弹性力学概念汇总
- 格式:docx
- 大小:51.65 KB
- 文档页数:3
弹性力学知识点总结弹性力学是固体力学的重要分支,主要研究弹性体在外界因素作用下产生的应力、应变和位移。
以下是对弹性力学主要知识点的总结。
一、基本假设1、连续性假设:假定物体是连续的,不存在空隙。
2、均匀性假设:物体内各点的物理性质相同。
3、各向同性假设:物体在各个方向上的物理性质相同。
4、完全弹性假设:当外力去除后,物体能完全恢复到原来的形状和尺寸,不存在残余变形。
5、小变形假设:变形量相对于物体的原始尺寸非常小,可以忽略高阶微量。
二、应力分析1、应力的定义:应力是单位面积上的内力。
2、应力分量:在直角坐标系下,有 9 个应力分量,分别为正应力(σx、σy、σz)和剪应力(τxy、τyx、τxz、τzx、τyz、τzy)。
3、平衡微分方程:根据物体的平衡条件,可以得到应力分量之间的关系。
三、应变分析1、应变的定义:应变是物体在受力后的变形程度。
2、应变分量:包括线应变(εx、εy、εz)和剪应变(γxy、γyx、γxz、γzx、γyz、γzy)。
3、几何方程:描述了应变分量与位移分量之间的关系。
四、位移与变形的关系位移是指物体内各点位置的变化。
通过位移可以导出应变,从而建立起位移与变形之间的联系。
五、物理方程物理方程也称为本构方程,它描述了应力与应变之间的关系。
对于各向同性的线弹性材料,物理方程可以表示为应力与应变之间的线性关系。
六、平面问题1、平面应力问题:薄板在平行于板面且沿板厚均匀分布的外力作用下,板面上无外力作用,此时应力分量只有σx、σy、τxy。
2、平面应变问题:长柱体在与长度方向垂直的平面内受到外力作用,且沿长度方向的位移为零,此时应变分量只有εx、εy、γxy。
七、极坐标下的弹性力学问题在一些具有轴对称的问题中,采用极坐标更为方便。
极坐标下的应力、应变和位移分量与直角坐标有所不同,需要相应的转换公式。
八、能量原理1、应变能:物体在变形过程中储存的能量。
2、虚功原理:外力在虚位移上所做的虚功等于内力在虚应变上所做的虚功。
一、弹性体的力学性质1.1 弹性体的基本定义弹性体是指在受力作用下可以发生形变,但在去除外力后能够完全恢复原状的物质。
弹性体的形变可以分为弹性形变和塑性形变两种,其中弹性形变是指在外力作用下形变后又能够完全恢复的形变,而塑性形变则是指在外力作用下形变后无法完全恢复的形变。
1.2 林纳与胡克定律弹性体的力学性质可以由林纳和胡克定律来描述。
林纳定律指出,在小形变范围内,弹性体的形变与受力成正比。
而胡克定律则指出,在弹性体上施加的外力与其形变之间存在线性关系,即应力与应变成正比。
二、应力应变关系2.1 应力的定义与计算应力是指单位面积上的受力大小,通常用σ表示。
应力可以分为正应力和剪应力两种,其中正应力是指垂直于物体表面的受力,而剪应力是指平行于物体表面的受力。
在弹性体受力作用下,可以使用以下公式来计算应力:σ = F / A其中,σ为应力,F为受力大小,A为受力的面积。
2.2 应变的定义与计算应变是指物体在受力作用下的形变程度,通常用ε表示。
应变可以分为正应变和剪应变两种,其中正应变是指物体在受力作用下的长度、体积等发生的相对变化,而剪应变是指物体表面平行位移的相对变化。
在弹性体受力作用下,可以使用以下公式来计算应变:ε = ΔL / L其中,ε为应变,ΔL为长度变化量,L为原始长度。
2.3 应力应变关系应力与应变之间存在一定的关系,这种关系可以用材料的弹性模量来描述。
弹性模量是指在正应变下的应力大小,通常用E表示。
弹性模量可以分为弹性体积模量、剪切模量和弹性体积模量三种,分别对应不同形变情况下的应力应变关系。
3.1 弹性体积模量弹性体积模量是指在正应变下,单位体积的物体受力后的应力大小,通常用K表示。
弹性体积模量是材料的一个重要力学性质,它描述了材料在受力作用下的体积变化情况。
3.2 剪切模量剪切模量是指在剪切应变下,材料受力后的应力大小,通常用G表示。
剪切模量描述了材料在受力作用下的形变情况。
3.3 杨氏模量杨氏模量是衡量正应变下的应力大小的指标,通常用E表示。
1、五个基本假定在建立弹性力学基本方程时有什么用途答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。
均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。
因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。
进一步地说,就是物体的弹性常数也不随方向而变化。
小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。
在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。
2、试分析简支梁受均布荷载时,平面截面假设是否成立解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。
而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。
例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。
所以,严格来说,不成立。
3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。
弹性力学基本概念和考点汇总弹性力学是研究物体在受力作用下的形变和应力的学科。
它是物理学和工程学中的一门重要课程,被广泛应用于材料力学、结构设计和工程力学等领域。
在学习弹性力学的过程中,有一些基本概念和考点是必须要掌握的。
1.弹性形变和塑性形变:弹性形变是指物体在受到外力作用后,恢复到原始形状的形变。
而塑性形变是指物体在受到外力作用后,不能完全恢复到原始形状的形变。
2.弹性力学中的基本假设:在弹性力学中,通常做出两个基本假设。
第一个是小变形假设,即物体在受力作用下发生的形变是很小的;第二个是线弹性假设,即物体的应力和应变之间的关系是线性的。
3.弹性势能和应变能:弹性势能是指物体在受力过程中,由于形变而储存的能量。
而应变能是指物体在受力过程中,由于形变而转换成的能量。
4. Hooke定律:Hooke定律是指物体在小变形范围内,应力和应变之间的关系是线性的。
它可以表示为应力等于弹性模量乘以应变。
5.弯曲力学:弯曲力学是研究杆件在受到弯曲力作用下的形变和应力分布。
在弯曲力学中,有一些重要的概念和公式,如弯曲应力、弯曲应变、弯矩和弯曲方程等。
6.薄壁压力容器:薄壁压力容器是指在薄壁条件下,承受内外压力作用的容器。
在薄壁压力容器的分析中,常常需要考虑切应力和平均应力的计算。
7.稳定性分析:稳定性分析是指对于一个受到外力作用的物体,判断其是否处于稳定平衡状态的分析。
在稳定性分析中,需要考虑物体的刚度、屈曲和挠度等因素。
8.复合材料力学:复合材料是由两种或两种以上不同材料组成的材料。
在复合材料力学中,需要考虑不同材料的力学性能和界面效应等因素。
9.动力学分析:动力学分析是研究物体在受到外力作用下的运动状态和运动规律。
在动力学分析中,需要考虑物体的质量、加速度和作用力等因素。
以上是弹性力学中的一些基本概念和考点的汇总。
掌握这些基本概念和考点可以帮助我们理解弹性力学的基本原理和应用,进而应用于实际问题的分析和解决。
弹性力学基础弹性力学是力学中的一个重要分支,研究物体在受力后的变形和恢复能力。
本文将介绍弹性力学的基本概念、公式和应用。
一、基本概念弹性力学研究的对象是弹性体,即当受到外力作用后,可以恢复原状的物质。
弹性体的变形可以分为弹性变形和塑性变形两种。
弹性变形是指在外力作用下,物体发生变形但不改变其内部结构,当外力消失后,物体可以完全恢复原状。
塑性变形是指在外力作用下,物体发生变形会改变其内部结构,当外力消失后,物体无法完全恢复原状。
二、弹性模量弹性模量是衡量物体弹性变形程度的物理量,常用的弹性模量包括杨氏模量、剪切模量和泊松比。
其中,杨氏模量是衡量物体在拉伸或压缩时的弹性变形程度的量值,剪切模量是衡量物体在受到切割力时的弹性变形程度的量值,泊松比是物体在受到拉伸或压缩时在垂直方向上的变形程度与水平方向上的变形程度之比。
三、胡克定律胡克定律是弹性力学中的基本定律,描述了物体受到力的作用下的弹性变形。
根据胡克定律,当物体受到力的作用后,物体发生的弹性变形与力的大小成正比,与物体的初始长度成反比。
胡克定律可以用数学公式表示为F = kx,其中F为外力的大小,k为弹性系数,x为物体的弹性变形量。
四、应力和应变应力是物体受到外力作用后单位面积上的力的大小,用σ表示。
应变是物体受到外力作用后单位长度变化量与原始长度的比值,用ε表示。
根据胡克定律,应力与应变之间存在线性关系,称为胡克定律。
五、弹性力学的应用弹性力学在工程领域中有广泛的应用,例如在结构设计中,通过弹性力学的理论分析,可以确定结构的稳定性和安全性。
在材料科学中,弹性力学可以帮助研究材料的强度和刚度,为材料的选择和设计提供指导。
此外,弹性力学还在地震学、电子学和生物学等领域中有着重要的应用。
总结:弹性力学是研究物体受力后的变形和恢复能力的学科。
本文介绍了弹性力学的基本概念,包括弹性体、弹性变形和塑性变形等概念;弹性模量、杨氏模量、剪切模量和泊松比等物理量;胡克定律、应力和应变的关系;以及弹性力学在工程、材料科学和其他学科中的应用。
弹性力学基本概念弹性力学是力学的一个分支领域,研究材料在受力时的弹性变形和恢复变形的行为规律。
本文将介绍弹性力学的基本概念,包括应力、应变、胡克定律和杨氏模量等。
一、应力和应变在弹性力学中,应力和应变是两个基本的物理量,用来描述物体在受力时的变形情况。
应力是单位面积上的力,通常用希腊字母σ表示。
应力可以分为正应力和剪应力两种。
正应力是指垂直于受力面的力,它可以通过力的大小和受力面的面积计算得到。
正应力的单位是帕斯卡(Pa),1Pa等于1牛顿/平方米。
剪应力是指平行于受力面的力,它也可以通过力的大小和受力面的面积计算得到。
剪应力的单位也是帕斯卡(Pa)。
应变是物体由于受力而发生的变形程度,通常用希腊字母ε表示。
应变可以分为线性应变和剪切应变两种。
线性应变是指物体在受力下发生的长度变化与原长度之比。
线性应变的计算公式为:ε = ΔL / L,其中ΔL表示长度变化,L表示原长度。
剪切应变是指物体在受到剪应力时,各层之间相对位置的变化。
剪切应变的计算公式为:γ = Δx / h,其中Δx表示位置变化,h表示物体的厚度。
二、胡克定律胡克定律是弹性力学的基本定律之一,描述了材料的应力和应变之间的关系。
胡克定律可以用公式表示为:σ = Eε,其中σ表示应力,E表示杨氏模量,ε表示应变。
杨氏模量是衡量材料硬度和刚度的重要物理量,表示单位应力下材料的单位应变。
杨氏模量的单位是帕斯卡(Pa)。
胡克定律表明,当材料处于弹性变形状态时,应力和应变之间成正比。
杨氏模量越大,材料的刚度越高,抵抗变形的能力也越强。
三、弹性常数除了杨氏模量,弹性力学还有其他一些描述材料力学性质的常数。
泊松比是描述材料在受到正应力时,在垂直方向上的应变情况的比值。
泊松比的计算公式为:ν = -ε_2 / ε_1,其中ε_1表示垂直方向上的线性应变,ε_2表示平行方向上的线性应变。
弹性体模量是描述材料在受力时的刚度的物理量,定义为单位体积的材料在受力时所发生的应变与应力之比。
大学弹力力学知识点总结弹性力学是力学的一个分支,主要研究物体在外力作用下的形变和应力,以及这些形变和应力之间的关系。
在这一领域中,我们主要研究弹性体的性质,包括拉伸、压缩、扭转和弯曲等。
弹性力学不仅在工程领域有着广泛的应用,也是现代物理学、材料学和地质学等领域的基础。
1.基本概念在弹性力学中,我们首先需要了解一些基本概念,包括应力、应变、杨氏模量和泊松比等。
应力是单位面积上的外力,通常用符号σ表示。
应力可以分为正应力、剪切应力等。
应变是单位长度上的形变量,通常用符号ε表示。
应变也可以分为正应变、剪切应变等。
杨氏模量是描述材料刚度的参数,通常用符号E表示。
杨氏模量越大,说明材料越难以变形。
泊松比描述了材料在垂直拉伸时横向收缩的程度,通常用符号ν表示。
2.拉伸在弹性力学中,拉伸是一个非常重要的概念,它描述了物体在外力作用下的长度变化。
拉伸实验通常利用应变计来测量物体的应变,从而得到应力-应变曲线。
根据应力-应变曲线,我们可以得到杨氏模量和屈服强度等重要参数。
3.压缩压缩是拉伸的逆过程,它描述了物体在外力作用下的长度减小。
同样,通过压缩实验可以得到物体的杨氏模量和屈服强度等参数。
4.扭转扭转是指物体在外力作用下的扭转形变。
扭转实验可以得到物体的剪切模量。
5.弯曲弯曲是物体在外力作用下产生的弯曲形变。
在弯曲实验中,我们通常关注的是杨氏模量和截面惯性矩等参数。
弯曲实验还可以用来研究材料的疲劳性能。
6.弹性体的稳定性在弹性力学中,我们还需要研究弹性体的稳定性问题。
通常情况下,我们关注的是杆的稳定性和壳的稳定性。
通过分析弹性体的形变和应力分布,我们可以得到弹性体的稳定性条件。
7.应力分析应力分析是弹性力学的重要内容,它主要研究物体内部的应力分布。
应力分析可以帮助我们理解物体在外力作用下的形变特性,以及预测物体的破坏情况。
总之,弹性力学是一门重要的力学分支,它不仅在工程领域有着广泛的应用,也在物理、材料和地质等领域发挥着重要作用。
弹性力学是研究弹性体由于受到外力作用、边界约束或温度改变等原因而引起的应力、形变和位移。
外力分为体积力和面积力。
体力是分布在物体体积内的力,重力和惯性力。
体积分量,以沿坐标轴正方向为正,沿坐标轴负方向为负。
面力是分布在物体表面上的力,面力分量以沿坐标轴正方向为正,沿坐标轴负方向为负。
内力,即物体本身不同部分之间相互作用的力。
凡是符合连续性、完全弹性、均匀性_____________________________ 各向同性等假定的物体称之为理想弹性体。
连续性,假定整个物体的体积被组成这个物体的介质所填满,不留下任何空隙。
完全弹性,指的是物体能完全恢复原形而没有任何剩余形变。
均匀性,整个物体时统一材料组成。
各向同性,物体的弹性在所有各个方向都相同。
求解弹性力学问题,即在边界条件上,根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。
弹性力学、材料力学、结构力学的研究对象分别是弹性体,杆状构件和杆件系统。
解释在物体内同一点,不同截面上的应力是不同的。
应力的符号不同:在弹性力学和材料力学中,正应力规定一样,拉为正,压为负。
切应力:弹性力学中,正面沿坐标轴正方向为正,沿负方向为负。
负面上沿坐标轴负方向为正,沿正方向为负。
材料力学中,所在的研究对象上任一点弯矩转向顺时针为正,逆时针为负。
试述弹性力学平面应力问题与平面应变问题的主要特征及区别。
平面应力问题:几何形状,等厚度薄板。
外力约束,平行于版面且不沿厚度变化。
平面应变问题:几何形状,横断面不沿长度变化,均匀分布。
外力约束,平行于横截面并不沿长度变化。
平衡微分方程表示的是弹性体内任一点应力分量与体力分量之间的关系式。
在推导平衡微分方程时我们主要用了连续性假定。
几何方程表示的是形变分量与位移—分量之间的关系式。
试根据几何方程分析,应变分量与位移分量之间的关系,并解释原因。
当物体的位移分量完全确定时,形变分量即完全确定,反之,等形变分量完全确定时,位移分量却不能完全确定。
力学:研究弹性体由于受外力,边界约束或温度改变等作用而发生的应力、形变和位移。
弹性力学的研究对象:为一般及复杂形状的构件、实体结构、板、壳等。
(是各种弹性体,包括杆件,平面体、空间体、板和壳体等。
弹性力学研究的对象比较广泛,可以适用于土木、水利、机械等工程中各种结构的分析。
)弹性力学的任务在边界条件下,从平衡微分方程、几何方程和物理方程求解应力、应变和位移等未知函数研究方法已知条件:1物体的几何形状,即边界面方程2物体的材料参数3所受外力的情况4所受的约束情况。
求解的未知函数:应力、应变和位移。
解法:在弹性体区域内,根据微分体上力的平衡条件建立平衡微分方程;根据微分线段上应变和位移的几何条件,建立几何方程;根据应力和应变之间的物理条件建立物理方程弹性体边界上,根据面力条件,建立应力边界条件;根据约束条件建立位移边界条件然后在边界条件下,求解弹性体区域内的微分方程,得出应力、形变和位移弹性力学的基本假设(即满足什么样条件的物体是我们在弹性力学中要研究的)(1)均匀性假设即物体是由同一种材料所组成的,在物体内任何部分的材料性质都是相同的。
(用处:物体的弹性参数,如弹性模量E,不会随位置坐标的变化而变化)(2)连续性假设即物体的内部被连续的介质所充满,没有任何孔隙存在。
(用处:弹性体的所用物理量均可用连续的函数去表示)(3)完全弹性假设即当我们撤掉作用于物体的外力后,物体可以恢复到原状,没有任何的残余变形;应力(激励)与应变(响应)之间呈正比关系。
(用处:可以使用线性虎克定律来表示应力与应变的关系)(4)各向同性假设即物体内任意一点处,在各个方向都表现出相同的材料性质。
(用处:物体的弹性参数可以取为常数)(5)小变形假设即在外力的作用下,物体所产生的位移和形变都是微小的。
(用处:可以在某些方程的推导中略去位移和形变的高阶微量。
即简化几何方程,简化平衡微分方程)上述这些假定,确定了弹性力学的研究范畴:研究理想弹性体的小变形状态外力是其他物体作用于研究对象的力(分为体力和面力)体力是作用于物体体积内的外力(如重力和惯性力)面力是作用于物体表面上的外力(如液体压力和接触力)内力假想将物体截开,则截面两边有互相作用的力,称为内力切应力互等定理作用于两个互相垂直面上,并且垂直于该两面交线的切应力是互等的(大小等正负号相同)形变就是物体形状的改变。
1、五个基本假定在建立弹性力学基本方程时有什么用途?
答:连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。
均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的.因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化
各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。
进一步地说,就是物体的弹性常数也不随方向而变化.
小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照原来的尺寸和形状进行计算。
同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。
在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理.
2、试分析简支梁受均布荷载时,平面截面假设是否成立?
解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。
简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。
而在材料力学中没有严格考虑上述条件,因而得出的是近似解答.例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。
所以,严格来说,不成立。
3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2—15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2—15),将会发生什么问题?
解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。
这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便.将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。
如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。
教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性.
4、在导出平面问题的三套基本方程时,分别应用了哪些基本假定?这些方程的适用条件是什么?
答:1、在导出平面问题的平衡微分方程和几何方程时应用的基本假定是:物体的连续性,小变形和均匀性。
在两种平面问题中,平衡微分方程和几何方程都适用。
2、在导出平面问题的物理方程时应用的基本假定是:物体的连续性,完全弹性,均匀性,小变形和各向同性,即物体为小变形的理想弹性体. 在两种平面问题中的物理方程不一样,如果将平面应力问题的物理方程中的E换为2 1 E ,换为1,就得到平面应变问题的物理方程。
5、简述材料力学和弹性力学在研究对象、研究方法方面的异同点。
在研究对象方面,材料力学基本上只研究杆状构件,也就是长度远大于高度和宽度的构件;而弹性力学除了对杆状构件作进一步的、较精确的分析外,还对非杆状结构,例如板和壳,以及挡土墙、堤坝、地基等实体结构加以研究。
在研究方法方面,材料力学研究杆状构件,除了从静力学、几何学、物理学三方面进行分析以外,大都引用了一些关于构件的形变状态或应力分布的假定,这就大简化了数学推演,但是,得出的解答往往是近似的.弹性力学研究杆状构件,一般都不必引用那些假定,因而得出的结果就比较精确,并且可以用来校核材料力学里得出的近似解答。
另一份答案:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立平衡微分方程、几何方程和物理方程;在边界s上考虑受力或约束条件,并在边界条件下求解上述方程,得出较精确的解答。
在研究内容方面:材料力学研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题;结构力学在材料力学基础上研究杆系结构(如桁架、刚架等);弹性力学研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。
在研究方法方面:理力考虑整体的平衡(只决定整体的V运动状态);材力考虑有限体ΔV的平衡,结果是近似的;弹力考虑微分体dV 的平,结果比较精确。
6、简述弹性力学的研究方法。
答:在弹性体区域内部,考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
即根据微分体的平衡条件,建立平衡微分方程;根据微分线段上形变与位移之间的几何关系,建立几何方程;根据应力与形变之间的物理关系,建立物理方程.此外,在弹性体的边界上还要建立边界条件。
在给定面力的边界上,根据边界上微分体的平衡条件,建立应力边界条件;在给定约束的边界上,根据边界上的约束条件建立位移边界条件。
求解弹性力学问题,即在边界条件下根据平衡微分方程、几何方程、物理方程求解应力分量、形变分量和位移分量。
7、弹性力学中应力如何表示?正负如何规定?
答:弹性力学中正应力用表示,并加上一个下标字母,表明这个正应力的作用面与作用方向;切应力用表示,并加上两个下标字母,前一个字母表明作用面垂直于哪一个坐标轴,后一个字母表明作用方向沿着哪一个坐标轴.并规定作用在正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负.相反,作用在负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负.
8、简述按应力求解平面问题时的逆解法。
答:所谓逆解法,就是先设定各种形式的、满足相容方程的应力函数;并由应力分量与应力函数之间的关系求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而可以得知所选取的应力函数可以解决的问题。
9、试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。
圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。
作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替. (2)将次要的位移边界条件转化为应力边界条件处理。
10、弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征?
答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为:
平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:只在板边上受有平行于板面并且不沿厚度变化的面力,同时,体力也平行于板面并且不沿厚度变化.只有平面应力分量x,y,xy存在,且仅为x,y的函数。
平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也平行于横截面并且不沿长度变化,对应的位移分量只有u和v,只有平面应变分量x,y,xy存在,且仅为x,y的函数.
11、材料各向同性的含义是什么?“各向同性”在弹性力学物理方程中的表现是什么?答:材料的各向同性假定物体的物理性质在各个方向上均相同。
因此,物体的弹性常数不随方向而变化。
在弹性力学物理方程中,由于材料的各向同性,三个弹性常数,包括弹性模量E,切变模量G和泊松系数(泊松比)μ都不随方向而改变(在各个方向上相同)。
12、位移法求解的条件是什么?怎样判断一组位移分量是否为某一问题的真实位移?答:按位移法求解时,u,v必须满足求解域内的平衡微分方程,位移边界条件和应力边界条件。
平衡微分方程、位移边界条件和(用位移表示
的)应力边界条件既是求解的条件,也是校核u,v是否正确的条件。