高中数学函数与导数综合复习
- 格式:doc
- 大小:336.44 KB
- 文档页数:4
高中导数与函数知识点总结归纳一、基本概念1.导数的定义:设x 0是函数y =f (x )定义域的一点,如果自变量x 在x 0处有增量∆x ,则函数值y 也引起相应的增量∆y =f (x 0+∆x )-f (x 0);比值率;如果极限lim ∆y f (x 0+∆x )-f (x 0)称为函数y =f (x )在点x 0到x 0+∆x 之间的平均变化=∆x ∆xf (x 0+∆x )-f (x 0)∆y 存在,则称函数y =f (x )在点x 0处可导,并把这个极限叫做=lim ∆x →0∆x ∆x →0∆x y =f (x )在x 0处的导数。
f (x )在点x处的导数记作y 'x =x=f '(x 0)=lim∆x →0f (x 0+∆x )-f (x 0)∆x2导数的几何意义:(求函数在某点处的切线方程)函数y =f (x )在点x 0处的导数的几何意义就是曲线y =f (x )在点(x 0,f (x ))处的切线的斜率,也就是说,曲'线y =f (x )在点P (x 0,f (x ))处的切线的斜率是f (x 0),切线方程为y -y 0=f (x )(x -x 0).'3.基本常见函数的导数:n①C '=0;(C 为常数)②x ()'=nx x x n -1;③(sin x )'=cos x ;④(cos x )'=-sin x ;⑤(e )'=e ;⑥(a )'=a ln a ;⑦(ln x )'=x x 11;⑧(l o g ax )'=logae .xx二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:⎡'⎣f (x )±g (x )⎤⎦=f '(x )±g '(x )法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:⎡'=f '(x )g (x )+f (x )g '(x )f x ⋅g x ⎤()()⎣⎦常数与函数的积的导数等于常数乘以函数的导数:(Cf (x ))'=Cf '(x ).(C为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎡f (x )⎤'f '(x )g (x )-f (x )g '(x )g (x )≠0)。
高中数学函数与导数_高中数学函数与导数知识点汇总第一、求函数定义域题忽视细节函数的定义域是使函数有意义的自变量的取值范围,考生想要在考场上准确求出定义域,就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时,要注意以下几点:分母不为0;偶次被开放式非负;真数大于0以及0的0次幂无意义。
函数的定义域是非空的数集,在解答函数定义域类的题时千万别忘了这一点。
复合函数要注意外层函数的定义域由内层函数的值域决定。
第二、带绝对值的函数单调性判断错误带绝对值的函数实质上就是分段函数,判断分段函数的单调性有两种方法:第一,在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,然后对各个段上的单调区间进行整合;第二,画出这个分段函数的图象,结合函数图象、性质能够进行直观的判断。
函数题离不开函数图象,而函数图象反应了函数的所有性质,考生在解答函数题时,要第一时间在脑海中画出函数图象,从图象上分析问题,解决问题。
对于函数不同的单调递增(减)区间,千万记住,不要使用并集,指明这几个区间是该函数的单调递增(减)区间即可。
第三、求函数奇偶性的常见错误求函数奇偶性类的题最常见的错误有求错函数定义域或忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断。
在用定义进行判断时,要注意自变量在定义域区间内的任意性。
第四、抽象函数推理不严谨很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计的,在解答此类问题时,考生可以通过类比这类函数中一些具体函数的性质去解决抽象函数。
多用特殊赋值法,通过特殊赋可以找到函数的不变性质,这往往是问题的突破口。
高中数学导数知识总结导数七大题型答题技巧知识总结一.导数概念的引入1.导数的物理意义:瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2.导数的几何意义:曲线的切线,当点趋近于P时,直线P T 与曲线相切。
容易知道,割线的斜率是当点趋近于P时,函数y=f(x)在x=处的导数就是切线P T的斜率k,即3.导函数:当x变化时,便是x的一个函数,我们称它为f(x)的导函数. y=f (x)的导函数有时也记作,即。
二.导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2.函数的极值与导数:极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0,右侧<0,那么是极大值;(2)如果在附近的左侧<0,右侧>0,那么是极小值;3.函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四.推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
类比推理的一般步骤:(1)找出两类事物的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3)一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4)一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
高中数学(一)函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围.【例1】已知函数f (x )=ln x +a (1-x ).(1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a .若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0; 当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0, 所以f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x =1a 处取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln 1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1. 因此f ⎝ ⎛⎭⎪⎫1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0.于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0.因此,实数a 的取值范围是(0,1).【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.(2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.【变式训练】已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求实数a 的取值范围.解(1)当a =2时,f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x=(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x <2.所以函数f (x )的单调递增区间是(-2,2).(2)因为函数f (x )在(-1,1)上单调递增,所以f ′(x )≥0对x ∈(-1,1)都成立,因为f ′(x )=(-2x +a )e x +(-x 2+ax )e x=-x 2+(a -2)x +a ]e x ,所以-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立.因为e x >0,所以-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立,即a ≥x2+2x x +1=(x +1)2-1x +1=(x +1)-1x +1对x ∈(-1,1)都成立.令y =(x +1)-1x +1,则y ′=1+1(x +1)2>0. 所以y =(x +1)-1x +1在(-1,1)上单调递增,所以y <(1+1)-11+1=32.即a ≥32.因此实数a 的取值范围为a ≥32.题型二:利用导数研究函数零点或曲线交点问题函数的零点、方程的根、曲线的交点,这三个问题本质上同属一个问题,它们之间可相互转化,这类问题的考查通常有两类:(1)讨论函数零点或方程根的个数;(2)由函数零点或方程的根求参数的取值范围.【例2】设函数f(x)=ln x +m x ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x 3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +e x , 定义域为(0,+∞),则f ′(x )=x -e x2,由f ′(x )=0,得x =e.∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减,当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +e e =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点.∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【类题通法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.【变式训练】函数f (x )=(ax 2+x )e x ,其中e 是自然对数的底数,a ∈R .(1)当a >0时,解不等式f (x )≤0;(2)当a =0时,求整数t 的所有值,使方程f (x )=x +2在t ,t +1]上有解.解 (1)因为e x >0,(ax 2+x )e x ≤0.∴ax 2+x ≤0.又因为a >0,所以不等式化为x ⎝ ⎛⎭⎪⎫x +1a ≤0. 所以不等式f (x )≤0的解集为⎣⎢⎡⎦⎥⎤-1a ,0. (2)当a =0时,方程即为x e x =x +2,由于e x >0,所以x =0不是方程的解,所以原方程等价于e x -2x -1=0.令h (x )=e x -2x -1,因为h ′(x )=e x +2x2>0对于x ∈(-∞,0)∪(0,+∞)恒成立,所以h (x )在(-∞,0)和(0,+∞)内是单调递增函数,又h (1)=e -3<0,h (2)=e 2-2>0,h (-3)=e -3-13<0,h (-2)=e -2>0,所以方程f (x )=x +2有且只有两个实数根且分别在区间1,2]和-3,-2]上,所以整数t 的所有值为{-3,1}.题型三:利用导数研究不等式问题导数在不等式中的应用是高考的热点,常以解答题的形式考查,以中高档题为主,突出转化思想、函数思想的考查,常见的命题角度:(1)证明简单的不等式;(2)由不等式恒成立求参数范围问题;(3)不等式恒成立、能成立问题.【例3】设函数f (x )=e 2x -a ln x .(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+a ln 2 a.(1)解f(x)的定义域为(0,+∞),f′(x)=2e2x-ax(x>0).当a≤0时,f′(x)>0,f′(x)没有零点.当a>0时,设u(x)=e2x,v(x)=-a x,因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-ax在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b满足0<b<a4且b<14时,f′(b)<0(讨论a≥1或a<1来检验),故当a>0时,f′(x)存在唯一零点.(2)证明由(1),可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;当x∈(x0,+∞)时,f′(x)>0.故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0)由于2e2x0-ax0=0,所以f(x0)=a2x0+2ax0+a ln2a≥2a+a ln2a.故当a>0时,f(x)≥2a+a ln 2 a.【类题通法】1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.【变式训练】已知函数f(x)=ax+ln x(a∈R).(1)若a=2,求曲线y=f(x)在x=1处的切线方程;(2)求f (x )的单调区间;(3)设g (x )=x 2-2x +2,若对任意x 1∈(0,+∞),均存在x 2∈0,1]使得f (x 1)<g (x 2),求a 的取值范围.解(1)由已知得f ′(x )=2+1x (x >0),所以f ′(1)=2+1=3,所以斜率k =3.又切点为(1,2),所以切线方程为y -2=3(x -1),即3x -y -1=0,故曲线y =f (x )在x =1处的切线方程为3x -y -1=0.(2)f ′(x )=a +1x =ax +1x (x >0),①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0,所以f (x )的单调增区间为(0,+∞).②当a <0时,由f ′(x )=0,得x =-1a .在区间⎝ ⎛⎭⎪⎫0,-1a 上,f ′(x )>0,在区间⎝ ⎛⎭⎪⎫-1a ,+∞上,f ′(x )<0,所以函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,-1a ,单调递减区间为⎝ ⎛⎭⎪⎫-1a ,+∞. (3)由已知得所求可转化为f (x )max <g (x )max ,g (x )=(x -1)2+1,x ∈0,1],所以g (x )max =2,由(2)知,当a ≥0时,f (x )在(0,+∞)上单调递增,值域为R ,故不符合题意.当a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-1a 上单调递增,在⎝ ⎛⎭⎪⎫-1a ,+∞上单调递减,故f (x )的极大值即为最大值,是f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a =-1-ln(-a ), 所以2>-1-ln(-a ),解得a <-1e3.。
高二数学函数与导数综合复习
一、知识梳理:
1.基本初等函数的导数公式和导数的四则运算法则:
常用函数导数公式:='x ; =')(2
x ;=')(3
x ;=')1
(x
; 初等函数导数公式:='c ; =')(n x ;=')(sin x ;=')(cos x ;
=')(x a ; =')(x
e ;=')(log x a ;=')(ln x ;
导数运算法则:(1)/
[()()]f x g x ±= ;(2))]'()([x g x f ⋅= ;
(3)/
()[
]()
f x
g x = [()0].g x ≠ 2.导数的几何意义:______________________________________________________________________; 曲线)(x f y =在点()(,00x f x )处的切线方程为________________________________________. 3.用导数求函数单调区间的一般步骤: (1)__________________________________;
(2)________的解集与定义域的交集的对应区间为增区间;_______的解集与定义域的交集的对应区间为减区间
4. 利用导数求函数的最值步骤:
⑴求)(x f 在(,)a b 内的极值; ⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值.
二.巩固练习:
1.一个物体的运动方程为21s
t t 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时
速度是 ( ) A 、 7米/秒 B 、6米/秒 C 、 5米/秒 D 、 8米/秒
2. 在0000()()
()lim x f x x f x f x x
∆→+∆-'=∆中,x ∆不可能 ( )
A .大于0
B .小于0
C .等于0
D .大于0或小于0
3. 已知曲线3
2x y =上一点)2,1(A ,则A 处的切线斜率等于 ( )
A .2
B .4
C .6+6x ∆+2(x ∆)2
D .6
4. 设)(x f y =存在导函数,且满足12)
21()1(lim 0
-=∆∆--→∆x
x f f x ,则曲线)(x f y =上点))1(,1(f 处的切线
斜率为( )
A .2
B .-1
C .1
D .-2
a
b
x
y )(x f y ?=
O
5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的 ( ) A 、充分条件 B 、必要条件 C 、充要条件 D 、必要非充分条件 6.已知函数y = f (x )在区间(a ,b )内可导,且x 0∈(a ,b ),则000
()()
lim
h f x h f x h h
→+--= ( )
A f ′(x 0)
B 2f ′(x 0)
C -2f ′(x 0)
D 0
7.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)= ( ) A .-1 B .-2 C .2 D .0
8. 函数x x y ln 2
12
-=
的单调减区间是( ) A .(0,1) B .(0,1)∪(-∞,-1) C .(-∞,1) D .(-∞,+∞) 9.若函数f (x )=1
2 f ′(-1) x 2-2x +3,则f ′(-1)的值为 ( )
A .0
B .-1
C .1
D .2
10.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点 ( ) A 1个 B 2个 C 3个 D 4个
11.设函数f(x)在定义域内可导,y=f(x)的图象如图1所示,则导函数y=f '(x)可能为 ( )
8.函数ln x
y x
=的最大值为 ( )
A .1e -
B .e
C .2
e D .
10
3
12.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集 ( )
A (-3,0)∪(3,+∞)
B (-3,0)∪(0,3)
C (-∞,-3)∪(3,+∞)
D (-∞,-3)∪(0,3) 13.曲线3
()
2f x x x
在0p 处的切线平行于直线41y x ,则0p 点的坐标为 ( )
A 、( 1 , 0 )
B 、( 2 , 8 )
C 、( 1 , 0 )和(-1, -4)
D 、( 2 , 8 )和 (-1, -4) 14.函数32
3922y
x x x x 有 ( )
x
y
O
A x
y
O
B x
y
O
C y
O
D
x
A.极大值5极小值-27
B.极大值5极小值-11
C.极大值5无极小值
D.极小值-27无极大值 15.已知函数f (x )=x 3-ax -1,若f (x )在(-1,1)上单调递减,则a 的取值范围为 ( ) A .a ≥3 B .a >3 C .a ≤3 D .a <3
16. 已知)1(2)(2
f x x x f '+=,则)0(f '=________.
17. 函数3)2(33)(2
3++++=x a ax x x f 既有极大值又有极小值,则实数a 的取值范围是________. 18.若曲线y =2x 2-4x +a 与直线y =1相切,则a =______________________ 19. 函数1
4)(2
+=
x x
x f ,∈x [-2,2]的最大值是________,最小值是________. 20.曲线x y ln =在点M(e,1)处的切线的斜率是_________,切线的方程为_____________________ 21.已知函数)1(ln )1(2
1)(2
-<+-+=
a x a ax x x f . (1)若函数)(x f 在2=x 处的切线与x 轴平行,求a 的值;(2)在(1)的条件下,求出)(x f 的极值.
22.已知函数x b ax x f ln )(2
+=在1=x 处有极值
2
1. (1)求b a 、得值; (2)判断函数)(x f y =的单调性并求出单调区间.
23.已知函数x x a
x
x f ln 23)(2+-=
,其中a 为常数. (1)若1=a ,求函数)(x f 的单调区间;(2)若函数)(x f 在区间[]21,
上为增函数,求实数a 的取值范围.
24已知函数x a x x f ln 2
1)(2
+=
. (1)1-=a ,求函数的极值;
(2)若1=a ,求证:在区间[)+∞,1上,函数)(x f 的图像在3
3
2)(x x g =的图像下方.
25.已知函数)0(13)(3
≠--=a ax x x f . (1)求函数)(x f 的单调区间;
(2)若函数)(x f 在1=x 处取得极值,且直线m y =与)(x f y =的图像有三个不同的交点,求m 的范围.
26.设函数x x x
a
x g x x x f ln )(3)(23
+=
--=,,其中R a ∈. (1)若存在[]2,1,21∈x x ,使得M x f x f ≥-)()(21,求整数M 的最大值 (2)若对任意的⎥⎦
⎤⎢⎣⎡∈2,21,t s ,都有),()(s g t f ≤求实数a 的范围.。