球的性质2
- 格式:ppt
- 大小:805.50 KB
- 文档页数:26
认识球体与圆柱体球体与圆柱体是我们生活中常见的几何体,它们具有不同的特点和应用场景。
下面将针对球体和圆柱体的定义、性质以及应用进行介绍。
一、球体的定义与性质球体是由所有到球心距离相等于半径的点构成的几何体。
在三维空间中,球体具有以下性质:1. 球心:球心是球体的中心点,它到球面上的所有点的距离都是相等的。
2. 球面:球面是球体的表面,它是由一系列到球心距离等于半径的点构成的。
3. 直径:直径是通过球心,并且两端点都在球面上的线段,直径的两倍即为球体的直径。
4. 半径:半径是球心到球面上任意一点的距离。
5. 体积:球体的体积可以通过公式V = 4/3πr³计算,其中V为体积,π为圆周率,r为半径。
6. 表面积:球体的表面积可以通过公式A = 4πr²计算,其中A为表面积。
7. 对称性:球体具有高度的对称性,任意一条通过球心的平面都可以将球体分成两个对称的部分。
二、球体的应用场景球体由于其独特的性质,广泛应用于工程、天文学、体育等领域。
1. 工程中的应用:球体常用于容器设计和流体力学中。
例如,天然气储罐常采用球形设计,以最大限度地减少对容器壁的应力,并提高结构的稳定性。
2. 天文学中的应用:天文学中的行星和恒星都可以近似看作球体。
球体模型可以用来研究天体的运动和行星间的相互作用。
3. 体育用品中的应用:许多体育用品,如足球、篮球和网球,都采用了球体的形状。
这种设计可以使球具有更好的滚动性、反弹性和空气动力学性能。
三、圆柱体的定义与性质圆柱体是由圆和与其平行且两端点在同一平面上的所有线段构成的几何体。
在三维空间中,圆柱体具有以下性质:1. 底面:圆柱体的底面是一个圆,底面的半径称为圆柱体的底面半径。
2. 高度:圆柱体的高度是连接底面两圆心的线段,也是垂直于底面并且两端点在同一平面上的线段。
3. 侧面:圆柱体的侧面是由连接底面两圆上对应点的所有线段构成的。
4. 直径:圆柱体的直径是通过圆心,并且两端点都在圆周上的线段,直径的两倍即为圆柱体的直径。
球体的体积与表面积关系推导在数学中,球体是一种具有无限多个对称中心的几何体。
球体的特点是其表面上的每一点到中心的距离都相等,这个距离被称为半径。
通过研究球体的体积与表面积之间的关系,我们可以更深入地了解球体的性质和特点。
一、球体的定义及基本公式球体是由三维空间中所有到中心点距离小于等于给定半径的点构成的集合。
球体的体积和表面积可以通过以下公式计算得出:1. 球体的体积公式:V = (4/3)πr^3其中,V表示球体的体积,π是圆周率,r是球体的半径。
2. 球体的表面积公式:A = 4πr^2其中,A表示球体的表面积,π是圆周率,r是球体的半径。
二、推导球体体积与表面积的关系我们可以通过对球体的切割和展开来推导球体的体积与表面积之间的关系。
1. 切割与展开球体将球体沿着两个垂直于彼此的坐标轴切割,并沿着这两个切割面将球体展开。
2. 形成球冠和圆盘我们可以看到,切割后的球体被分成许多球冠和圆盘。
球冠是由球的表面和两个切割面构成的部分,圆盘是由两个切割面和球的表面构成的部分。
3. 计算球冠的体积对于一个球冠,它的体积可以通过计算一个圆台的体积得出。
圆台的体积公式为:Vc = (1/3)π(h^2)(R + r)其中,Vc表示球冠的体积,h表示球冠的高度,R表示球冠的大半径,r表示球冠的小半径。
4. 计算圆盘的面积对于一个圆盘,它的面积可以通过计算一个矩形的面积得出。
矩形的面积公式为:Ac = 2πr * h其中,Ac表示圆盘的面积,r表示圆盘的半径,h表示圆盘的周长。
5. 求和计算球体的体积将所有球冠的体积相加,可以得到整个球体的体积。
同理,将所有圆盘的面积相加,可以得到整个球体的表面积。
V = Vc1 + Vc2 + Vc3 + ... + VcnA = Ac1 + Ac2 + Ac3 + ... + Acn三、结论与应用通过上述的推导过程,我们可以得出一个结论:球体的体积与表面积之间存在着特殊的关系。
几何球体知识点总结图表一、球体的定义与性质1. 球体的定义:球面上的所有点到球心的距离都相等的立体称为球体。
2. 球体的性质:(1)球体的表面称为球面,球面上的点到球心的距离称为半径,通常用r表示。
(2)球体的体积和表面积均与球的半径r有关。
(3)球体的体积V=4/3πr³,球体的表面积S=4πr²。
二、球体的投影1. 球体的正投影:当光源与球心重合时,球体在平面上的投影称为正投影。
2. 球体的正投影是一个圆,圆的半径与球体的半径成正比。
3. 球体的阴影:当光源不在球心时,球体在平面上的投影称为阴影。
4. 球体的阴影是一个椭圆,椭圆的半径会随着光源偏离球心的距离而改变。
三、球体的切割与截面1. 球体的切割:通过球体的球心进行切割,可得到两个等大的半球。
2. 球体的截面:通过球体的任意平面,截面为圆。
当截面穿过球心时,得到的截面为直径。
四、球体的位置关系及相交关系1. 球体的相离:两个球体的表面没有交点。
2. 球体的外切:两个球体的表面有且只有一个公共点。
3. 球体的相交:两个球体的表面有两个交点,这时它们的交线为圆。
4. 球体的内切:一个球体完全位于另一个球体的内部,且它们的表面只有一个公共点。
五、球体的应用1. 地球的几何形状和尺寸:地球近似为一个球体,以地球半径为6400km计算地球的体积和表面积。
2. 球体在建筑和雕塑中的应用:很多建筑和雕塑都采用了球体的形状,如圆顶建筑和雕塑。
3. 球体在工程中的应用:工程中常需要计算球体的体积和表面积,如储罐、容器和管道等。
六、球体的计算题1. 已知球体的半径r,求其体积和表面积。
2. 已知球体的体积V,求其半径r。
3. 已知球体的表面积S,求其半径r。
综上所述,球体是几何中的重要立体,具有很多特殊的性质与应用,在实际生活和工程中有着广泛的应用。
掌握球体的相关知识,有助于我们更好地理解和应用这些性质,解决实际问题。
一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1。
棱柱1。
1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1。
2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1。
4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。
1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。
球体bi数计算摘要:1.球体基本概念介绍2.BI数计算方法详解3.实际应用场景分享正文:在日常生活中,我们经常会遇到各种球体,如篮球、足球、乒乓球等。
球体作为几何体的一种,具有很多有趣的性质。
本篇文章将重点介绍球体的基本概念,以及如何计算球体的BI数,并在实际场景中进行应用。
一、球体基本概念介绍球体是由无数个平面曲线组成的立体图形,其特点是所有的点到球心的距离相等。
这个距离被称为球半径。
球体的体积公式为V=4/3πR,表面积公式为S=4πR。
二、BI数计算方法详解BI数(Ball Index Number)是用来描述球体的一种参数,它可以表示球体的形状和大小。
BI数的计算公式为:BI = (V^3 + 3S^2)^(1/2) / 2R。
其中,V为球体体积,S为球体表面积,R为球半径。
计算BI数的步骤如下:1.根据球体体积公式计算球体体积V。
2.根据球体表面积公式计算球体表面积S。
3.带入BI数计算公式,计算得出BI数。
需要注意的是,BI数越大,球体的形状越接近于球形;BI数越小,球体的形状越扁平。
在实际应用中,我们可以通过调整球体的BI数来改变其形状。
三、实际应用场景分享1.体育用品:制造商可以根据不同运动的需求,设计具有特定BI数的体育用品。
例如,篮球的BI数一般在0.75至0.85之间,足球的BI数则在0.5至0.65之间。
2.工程领域:在建筑、航空航天、汽车制造等领域,工程师需要根据实际需求选择合适的材料和设计方案。
通过计算并调整球体的BI数,可以优化产品的结构和性能。
3.科学研究:在物理学、地球科学等领域,科学家可以通过研究球体的BI 数与其它物理量的关系,揭示自然界的规律。
总之,球体的BI数是一个非常有用的参数,可以帮助我们更好地理解和分析球体的性质。
通过掌握BI数的计算方法,我们可以在实际应用中灵活调整球体的形状,满足各种需求。
八个有趣模型——搞定空间几何体的外接球与内切球当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享.不当之处,敬请大家批评指正.一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法). 四、与台体相关的,此略. 五、八大模型第一讲 柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)图1-1图1-2图1-3图1-4方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 .解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1, 取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH , 则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,ΘBC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, ΘMN AM ⊥,MN SB //,∴SB AM ⊥,ΘSB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥,ΘSA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36.(3)题-1(引理)AC(3)题-2(解答图)AC(4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( )π11.A π7.B π310.C π340.D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为类型二、对棱相等模型(补形为长方体) 题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-. 第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .(6)题图图2-1(1)题图B(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 . (3)正四面体的各条棱长都为2,则该正面体外接球的体积为(4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是 .(4)题类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1图3-2图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R .例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为(2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 .(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 . (4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接球的表面积为 .第二讲 锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1图4-2图4-31.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ;事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 .(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( )A .433 B .33 C .43 D .123(4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为ο60,则该三棱锥外接球的体积为( )A .π B.3π C. 4π D.43π (5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A.6 B.6 C.3 D.2类型五、垂面模型(一条直线垂直于一个平面)1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直图5径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的 三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的 顶点.图5-1图5-2图5-3图5-4图5-6图5-7图5-8解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( ) A .π3 B .π2 C .316πD.以上都不对侧视图正视图第三讲 二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)图6第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+ 注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为 . (2)在直角梯形ABCD 中,CD AB //,ο90=∠A ,ο45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为(3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为(4)在边长为32的菱形ABCD 中,ο60=∠BAD ,沿对角线BD 折成二面角C BD A --为ο120的四面体ABCD ,则此四面体的外接球表面积为(5)在四棱锥ABCD 中,ο120=∠BDA ,ο150=∠BDC ,2==BD AD ,3=CD ,二面角C BD A --的平面角的大小为ο120,则此四面体的外接球的体积为类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图7题设:如图7,ο90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( )A .π12125 B .π9125 C .π6125 D .π3125(2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCD A -的外接球的表面积为 .第四讲 多面体的内切球问题模型类型八、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高; 第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;图8-1A第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高; 第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABC O ABCP S S S S V r -----+++=3例8 (1)棱长为a 的正四面体的内切球表面积是(2)正四棱锥ABCD S -的底面边长为2,侧棱长为3,则其内切球的半径为(3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则该三棱锥的内切球半径为习题: 1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3 B.6 C.36 D.9 2. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于 . 3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 . 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .。
高考数学外接球知识点外接球是高中数学中一个重要的几何概念。
它在数学几何的学习中有着广泛的应用,并且在高考中也是经常出现的考点。
本文将详细介绍外接球的定义、性质以及相关的解题方法,以帮助同学们更好地掌握这一知识点。
一、外接球的定义外接球,顾名思义,就是能够过给定三角形的三个顶点的球。
具体而言,对于一个三角形ABC,如果存在一个球,使得球的球心恰好在三角形ABC所在平面的外面,并且球的直径等于三角形的外接圆直径,那么我们称这个球为三角形ABC的外接球。
二、外接球的性质1. 外接球的球心与外接圆的圆心在同一个平面上,并且与这个平面的交线是外接圆。
2. 外接球的半径等于外接圆的半径,即外接球的直径等于三角形的外接圆直径。
3. 三角形的外接球是唯一的,即给定一个三角形ABC,它只有一个外接球。
三、外接球的解题方法1. 已知三角形的边长如果已知三角形ABC的边长分别为a、b、c,我们可以通过以下步骤求得外接球的半径。
首先,根据海伦公式计算三角形的面积,即S = √[p(p-a)(p-b)(p-c)],其中p为周长的一半。
然后,计算三角形的外接圆半径r = abc / (4S),即外接球的半径为R = 2r。
2. 已知三角形的顶点坐标如果已知三角形ABC的顶点坐标分别为A(x1, y1),B(x2, y2),C(x3, y3),我们可以通过以下步骤求得外接球的半径。
首先,计算三角形的中垂线方程。
设中垂线交边AB于点D,中垂线交边AC于点E,两中垂线的交点为O,则O为外接球的球心,OD即为外接球的半径。
根据线段OD的垂直平分线的性质,我们可以得到以下方程:(AB的斜率)*(OD的斜率) = -1(AC的斜率)*(OE的斜率) = -1解这个方程组,可以求得点O的坐标(x, y)。
然后,计算OD的长度即为外接球的半径R。
通过这两种解题方法,我们可以求得三角形的外接球半径,并在高考数学中应用。
综上所述,外接球作为高中数学中的一个重要概念,具有一定的理论意义和实际应用价值。