟)△ABC中,AB=2,AC=3,∠B=60°,则cosC=()A.B.C.D.【解答】解:∵AB=2,AC=3,∠B=60°,∴由正弦定理可得:sinC===,又∵AB<AC,C为锐角,∴cosC==.故选:D.11.(2016•宁城县一模)设F1和F2为双曲线的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则△F1PF2的面积是()A.1 B.C.2 D.【解答】解:设|PF1|=x,|PF2|=y,(x>y)根据双曲线性质可知x﹣y=4,∵∠F1PF2=90°,∴x2+y2=20∴2xy=x2+y2﹣(x﹣y)2=4∴xy=2∴△F1PF2的面积为xy=1故选A12.(2016•郴州模拟)已知向量=(4,2),=(x,3),且∥,则x的值是()A.﹣6 B.6 C.﹣D.【解答】解:∵向量=(4,2),=(x,3),且∥,∴2x﹣3×4=0,解得x=6.故选:B.二.填空题(共5小题)13.(2016•哈尔滨校级一模)若p是q的充分不必要条件,则¬p是¬q的必要不充分条件【解答】解:∵p是q的充分不必要条件,∴p⇒q为真命题,q⇒p为假命题,故┐p⇒┐q为假命题,┐q⇒┐p为真命题故┐p是┐q的必要不充分条件故答案为:必要不充分14.(2016•潍坊一模)已知函数f(x)=,若f(a)=3,则a=﹣3•【解答】解:若a<1,令log2(1﹣a)+1=3,解得a=﹣3;若a≥1,令a﹣2=3,解得(舍去).∴a=﹣3.故答案为﹣3.15.(2016•永州二模)在平面直角坐标系中,角α的终边过点P(1,2),则cos2α+sin2α的值为1.【解答】解:∵在平面直角坐标系中,角α的终边过点P(1,2),∴x=1,y=2,r=,∴sinα=,cosα==,∴cos2α+sin2α=()2+2sinαcosα==1.故答案为:1.16.(2016•黄冈模拟)已知向量=(cosθ,sinθ),=(1,﹣2),若∥,则代数式=3.【解答】解:∵向量=(cosθ,sinθ),=(1,﹣2),若∥,∴﹣2cosθ﹣sinθ=0,求得tanθ=﹣2,∴代数式==3,故答案为:3.17.(2016•上海二模)△ABC中,,BC=3,,则∠C=.【解答】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:三.解答题(共5小题)18.(2016•北京)已知,且.(Ⅰ)tanθ=﹣;(Ⅱ)求的值.【解答】解:(Ⅰ)∵,且,∴cosθ=﹣=﹣,∴,故答案为:﹣.(Ⅱ)∵=cosθcos﹣sinθsin=﹣•﹣•=﹣.19.(2016•北海一模)某市规定,高中学生在校期间须参加不少于80小时的社区服务才合格.某校随机抽取20位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(Ⅰ)求抽取的20人中,参加社区服务时间不少于90小时的学生人数;(Ⅱ)从参加社区服务时间不少于90小时的学生中任意选取2人,求所选学生的参加社区服务时间在同一时间段内的概率.【解答】解:(Ⅰ)由题意可知,参加社区服务在时间段[90,95)的学生人数为20×0.04×5=4(人),参加社区服务在时间段[95,100]的学生人数为20×0.02×5=2(人).所以参加社区服务时间不少于90小时的学生人数为4+2=6(人).…(5分)(Ⅱ)设所选学生的服务时间在同一时间段内为事件A.由(Ⅰ)可知,参加社区服务在时间段[90,95)的学生有4人,记为a,b,c,d;参加社区服务在时间段[95,100]的学生有2人,记为A,B.从这6人中任意选取2人有ab,ac,ad,aA,aB,bc,bd,bA,bB,cd,cA,cB,dA,dB,AB共15种情况.事件A包括ab,ac,ad,bc,bd,cd,AB共7种情况.所以所选学生的服务时间在同一时间段内的概率.…(13分)20.(2016•抚顺一模)已知椭圆的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于M、N两点,直线A1M的斜率为.(Ⅰ)求椭圆的离心率;(Ⅱ)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为,求椭圆方程.【解答】解:(Ⅰ)由题意﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)因为A1(﹣a,0),所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)将b2=a2﹣c2代入上式并整理得(或a=2c)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(Ⅱ)由(Ⅰ)得a=2c,(或)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)所以A1(﹣2c,0),外接圆圆心设为P(x0,0)由|PA1|=|PM|,得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)解得:﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)所以△A1MN外接圆在M处切线斜率为,设该切线与椭圆另一交点为C则切线MC方程为,即﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)与椭圆方程3x2+4y2=12c2联立得7x2﹣18cx+11c2=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)解得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)由弦长公式得﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)解得c=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(13分)所以椭圆方程为﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)21.(2015•南市区校级模拟)已知等差数列{a n}的前n项和为S n,且a2=3,S15=225.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.【解答】解:(1)设数列{a n}的公差为d,依题意得:解得∴数列{a n}的通项公式a n=2n﹣1.(2)由(1)得,∴T n=b1+b2+…+b n===.22.(2016•静安区一模)如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,E为AB的中点.求:(1)异面直线BD1与CE所成角的余弦值;(2)点A到平面A1EC的距离.【解答】解:(1)如图①所示;延长DC至G,使CG=DC,连结BG、D1G,CG∥EB,且CG=EB,∴四边形EBGC是平行四边形;∴BG∥EC,∴∠D1BG就是异面直线BD1与CE所成的角;又△D1BG中,D1B=,;即异面直线BD1与CE所成角的余弦值是;(2)如图②所示;过A1作A1H⊥CE,交CE的延长线于H.连结AH,在底面ABCD中,∵∠AHE=∠CBE=90°,∠AEH=∠CEB,则△AHE∽△CBE,∴=,且CE=,AE=,∴AH===;在直角△A1AH中,A1A=1,AH=,∴A1H=;设点A到平面A1EC的距离为d,由三棱锥体积公式可得:,即;解得,即点A到平面A1EC的距离为.。
1.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为( )A .18B .30C .227 D .282.下列各组函数中,表示同一函数的是( ) A .f (x )=1,g (x )=xB .f (x )=x +2,g (x )=242--x xC .f (x )=|x |,g (x )=⎩⎨⎧<-≥00 x x x xD .f (x )=x ,g (x )=(x )23.设函数f (x )=x 2+2(a -1)x +2在区间(-∞,]4上是减函数,则实数a 的范围是( ) A .a ≥-3 B .a ≤-3 C .a ≥3 D .a ≤5 4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( A ) A .-26B .-18C .-10D .105.函数y =⎪⎩⎪⎨⎧>+-≤<+≤+)1( 5)10( 30 32x x x x x x 的最大值是__ ____.6.(本小题满分10分)已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1.(1)求证:f (8)=3.(2)求不等式f (x )-f (x -2)>3的解集.函数练习题(1)参考答案1.B2.C3.B4.A5. 4 (1)【证明】由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2)又∵f (2)=1,∴f (8)=3 (2)【解】不等式化为f (x )>f (x -2)+3∵f (8)=3,∴f (x )>f (x -2)+f (8)=f (8x -16) ∵f (x )是(0,+∞)上的增函数 ∴⎩⎨⎧->>-)2(80)2(8x x x 解得2<x <7161.函数y =log 21(x 2-6x +17)的值域是( )A .RB .[8,+)∞C .(-∞,-]3D .[-3,+∞)2.设函数f (x )=f (x1)lg x +1,则f (10)值为( )A .1B .-1C .10D .1013.已知函数y =f (2x)定义域为[1,2],则y =f (log 2x )的定义域为( ) A .[1,2]B .[4,16]C .[0,1]D .(-∞,0]4.若不等式3axx22->(31)x +1对一切实数x 恒成立,则实数a 的取值范围为______5.(本小题满分8分)已知函数f (x )=log 412x -log 41x +5,x ∈[2,4],求f (x )的最大值及最小值.函数练习题(2)参考答案1. C2.A3.B4.-21<a <235.【解】令t =log 41x ,∵x ∈[2,4],t =log 41x 在定义域递减有log 414<log 41x <log 412,∴t ∈[-1,-21]∴f (t )=t 2-t +5=(t -21)2+419,t ∈[-1,-21]∴当t =-21时,f (x )取最小值423当t =-1时,f (x )取最大值7.1.若f (x )=xx 1-,则方程f (4x )=x 的根是( ) A .21B .-21 C .2 D .-22.若f (x )=xx 1-,则方程f (4x )=x 的根是( ) A .21B .-21C .2D .-23.对于任意x 1,x 2∈[a ,b ],满足条件f (221x x +)>21[f (x 1)+ f (x 2)]的函数f (x )的图象是( )4.若函数f (x )满足f (ab )=f (a )+f (b ),且f (2)=m ,f (3)=n ,则f (72)值为( )A .m +nB .3m +2nC .2m +3nD .m 3+n 2 5.已知函数f (x )=1+x x ,则f (1)+f (2)+…+f (2002)+ f (2003) +f (1)+f (21)+…+f (20021)+f (20031)=______.6.(本小题满分8分)函数f (x )对于任意的m ,n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且当x >0时,f (x )>1.(1)求证:f (x )在R 上为增函数.(2)若f (3)=4,解不等式f (a 2+a -5)<2.函数练习题(3)参考答案1.A2.B3.D4.B5. 20036.(1)【证明】设x 1,x 2∈R ,且x 1<x 2,则x 2-x 1>0, ∵x >0时,有f (x )>1,故有f (x 2-x 1)>1而f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+ f (x 1)-1-f (x 1)=f (x 2-x 1)-1>0, ∴f (x )为增函数. (2)【解】由f (3)=f (2+1)=f (2)+f (1)-1=3f (1)-2=4∴f (1)=2, 则有f (a 2+a -5)<f (1)∵f (x )为增函数,∴a 2+a -5<1, 解得-3<a <21.设P ={y |y =x 2,x ∈R },Q ={y |y =2x ,x ∈R },则(B ) A .Q =P B .Q P C .P ∩Q ={2,4}D .P ∩Q ={(2,4)}2.已知函数f (x )=⎩⎨⎧≤>)0( 3)0( log2x x x x时f [f (41)]的值是( B )A .9B .91 C .-9 D .-913.已知f (x )=a x ,g (x )=log a x (a >0且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一坐标系内的图象可能是( C )4.若定义运算a *b =⎩⎨⎧>≥)( )( a b a b a b ,则函数f (x )=3x *3-x 的值域是( A ) A .(0,]1B .[1,+)∞C .(0,+∞)D .(-∞,+∞)5.方程2x =12-x 的解的个数是( C ) A .0B .1C .2D .36.设函数f (x )=]⎩⎨⎧+∞∈-∞∈-),1( log 1,( 281x x x x ,则满足f (x )=41的值为__3____.函数练习题(4)参考答案1.B2.B3.C4.A5.C6. 3函数练习题(5)1、方程x )2x (log a -=+(a>0且a ≠1)的实数解的个数是( ) A 、0 B 、1 C 、2 D 、3 2.函数)12x 4x (log y 221+-=的值域为( )A 、 (-∞,3]B 、(-∞,-3]C 、(-3,+∞)D 、(3,+∞)3、有长度为24的材料用一矩形场地,中间加两隔墙,要使矩形的面积最大,则隔壁的长度为( )A 、 3B 、4C 、6D 、12 4.函数f(x)定义域为[1,3],则f(x 2+1)的定义域是__________。
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = 2x^2 - 4x + 3,则f(2)的值为()A. 1B. 3C. 5D. 72. 函数y = |x|的图像是()A. 双曲线B. 抛物线C. 直线D. 双曲线3. 函数f(x) = x^3 - 3x + 1的零点个数为()A. 1B. 2C. 3D. 44. 函数y = (1/2)^x的图像是()A. 递增函数B. 递减函数C. 奇函数D. 偶函数5. 函数f(x) = x^2 + 2x + 1的图像是()A. 双曲线B. 抛物线C. 直线D. 圆6. 函数y = log2(x - 1)的定义域为()A. x > 0B. x > 1C. x < 0D. x < 17. 函数y = sin(x) + cos(x)的最大值为()A. 1B. √2C. 2D. 08. 函数f(x) = e^x的图像是()A. 递增函数B. 递减函数C. 奇函数D. 偶函数9. 函数y = 2^x的图像是()A. 递增函数B. 递减函数C. 奇函数D. 偶函数10. 函数y = x^3 - 6x^2 + 9x的图像是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增二、填空题(本大题共5小题,每小题5分,共25分)11. 函数f(x) = (x - 1)^2 + 2的最小值为______。
12. 函数y = log2(x + 1)的图像与y = 2^x的图像的交点个数为______。
13. 函数y = |x - 1| + |x + 1|的图像是______。
14. 函数y = e^x + e^(-x)的图像是______。
15. 函数y = x^2 - 2x + 1的图像是______。
三、解答题(本大题共4小题,共75分)16. (15分)已知函数f(x) = ax^2 + bx + c(a ≠ 0)的图像经过点(1,2),且f(-1) = 0,求函数f(x)的解析式。
高中数学必修一函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 8、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 9、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )(1)(2)(3)(4)A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高中数学函数试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是()A. 1B. 2C. 4D. 52. 已知函数y = x^3 - 2x^2 + x - 2,求其在x=0时的值是()A. -2B. 0C. 1D. 23. 函数y = sin(x)在x=π/2处的值是()A. 0B. 1C. -1D. π/24. 已知函数f(x) = 3x + 5,求f(-2)的值是()A. -1B. 1C. -7D. 75. 如果函数f(x) = x^2 + 2x + 3在区间[-3, 1]上是增函数,那么下列哪个选项是错误的()A. f(-3) = 12B. f(1) = 6C. f(-2) = 4D. f(0) = 36. 函数y = 1 / (x + 1)的渐近线是()A. x = -1B. y = 0C. x = 1D. y = 17. 函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是()A. x = 1B. x = 2C. x = 3D. x = 48. 函数y = x^2在x=2处的切线斜率是()A. 0B. 2C. 4D. 89. 函数y = 2^x的值域是()A. (0, +∞)B. (-∞, +∞)C. [0, +∞)D. [1, +∞)10. 函数f(x) = |x - 2|的零点是()A. x = 0B. x = 1C. x = 2D. x = 3二、填空题(每题4分,共20分)11. 若函数f(x) = √x在区间[0, 4]上是增函数,则f(4) - f(0) = _______。
12. 函数g(x) = x^2 + bx + c,若g(1) = 2,g(2) = 6,则b + c = _______。
13. 若函数h(x) = 3x - 2的反函数为h^(-1)(x),则h^(-1)(5) =_______。
高中函数考试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1的图像是:A. 一个开口向上的抛物线B. 一个开口向下的抛物线C. 一个上升的直线D. 一个下降的直线答案:A2. 如果函数g(x) = √x在区间[0, +∞)上是增函数,那么g(4)与g(9)的大小关系是:A. g(4) > g(9)B. g(4) < g(9)C. g(4) = g(9)D. 不能确定答案:B3. 函数h(x) = 1/x在区间(-∞, 0)和(0, +∞)上是:A. 增函数B. 减函数C. 常数函数D. 既不是增函数也不是减函数答案:B4. 函数f(x) = |x - 2| + |x + 3|的最小值出现在:A. x = -3B. x = 2C. x = -2D. x = 0答案:D5. 函数f(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. 4πD. 1答案:B6. 如果函数f(x) = x^3 - 3x^2 + 2x - 1在x = 1处取得极值,那么这个极值是:A. 极大值B. 极小值C. 不是极值D. 无法确定答案:A7. 函数f(x) = ln(x)的定义域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B8. 函数f(x) = e^x在x = 0处的导数是:A. 0B. 1C. -1D. 无法确定答案:B9. 函数f(x) = x^2 - 4x + 4的图像与x轴的交点个数是:A. 0B. 1C. 2D. 3答案:A10. 函数f(x) = sin(x)cos(x)的图像是:A. 一个周期为π的正弦函数B. 一个周期为2π的正弦函数C. 一个周期为π/2的正弦函数D. 一个周期为π/4的正弦函数答案:D二、填空题(每题2分,共20分)1. 函数f(x) = x^2 + 2x + 1可以写成完全平方的形式:f(x) = __________。
高中数学函数测试题(含答案)高中数学函数测试题一、选择题和填空题(共28题,每题3分,共84分)1、已知$a=log_3\pi$,$b=log_7\frac{6}{5}$,$c=log_{2}0.8$,则$a>b>c$,选A。
解析:利用中间值和1来比较:$a=log_3\pi>1$,$b=log_7\frac{6}{5}<1$,$c=log_{2}0.8<1$。
2、函数$f(x)=(x-1)+\frac{1}{x}$的反函数为$f^{-1}(x)=\begin{cases}1+x^{-1},&x>1\\1-x^{-1},&x<1\end{cases}$,选B。
解析:$x1$时,$f^{-1}(x)=1+x^{-1}$。
3、已知函数$f(x)=x-\cos x$,对于$x_1\frac{\pi}{2}$,$x_1+x_2>0$。
其中能使$f(x_1)>f(x_2)$恒成立的条件序号是2,选B。
解析:函数$f(x)=x-\cos x$为偶函数,所以$f(x_1)>f(x_2)\Leftrightarrow f(|x_1|)>f(|x_2|)$。
在区间$(0,\frac{\pi}{2})$上,函数$f(x)$为增函数,因此$f(|x_1|)>f(|x_2|)\Leftrightarrow |x_1|>|x_2|\Leftrightarrowx_1^2>x_2^2$。
4、已知函数$f(x)=\begin{cases}\log_3x,&x>1\\\frac{x}{4},&x\leq1\end{cases}$,则$f(f(\frac{1}{4}))=\frac{1}{2}$,选B。
解析:$f(\frac{1}{4})=\frac{1}{16}$,$f(f(\frac{1}{4}))=f(\log_3\frac{1}{16})=\log_3\frac{1}{16}\cdot \log_3\frac{1}{3}=-2\cdot(-1)=2$。
2015年06月19日高中数学函数组卷
一.选择题(共26小题)
1.(2015•枣庄校级模拟)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那
2.(2015•福建模拟)函数y=()x+1的图象关于直线y=x对称的图象大致是()
B
3.(2015•绥化一模)在同一个坐标系中画出函数y=a x,y=sinax的部分图象,其中a>0且
.
4.(2015•江西二模)已知曲线C:y=(﹣2≤x≤0)与函数f(x)=log a(﹣x)及函数g(x)=a﹣x(其中a>1)的图象分别交于A(x1,y1),B(x2,y2),则x12+x22的值为
5.(2015•宜昌一模)如图,面积为8的平行四边形OABC,对角线AC⊥CO,AC与BO交于点E,某指数函数y=a x(a>0,且a≠1),经过点E,B,则a=()
B
x x
2
B
11.(2015•衡阳县校级二模)已知函数f(x)=e﹣x﹣(x>0)与g(x)=ln(x+a)的图象
B
12.(2015•浙江校级模拟)若函数f(x)=x﹣(a∈R)在区间(1,2)上有零点,则a的
13.(2011•湖南)已知函数f(x)=e x﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),则b .﹣2+
14.(2015•临潼区校级模拟)设函
,则函数g(x)=f
15.(2015•沈阳一模)函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的
16.(2014•阜阳校级一模)任意a、b∈R,定义运算,则f(x)=x*e x
最小值为最大值为
17.(2014•濮阳二模)已知函数f(x+1)是定义在R上的奇函数,若对于任意给定的不等实数x1、x2,不等式(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立,则不等式f(1﹣x)<0的解
18.(2014•渭南二模)已知函数g(x)是R上的奇函数,且当x<0时g(x)=﹣ln(1﹣x),
函数若f(2﹣x2)>f(x),则实数x的取值范围是()
19.(2013•广元一模)函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则
20.(2015•衡阳县校级三模)f(x)=是R上的单调递增函数,
21.(2015•重庆一模)已知f(x)是偶函数,它在[0,+∞)上是减函数,若f(lgx)>f(1),(,),
22.(2015•南昌校级二模)设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有x
23.(2015•桐城市一模)已知f(x)=|x﹣4|+|x+6|的最小值为n,则二项式展开式中常数项是()
24.(2015•衡阳县校级二模)已知函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,
25.(2015•凯里市校级模拟)函数y=的图象大致是()
.C.D.
二.填空题(共3小题)
27.(2015•重庆)设a,b>0,a+b=5,则的最大值为.28.(2015•福建模拟)已知函数f(x)=2sinxcosx+2sin2x﹣1(x∈R),当x∈[0,]时,若函数y=f(x)﹣k有两个零点,则k的取值范围为.
29.(2015•漳州二模)已知函数f(x)=mx2+nx﹣2(m>0,n>0)的一个零点是2,则+的最小值为.
三.解答题(共1小题)
30.(2015•葫芦岛二模)已知f(x)=|2x﹣1|+ax﹣5(a是常数,a∈R)
①当a=1时求不等式f(x)≥0的解集.
②如果函数y=f(x)恰有两个不同的零点,求a的取值范围.
2015年06月19日高中数学函数组卷
参考答案
一.选择题(共26小题)
1.A 2.A 3.D 4.C 5.A 6.C 7.C 8.C 9.C 10.B 11.A 12.D 13.B 14.A 15.D 16.B 17.C 18.A 19.D
20.B 21.C 22.C 23.B 24.C 25.C 26.B
二.填空题(共3小题)
27.328.1≤k<29.8
三.解答题(共1小题)
30.。