3 弹性力学的几个基本概念
- 格式:ppt
- 大小:3.96 MB
- 文档页数:30
1、五个基本假定在建立弹性力学基本方程时有什么用途答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。
均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。
因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。
进一步地说,就是物体的弹性常数也不随方向而变化。
小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。
在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。
2、试分析简支梁受均布荷载时,平面截面假设是否成立解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。
而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。
例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。
所以,严格来说,不成立。
3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。
弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。
它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。
在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。
1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。
而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。
2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。
第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。
3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。
而应变能是指物体在受力过程中,由于形变而转换成的能量。
4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。
它可以表示为应力等于弹性模量乘以应变。
5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。
在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。
6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。
在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。
7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。
在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。
8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。
在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。
9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。
在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。
以上是弹性力学中的一些基本概念和考点的汇总。
掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。
弹性力学基本概念弹性力学是力学的一个分支领域,研究材料在受力时的弹性变形和恢复变形的行为规律。
本文将介绍弹性力学的基本概念,包括应力、应变、胡克定律和杨氏模量等。
一、应力和应变在弹性力学中,应力和应变是两个基本的物理量,用来描述物体在受力时的变形情况。
应力是单位面积上的力,通常用希腊字母σ表示。
应力可以分为正应力和剪应力两种。
正应力是指垂直于受力面的力,它可以通过力的大小和受力面的面积计算得到。
正应力的单位是帕斯卡(Pa),1Pa等于1牛顿/平方米。
剪应力是指平行于受力面的力,它也可以通过力的大小和受力面的面积计算得到。
剪应力的单位也是帕斯卡(Pa)。
应变是物体由于受力而发生的变形程度,通常用希腊字母ε表示。
应变可以分为线性应变和剪切应变两种。
线性应变是指物体在受力下发生的长度变化与原长度之比。
线性应变的计算公式为:ε = ΔL / L,其中ΔL表示长度变化,L表示原长度。
剪切应变是指物体在受到剪应力时,各层之间相对位置的变化。
剪切应变的计算公式为:γ = Δx / h,其中Δx表示位置变化,h表示物体的厚度。
二、胡克定律胡克定律是弹性力学的基本定律之一,描述了材料的应力和应变之间的关系。
胡克定律可以用公式表示为:σ = Eε,其中σ表示应力,E表示杨氏模量,ε表示应变。
杨氏模量是衡量材料硬度和刚度的重要物理量,表示单位应力下材料的单位应变。
杨氏模量的单位是帕斯卡(Pa)。
胡克定律表明,当材料处于弹性变形状态时,应力和应变之间成正比。
杨氏模量越大,材料的刚度越高,抵抗变形的能力也越强。
三、弹性常数除了杨氏模量,弹性力学还有其他一些描述材料力学性质的常数。
泊松比是描述材料在受到正应力时,在垂直方向上的应变情况的比值。
泊松比的计算公式为:ν = -ε_2 / ε_1,其中ε_1表示垂直方向上的线性应变,ε_2表示平行方向上的线性应变。
弹性体模量是描述材料在受力时的刚度的物理量,定义为单位体积的材料在受力时所发生的应变与应力之比。
大学弹力力学知识点总结弹性力学是力学的一个分支,主要研究物体在外力作用下的形变和应力,以及这些形变和应力之间的关系。
在这一领域中,我们主要研究弹性体的性质,包括拉伸、压缩、扭转和弯曲等。
弹性力学不仅在工程领域有着广泛的应用,也是现代物理学、材料学和地质学等领域的基础。
1.基本概念在弹性力学中,我们首先需要了解一些基本概念,包括应力、应变、杨氏模量和泊松比等。
应力是单位面积上的外力,通常用符号σ表示。
应力可以分为正应力、剪切应力等。
应变是单位长度上的形变量,通常用符号ε表示。
应变也可以分为正应变、剪切应变等。
杨氏模量是描述材料刚度的参数,通常用符号E表示。
杨氏模量越大,说明材料越难以变形。
泊松比描述了材料在垂直拉伸时横向收缩的程度,通常用符号ν表示。
2.拉伸在弹性力学中,拉伸是一个非常重要的概念,它描述了物体在外力作用下的长度变化。
拉伸实验通常利用应变计来测量物体的应变,从而得到应力-应变曲线。
根据应力-应变曲线,我们可以得到杨氏模量和屈服强度等重要参数。
3.压缩压缩是拉伸的逆过程,它描述了物体在外力作用下的长度减小。
同样,通过压缩实验可以得到物体的杨氏模量和屈服强度等参数。
4.扭转扭转是指物体在外力作用下的扭转形变。
扭转实验可以得到物体的剪切模量。
5.弯曲弯曲是物体在外力作用下产生的弯曲形变。
在弯曲实验中,我们通常关注的是杨氏模量和截面惯性矩等参数。
弯曲实验还可以用来研究材料的疲劳性能。
6.弹性体的稳定性在弹性力学中,我们还需要研究弹性体的稳定性问题。
通常情况下,我们关注的是杆的稳定性和壳的稳定性。
通过分析弹性体的形变和应力分布,我们可以得到弹性体的稳定性条件。
7.应力分析应力分析是弹性力学的重要内容,它主要研究物体内部的应力分布。
应力分析可以帮助我们理解物体在外力作用下的形变特性,以及预测物体的破坏情况。
总之,弹性力学是一门重要的力学分支,它不仅在工程领域有着广泛的应用,也在物理、材料和地质等领域发挥着重要作用。
三向的胡克定律一、三向胡克定律的基础概念三向胡克定律,又称为三维胡克定律,是弹性力学的基本定律之一。
它描述了在三维空间中,物体的应力和应变之间的关系。
与传统的二维胡克定律相比,三向胡克定律考虑了更多的因素,包括剪切应力、旋转应力和三维空间的应变状态。
在三向胡克定律中,物体的应力和应变被表示为三维向量,这些向量不仅包括大小,还包括方向。
这使得三向胡克定律能够更准确地描述在复杂应力状态下的物体行为,如扭曲、弯曲和剪切等。
二、三向胡克定律的数学表达三向胡克定律的数学表达通常由三个方程构成:应力平衡方程、几何方程和物理方程。
这些方程一起描述了物体的应力、应变和变形之间的关系。
1.应力平衡方程:该方程描述了物体内部应力的平衡状态。
在三维空间中,这个方程是一个线性方程组,表示为:σij,j=0 (i=1,2,3)。
其中,σij表示应力张量分量,j表示偏量算子。
2.几何方程:这个方程描述了物体的应变和变形。
它通常表示为:εij=1/2(uij+uji),其中εij表示应变张量分量,uij表示位移梯度分量。
3.物理方程:这个方程将应力和应变联系起来,通常表示为:σij=λδij+2μεij。
其中,λ和μ是拉梅常数,δij是克罗内克符号,表示当i=j时值为1,否则为0。
三、三向胡克定律的应用三向胡克定律在许多工程领域中有广泛的应用,包括结构工程、航空航天工程和材料科学等。
以下是一些具体的应用实例:1.结构工程:在结构工程中,三向胡克定律被用于分析桥梁、建筑和其它大型结构的应力分布和变形。
这种分析可以帮助工程师预测结构的强度、刚度和稳定性,从而优化设计。
2.航空航天工程:在航空航天工程中,由于飞行器经常处于复杂的应力状态,因此三向胡克定律的应用尤为重要。
它被用于分析飞行器的结构强度、疲劳寿命和气动弹性等问题。
3.材料科学:在材料科学中,三向胡克定律用于研究材料的力学性能,如弹性模量、泊松比和剪切模量等。
这种研究有助于理解材料的微观结构和宏观力学行为之间的关系,为新材料的开发提供理论支持。
基本概念:(1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理:作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。
(3) 弹性力学的基本假定:连续性、完全弹性、均匀性、各向同性和小变形。
(4) 平面应力与平面应变;设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。
同时,体力也平行与板面并且不沿厚度方向变化。
这时,0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。
设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。
由胡克定律,0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。
因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。
(5) 一点的应力状态;过一个点所有平面上应力情况的集合,称为一点的应力状态。
(6) 圣维南原理;(提边界条件)如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。
(7) 轴对称;在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。
这种问题称为空间轴对称问题。
一、 平衡微分方程:(1) 平面问题的平衡微分方程;00yxx x xy yy f x yf x yτστσ∂∂++=∂∂∂∂++=∂∂(记)(2) 平面问题的平衡微分方程(极坐标);10210f f ρρϕρϕρϕρϕρϕϕ∂σ∂τσσ∂ρρ∂ϕρ∂σ∂ττρ∂ϕ∂ρρ-+++=+++=1、平衡方程仅反映物体内部的平衡,当应力分量满足平衡方程,则物体内部是平衡的。
1、五个基本假定在建立弹性力学基本方程时有什么用途?答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。
均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的.因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。
进一步地说,就是物体的弹性常数也不随方向而变化.小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。
在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理.2、试分析简支梁受均布荷载时,平面截面假设是否成立?解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。
而在材料力学中没有严格考虑上述条件,因而得出的是近似解答.例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。
所以,严格来说,不成立。
3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2—15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2—15),将会发生什么问题?解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。