2019年四川省凉山市金阳县中考数学模拟试卷((有答案)) - 副本
- 格式:doc
- 大小:478.50 KB
- 文档页数:21
2019年四川省凉山市金阳县中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.下列实数0,,,π,其中,无理数共有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据无理数的概念可判断出无理数的个数.【详解】解:无理数有:,.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.2.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于( )A. 75°B. 90°C. 105°D. 115°【答案】C【解析】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A. B. C. D.【答案】B【解析】【分析】直接根据勾股定理,在Rt△AOB中,,求出OB长度,再求出OC长度,结合数轴即可得出结论.【详解】解:∵在Rt△AOB中,OA=2,AB=1,∴OB==.∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,∴OC=OB=,∴点C表示的实数是-.故选:B.【点睛】本题考查的是实数与数轴以及复杂作图,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.如图,在△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求;(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求.对于两人的作法,下列判断何者正确?()A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确【答案】C【解析】【分析】根据甲乙两人作图的作法:甲:利用垂直平分线的性质得到AP=PB,得到∠PAB=∠PBA,再利用三角形的外角等于不相邻的两个内角的和,即可求出结果.乙:根据作图的要求,AB=BP,得到∠BAP=∠APB,进一步证明即可发现∠APC≠2∠ABC,此方法不正确.【详解】解:如图1,由甲的作图知PQ垂直平分AB,则PA=PB,∴∠PAB=∠PBA,又∠APC=∠PAB+∠PBA,∴∠APC=2∠ABC,故甲的作图正确;如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠ABC,∴∠APC≠2∠ABC,∴乙错误;故选:C.【点睛】本题考查了线段的垂直平分线的性质,三角形外角的性质,正确的理解题意是解题的关键.5.下列事件中必然发生的事件是()A. 一个图形平移后所得的图形与原来的图形不全等B. 不等式的两边同时乘以一个数,结果仍是不等式C. 200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D. 随意翻到一本书的某页,这页的页码一定是偶数【答案】C【解析】【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【详解】A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选C.【点睛】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.6.在实数范围内把二次三项式x2+x﹣1分解因式正确的是()A. (x﹣)(x﹣)B. (x﹣)(x+)C. (x+)(x﹣)D. (x+)(x+)【答案】B【解析】【分析】令二次三项式等于0,求出x的值,即可得到分解因式的结果.【详解】解:令x2+x-1=0,解得:x1=,x2=,则x2+x-1=(x-).(x+)故选:B.【点睛】此题考查了实数范围内分解因式,求根公式法当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.注意当无法用十字相乘法的方法时用求根公式法可分解因式.7.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A. ﹣1B. 2C. 22D. 30【答案】D∵α方程x2-2x-4=0的实根,∴α2-2α-4=0,即α2=2α+4,∴α3=2α2+4α=2(2α+4)+4α=8α+8,∴原式=8α+8+8β+6=8(α+β)+14,∵α,β是方程x2-2x-4=0的两实根,∴α+β=2,∴原式=8×2+14=30,故选D.8.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A. 5,5B. 5,6C. 6,6D. 6,5【答案】B【解析】【分析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为6.故选B.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.一张矩形纸片在太阳光线的照射下,形成影子不可能是()A. 平行四边形B. 矩形C. 正方形D. 梯形【答案】D【解析】【分析】根据平行投影的性质求解可得.【详解】解:一张矩形纸片在太阳光线的照射下,形成影子可能是平行四边形、矩形、正方形,不可能是故选:D.【点睛】本题主要考查平行投影,解题的关键是掌握平行投影的性质.10.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B两点间的距离为()米.A. 750B. 375C. 375D. 750【答案】A【解析】【分析】作AD⊥BC于D,根据速度和时间先求得AC的长.在Rt△ACD中,求得∠ACD的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【详解】如图,过点A作AD⊥BC,垂足为D.在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故选A.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.11.如图,在Rt△ABC中,∠BAC=90°,且AB=3,BC=5,⊙A与BC相切于点D,交AB于点E,交AC 于点F,则图中阴影部分的面积为()A. 12﹣πB. 12﹣πC. 6﹣πD. 6﹣π【答案】C【解析】【分析】连接AD,根据勾股定理求出AC,根据三角形的面积公式求出AD,根据三角形面积公式-扇形面积公式,即可求阴影部分面积,计算即可.【详解】解:连接AD,在Rt△ABC中,∠BAC=90°,∴,∵BC是⊙A的切线,∴AD⊥BC,△ABC的面积=AB·AC=BC·AD,即:3×4=5AD解得,AD=,∴阴影部分的面积=×AB×AC-,故选:C.【点睛】本题考查的是切线的性质、扇形面积的计算,掌握圆的切线垂直于经过切点的半径、扇形面积公式是解题的关键.12.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A. ①③B. ②③C. ②④D. ③④【答案】D【解析】分析:根据二次函数图象与系数之间的关系即可求出答案.详解:①图象与x轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x==1,∴=1,∴2a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)2=b2,故②错误;③由图可知:当﹣1<x<3时,y<0,故③正确;④当a=1时,∴y=(x+1)(x﹣3)=(x﹣1)2﹣4将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正确;故选:D.点睛:本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型.二.填空题(共5小题,满分20分,每小题4分)13.若代数式有意义,则实数x的取值范围是_____.【答案】x≥-3且x≠2【解析】【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】解:∵代数式有意义,∴x+3≥0,且x-2≠0,∴实数x的取值范围是:x≥-3且x≠2.故答案为:x≥-3且x≠2.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.如图,将长方形纸片ABCD沿直线EN、EM进行折叠后(点E在AB边上),B′点刚好落在A′E上,若折叠角∠AEN=30°15′,则另一个折叠角∠BEM=_____.【答案】59°45′【解析】分析:由折叠的性质得∠A′EN=∠AEN=30°15′,∠BEM=∠A′EM,从而根据角的和差可求出∠BEA′的度数,进而可求出∠BEM的度数.详解:由折叠知,∠A′EN=∠AEN=30°15′,∠BEM=∠A′EM,∴∠BEA′=180-30°15′-30°15′=119°30′,∴∠BEM=∠A′EM=119°30′÷2=59°45′.故答案为:59°45′.点睛:本题考查了折叠的性质和角的和差倍分的计算,由折叠的性质得∠A′EN=∠AEN,∠BEM=∠A′EM是解答本题的关键.15.如图△ABC是坐标纸上的格点三角形,试写出△ABC外接圆的圆心坐标_____.【答案】(5,2)【解析】【分析】外心是三角形三边垂直平行线的交点,设外心为D,根据C、B的坐标求出D的纵坐标,设D(a,2),根据DA=DC和勾股定理得出方程,求出方程的解即可.【详解】解:由图象可知B(1,4),C(1,0),根据△ABC的外接圆的定义,圆心的纵坐标是y=2,设D(a,2),根据勾股定理得:DA=DC(1-a)2+22=42+(3-a)2解得:a=5,∴D(5,2).故答案为:(5,2).【点睛】本题主要考查了对三角形的外接圆与外心,坐标与图形性质,勾股定理,垂径定理等知识点的理解和掌握,能根据题意得出D点的纵坐标和得出方程是解此题的关键.16.如图,AB是⊙O的直径,弦CD垂直平分半径OA,AB=6,则BC的长是_____.【答案】【解析】【分析】连接OC,根据题意先求出OE,OC长,在在Rt△CEO中,由勾股定理求CE,在Rt△CEB中,由勾股定理得求得BC长即可.【详解】解:AB交CD于E点,连接OC∵AB是⊙O的直径,AB=6,∴OC=OA=AB=3,∵弦CD垂直平分半径OA,∴OE=AE=OA =1.5,∴BE=AB-AE=4.5∴在Rt△CEO中,由勾股定理得,∵BE=4.5,∴在Rt△CEB中,由勾股定理得,故答案为:3【点睛】此题考查在圆内勾股定理的应用,关键是根据圆的性质求出OE,再利用勾股定理求出其他相应各边的长.17.从满足不等式﹣3<x<3的所有整数中任意取一个数记作a,则关于x的一元二次方程x2﹣x+有两个不相等的实数根的概率是_____.【答案】【解析】【分析】先根据方程有2个不相等的实数根得出a的取值范围,再根据概率公式计算可得.【详解】解:∵关于x的一元二次方程x2-x+=0有两个不相等的实数根,∴△=[-1]2-4×1×=-4a+7>0,解得:a<,∴在-3<x<3的所有整数中任意取一个数记作a,符合条件的a的值为-2、-1、0、1这4个,则该方程有有两个不相等的实数根的概率是,故答案为:【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三.解答题(共5小题,满分32分)18.计算:(3.14﹣π)0+|1﹣|+﹣2sin60°.【答案】-4【解析】【分析】分别利用零指数幂法则、绝对值的代数意义、负整数指数幂法则以及特殊角的三角函数值计算即可得到结果.【详解】原式=.【点睛】本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.19.当x是不等式组的正整数解时,求多项式(1﹣3x)(1+3x)+(1+3x)2+(﹣x2)3÷x4的值.【答案】7【解析】【分析】求出不等式组的解集,找出解集中的正整数解确定出x的值,原式利用平方差公式,完全平方公式,以及幂的乘方及单项式除以单项式法则计算得到最简结果,把x的值代入计算即可求出值.【详解】解:,由①得:x<2,由②得:x>﹣,∴不等式组的解集为﹣<x<2,正整数x的值为1,则原式=1﹣9x2+1+6x+9x2﹣x6÷x4=1﹣9x2+1+6x+9x2﹣x2=﹣x2+6x+2=﹣1+6+2=7.【点睛】此题考查了整式的混合运算-化简求值,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.21.现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,我市为了解学生的视力变化情况,从全市八年级随机抽取了1200名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中“其他”所在扇形的圆心角度数为;(2)若2016年全市八年级学生共有24000名,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你认为造成中学生视力下降最主要的因素是什么,你觉得中学生应该如何保护视力?【答案】(1)54°;(2)16000名;(3)视力保护言之有理即可.【解析】(1);(2)由题估计视力在4.9以下的学生约有16000名.(3)造成中学生视力下降最主要的因素是手机(视力保护言之有理即可)22.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【答案】(1)-1;(2);(3)x>1或﹣4<x<0.【解析】【分析】(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B 两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.【详解】(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点睛】本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义,这里体现了数形结合的思想.四.填空题(共2小题,满分10分,每小题5分)23.化简:2<x<4时,=_____.【答案】2x﹣6【解析】【分析】首先根据x的范围确定x-2与x-4的符号,然后利用算术平方根的定义,以及绝对值的性质即可化简.【详解】解:∵2<x<4,∴x-2>0,x-4<0,∴原式==|x-2|-|x-4|=x-2-(4-x)=x-2-4+x=2x-6.故答案为:2x-6.【点睛】本题考查了二次根式的化简,正确理解算术平方根的性质是关键.24.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为_____.【答案】【解析】【分析】如图,连接EC,作AH⊥BC于H.首先证明EC⊥BC,推出EN⊥EC时,EN的值最小,解直角三角形求出CH,DH即可解决问题;【详解】解:如图,连接EC,作AH⊥BC于H.∵△ABC∽△ADE,∴∠AED=∠ACD,∴A,D,C,E四点共圆,∴∠DAE+∠DCE=180°,∴∠DCE=∠DAE=90°,∴EC⊥BC,∴NE⊥EC时,EN的值最小,作AG⊥CE交CE的延长线于G.在Rt△ABC中,∵BC=5,AB=3,∴AC=4,∵△ENC∽△△ACB,∴,∴,∴EC=,∴AH=CG=,∵NE∥AG,AN=NC,∴GE=EC=,∵∠HAG=∠DAE,∴∠DAH=∠EAG,∵∠AHD=∠G=90°,∴△AHD∽△AGE,∴,∴,∴DH=,∴CD=DH+CH=.故答案为.【点睛】本题考查相似三角形的性质、勾股定理、垂线段最短、四点共圆等知识,解题的关键是熟练掌握基本知识,属于中考填空题中的压轴题.五.解答题(共4小题,满分40分)25.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=4,过A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O 于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.【答案】(1)(2)当ON等于1或﹣1时,三点D、E、M组成的三角形是等腰三角形(3)不变,理由见解析【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=AD=,ON=DN=1;当MD=ME,DE为底边,作DH⊥AE,由于AD=2,∠DAE=30°,得到DH=,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到∠DNO=45°,根据等腰直角三角形的性质得到NH=DH=,则ON=-1;(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,CD=AD=2,即可得到DP-DQ的值.【详解】解:(1)∵∠BAC=90°,点D是BC中点,BC=4,∴AD=BC=;(2)连DE、ME,如图,∵DM>DE,当ED和EM为等腰三角形EDM的两腰,∴OE⊥DM,又∵AD=AC,∴△ADC为等边三角形,∴∠CAD=60°,∴∠DAO=30°,∴∠DON=60°,在Rt△ADN中,DN=AD=,在Rt△ODN中,ON=DN=1,∴当ON等于1时,三点D、E、M组成的三角形是等腰三角形;当MD=ME,DE为底边,如图3,作DH⊥AE,∵AD=2,∠DAE=30°,∴DH=,∠DEA=60°,DE=2,∴△ODE为等边三角形,∴OE=DE=2,OH=1,∵∠M=∠DAE=30°,而MD=ME,∴∠MDE=75°,∴∠ADM=90°﹣75°=15°,∴∠DNO=45°,∴△NDH为等腰直角三角形,∴NH=DH=,∴ON=﹣1;综上所述,当ON等于1或﹣1时,三点D、E、M组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=2.理由如下:连AP、AQ,如图2,∵∠C=∠CAD=60°,而DP⊥AB,∴AC∥DP,∴∠PDB=∠C=60°,又∵∠PAQ=∠PDB,∴∠PAQ=60°,∴∠CAQ=∠PAD,∵AC=AD,∠AQC=∠P,∴△AQC≌△APD,∴DP=CQ,∴DP﹣DQ=CQ﹣DQ=CD=2.【点睛】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.26.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:(2)一般地,如果那么a+c b+d(用“<”或“>”填空).请你说明上述性质的正确性.【答案】(1)>,>,<;(2)结论:a+c>b+d.理由见解析.【解析】【分析】(1)根据不等式的性质即可判断;(2)利用(1)中规律即可判断,根据不等式的性质即可证明.【详解】(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1.故答案为:>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为:>.【点睛】本题考查了不等式的性质、解题的关键是熟练掌握不等式的性质解决问题,属于中考常考题型.27.某宾馆有若干间住房,住宿记录提供了如下信息:(1)4月17日全部住满,一天住宿费收入为12000元;(2)4月18日有20间房空着,一天住宿费收入为9600元;(3)该宾馆每间房每天收费标准相同.①一个分式方程,求解该宾馆共有多少间住房,每间住房每天收费多少元?②通过市场调查发现,每间住房每天的定价每增加10元,就会有5个房间空闲;已知该宾馆空闲房间每天每间支出费用10元,有顾客居住房间每天每间支出费用20元,问房价定为多少元时,该宾馆一天的利润为11000元?(利润=住宿费收入﹣支出费用)③在(2)的计算基础上,你能发现房价定为多少元时,该宾馆一天的利润最大?请直接写出结论.【答案】①100间,120元;②160元或170元,11000元;③165元, 11012.5元.【解析】【分析】①设每间住房每天收费x元,由信息(1)可知该宾馆共有住房间,由信息(2)可知该宾馆有顾客居住的房间间,根据该宾馆的住房间数不变列出分式方程,求解即可;②根据利润的计算方法,设每间房的房价为y元,分别表示每间利润和住房间数及支出费用,根据该宾馆一天的利润为11000元得方程求解;③设房价定为每间a元时,该宾馆一天的利润为w元,根据利润的计算方法,列出w关于a的函数关系式,再根据函数的性质即可求解.【详解】解:①设每间住房每天收费x元,根据题意,得,解得x=120,经经验,x=120是原方程的根.12000÷120=100.答:该宾馆共有100间住房,每间住房每天收费120元;②设每间房的房价为y元,根据题意,得(y﹣20)(100﹣×5)﹣10××5=11000,解得:y1=160,y2=170.答:房价定为160元或170元时,该宾馆一天的利润为11000元.③设房价定为每间a元时,该宾馆一天的利润为w元,根据题意,得w=(a﹣20)(100﹣×5)﹣10××5=﹣a2+165a﹣2600=﹣(a﹣165)2+11012.5,∴当房价定为165元时,该宾馆一天的利润最大,为11012.5元.【点睛】本题考查了分式方程的应用以及二次函数的应用,运用二次函数知识求最值问题,常常用公式法或配方法求解.28.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3.【解析】【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y 轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【详解】(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,∴S△APC=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,∴C△ANM=AM+MN+AN=AC+AN=3+.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC =﹣x2﹣x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.。
2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×10123.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣16.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.48.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.29.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC 于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:311.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.14.(4分)方程+=1的解是.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM ⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E 是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.24.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P 作PQ⊥EP,交CD于点Q,则CQ的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为.(2)求不等式<0的解集(要求写出解答过程)27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM 交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.2019年四川省凉山州中考数学试卷参考答案与试题解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)﹣2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.2.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 000=1.533×1011故选:C.3.(4分)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135°B.125°C.115°D.105°【分析】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解答】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.4.(4分)下列各式正确的是()A.2a2+3a2=5a4B.a2•a=a3C.(a2)3=a5D.=a【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、2a2+3a2=5a2,故选项A不合题意;B、a2•a=a3,故选项B符合题意;C、(a2)3=a6,故选项C不合题意;D、=|a|,故选项D不合题意.故选:B.5.(4分)不等式1﹣x≥x﹣1的解集是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1【分析】移项、合并同类项,系数化为1即可求解.【解答】解:1﹣x≥x﹣1,﹣2x≥﹣2∴x≤1.故选:C.6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.17,8.5B.17,9C.8,9D.8,8.5【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为=8.5;故选:D.7.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A.1B.2C.3D.4【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A.8.(4分)如图,正比例函数y=kx与反比例函数y=的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于()A.8B.6C.4D.2【分析】由于点A、C位于反比例函数图象上且关于原点对称,则S△OBA=S△OBC,再根据反比例函数系数k的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.所以△ABC的面积等于2×|k|=|k|=4.故选:C.9.(4分)如图,在△ABC中,CA=CB=4,cos C=,则sin B的值为()A.B.C.D.【分析】过点A作AD⊥BC,垂足为D,在Rt△ACD中可求出AD,CD的长,在Rt△ABD中,利用勾股定理可求出AB的长,再利用正弦的定义可求出sin B的值.【解答】解:过点A作AD⊥BC,垂足为D,如图所示.在Rt△ACD中,CD=CA•cos C=1,∴AD==;在Rt△ABD中,BD=CB﹣CD=3,AD=,∴AB==2,∴sin B==.故选:D.10.(4分)如图,在△ABC中,D在AC边上,AD:DC=1:2,O是BD的中点,连接AO并延长交BC 于E,则BE:EC=()A.1:2B.1:3C.1:4D.2:3【分析】过O作BC的平行线交AC与G,由中位线的知识可得出AD:DC=1:2,根据已知和平行线分线段成比例得出AD=DG=GC,AG:GC=2:1,AO:OF=2:1,再由同高不同底的三角形中底与三角形面积的关系可求出BF:FC的比.【解答】解:如图,过O作OG∥BC,交AC于G,∵O是BD的中点,∴G是DC的中点.又AD:DC=1:2,∴AD=DG=GC,∴AG:GC=2:1,AO:OE=2:1,∴S△AOB:S△BOE=2设S△BOE=S,S△AOB=2S,又BO=OD,∴S△AOD=2S,S△ABD=4S,∵AD:DC=1:2,∴S△BDC=2S△ABD=8S,S四边形CDOE=7S,∴S△AEC=9S,S△ABE=3S,∴故选:B.11.(4分)如图,在△AOC中,OA=3cm,OC=1cm,将△AOC绕点O顺时针旋转90°后得到△BOD,则AC边在旋转过程中所扫过的图形的面积为()cm2.A.B.2πC.πD.π【分析】根据旋转的性质可以得到在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:∵△AOC≌△BOD,∴在旋转过程中所扫过的图形的面积=扇形OAB的面积﹣扇形OCD的面积=﹣=2π,故选:B.12.(4分)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a ﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1B.2C.3D.4【分析】①对称轴为x=﹣,得b=3a;②函数图象与x轴有两个不同的交点,得△=b2﹣4ac>0;③当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,得5a﹣2b+c>0;④由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,当x=1时a+b+c<0,4b+3c=3b+b+3c =3b+3a+3c=3(a+b+c)<0;【解答】解:由图象可知a<0,c>0,对称轴为x=﹣,∴x=﹣=﹣,∴b=3a,①正确;∵函数图象与x轴有两个不同的交点,∴△=b2﹣4ac>0,②正确;当x=﹣1时,a﹣b+c>0,当x=﹣3时,9a﹣3b+c>0,∴10a﹣4b+2c>0,∴5a﹣2b+c>0,③正确;由对称性可知x=1时对应的y值与x=﹣4时对应的y值相等,∴当x=1时a+b+c<0,∵b=3a,∴4b+3c=3b+b+3c=3b+3a+3c=3(a+b+c)<0,∴4b+3c<0,④错误;故选:A.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组的解是.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.14.(4分)方程+=1的解是x=﹣2.【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:去分母,得(2x﹣1)(x+1)﹣2=(x+1)(x﹣1)去括号,得2x2+x﹣3=x2﹣1移项并整理,得x2+x﹣2=0所以(x+2)(x﹣1)=0解得x=﹣2或x=1经检验,x=﹣2是原方程的解.故答案为:x=﹣2.15.(4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是2.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.16.(4分)在▱ABCD中,E是AD上一点,且点E将AD分为2:3的两部分,连接BE、AC相交于F,则S△AEF:S△CBF是4:25或9:25.【分析】分AE:ED=2:3、AE:ED=3:2两种情况,根据相似三角形的性质计算即可.【解答】解:①当AE:ED=2:3时,∵四边形ABCD是平行四边形,∴AD∥BC,AE:BC=2:5,∴△AEF∽△CBF,∴S△AEF:S△CBF=()2=4:25;②当AE:ED=3:2时,同理可得,S△AEF:S△CBF=()2=9:25,故答案为:4:25或9:25.17.(4分)将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:∵将抛物线y=(x﹣3)2﹣2向左平移后经过点A(2,2),∴设平移后解析式为:y=(x﹣3+a)2﹣2,则2=(2﹣3+a)2﹣2,解得:a=3或a=﹣1(不合题意舍去),故将抛物线y=(x﹣3)2﹣2向左平移3个单位后经过点A(2,2).故答案为:3.三、解答题(共5小题,共32分)18.(5分)计算:tan45°+(﹣)0﹣(﹣)﹣2+|﹣2|.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式=1+1﹣4+(2﹣)=.19.(5分)先化简,再求值:(a+3)2﹣(a+1)(a﹣1)﹣2(2a+4),其中a=﹣.【分析】注意到(a+3)2可以利用完全平方公式进行展开,(a+1)(a﹣1)利润平方差公式可化为(a2﹣1),则将各项合并即可化简,最后代入a=进行计算.【解答】解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8=2a+2将a=﹣代入原式=2×(﹣)+2=120.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM ⊥BE,垂足为M,AM与BD相交于点F.求证:OE=OF.【分析】根据正方形的性质对角线垂直且平分,得到OB=OA,根据AM⊥BE,即可得出∠MEA+∠MAE =90°=∠AFO+∠MAE,从而证出Rt△BOE≌Rt△AOF,得到OE=OF.【解答】证明:∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA.又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,∴∠MEA=∠AFO.∴△BOE≌△AOF(AAS).∴OE=OF.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为90°;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有来自七年级,来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360°乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有18÷45%=40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为360°×=90°,故答案为:90°.(3)获二等奖的人数=40×20%=8,一等奖的人数为40﹣8﹣10﹣18=4(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率=.22.(8分)如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E 是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.【分析】(1)连接OD,由AB为⊙O的直径得∠BDC=90°,根据BE=EC知∠1=∠3、由OD=OB 知∠2=∠4,根据BC是⊙O的切线得∠3+∠4=90°,即∠1+∠2=90°,得证;(2)根据直角三角形的性质得到∠F=30°,BE=EF=2,求得DE=BE=2,得到DF=6,根据三角形的内角和得到OD=OA,求得∠A=∠ADO=BOD=30°,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BDC中,∵BE=EC,∴DE=EC=BE,∴∠1=∠3,∵BC是⊙O的切线,∴∠3+∠4=90°,∴∠1+∠4=90°,又∵∠2=∠4,∴∠1+∠2=90°,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OD,∴∠F=30°,∵∠FBE=90°,∴BE=EF=2,∴DE=BE=2,∴DF=6,∵∠F=30°,∠ODF=90°,∴∠FOD=60°,∵OD=OA,∴∠A=∠ADO=BOD=30°,∴∠A=∠F,∴AD=DF=6.四、B卷填空题(共2小题,每小题5分,共10分)23.(5分)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是﹣3≤a≤1.【分析】直线y=a与抛物线y=(x﹣1)2﹣3有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y=a与抛物线y=(x﹣1)2﹣3有交点则有a=(x﹣1)2﹣3,整理得x2﹣2x﹣2﹣a=0∴△=b2﹣4ac=4+4(2+a)≥0解得a≥﹣3,∵0≤x≤3,对称轴x=1∴y=(3﹣1)2﹣3=1∴a≤1法二:由题意可知,∵抛物线的顶点为(1,﹣3),而0≤x≤3∴抛物线y的取值为﹣3≤y≤1∵y=a,则直线y与x轴平行,∴要使直线y=a与抛物线y=(x﹣1)2﹣3有交点,∴抛物线y的取值为﹣3≤y≤1,即为a的取值范围,∴﹣3≤a≤1故答案为:﹣3≤a≤124.(5分)如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B、C重合),过点P 作PQ⊥EP,交CD于点Q,则CQ的最大值为4.【分析】先证明△BPE∽△CQP,得到与CQ有关的比例式,设CQ=y,BP=x,则CP=12﹣x,代入解析式,得到y与x的二次函数式,根据二次函数的性质可求最值.【解答】解:∵∠BEP+∠BPE=90°,∠QPC+∠BPE=90°,∴∠BEP=∠CPQ.又∠B=∠C=90°,∴△BPE∽△CQP.∴.设CQ=y,BP=x,则CP=12﹣x.∴,化简得y=﹣(x2﹣12x),整理得y=﹣(x﹣6)2+4,所以当x=6时,y有最大值为4.故答案为4.五、解答题(共4小题,共40分)25.(8分)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且+=1,求a的值.【分析】有韦达定理得x1+x2=﹣1,x1•x2=a,将式子+=1化简代入即可;【解答】解:y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,∴x1+x2=﹣1,x1•x2=a,∵+===1,∴a=﹣1+或a=﹣1﹣;∵△=1﹣4a>0,∴a<,∴a=﹣1﹣;26.(10分)根据有理数乘法(除法)法则可知:①若ab>0(或>0),则或;②若ab<0(或<0),则或.根据上述知识,求不等式(x﹣2)(x+3)>0的解集解:原不等式可化为:(1)或(2).由(1)得,x>2,由(2)得,x<﹣3,∴原不等式的解集为:x<﹣3或x>2.请你运用所学知识,结合上述材料解答下列问题:(1)不等式x2﹣2x﹣3<0的解集为﹣1<x<3.(2)求不等式<0的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①或②.由①得,空集,由②得,﹣1<x<3,∴原不等式的解集为:﹣1<x<3,故答案为:﹣1<x<3.(2)由<0知①或②,解不等式组①,得:x>1;解不等式组②,得:x<﹣4;所以不等式<0的解集为x>1或x<﹣4.27.(10分)如图,∠ABD=∠BCD=90°,DB平分∠ADC,过点B作BM∥CD交AD于M.连接CM 交DB于N.(1)求证:BD2=AD•CD;(2)若CD=6,AD=8,求MN的长.【分析】(1)通过证明△ABD∽△BCD,可得,可得结论;(2)由平行线的性质可证∠MBD=∠BDC,即可证AM=MD=MB=4,由BD2=AD•CD和勾股定理可求MC的长,通过证明△MNB∽△CND,可得,即可求MN的长.【解答】证明:(1)∵DB平分∠ADC,∴∠ADB=∠CDB,且∠ABD=∠BCD=90°,∴△ABD∽△BCD∴∴BD2=AD•CD(2)∵BM∥CD∴∠MBD=∠BDC∴∠ADB=∠MBD,且∠ABD=90°∴BM=MD,∠MAB=∠MBA∴BM=MD=AM=4∵BD2=AD•CD,且CD=6,AD=8,∴BD2=48,∴BC2=BD2﹣CD2=12∴MC2=MB2+BC2=28∴MC=2∵BM∥CD∴△MNB∽△CND∴,且MC=2∴MN=28.(12分)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△P AC的周长最小,若存在,请求出点P的坐标及△P AC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△P AM=S△P AC?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)由于条件给出抛物线与x轴的交点A(﹣1,0)、B(3,0),故可设交点式y=a(x+1)(x ﹣3),把点C代入即求得a的值,减小计算量.(2)由于点A、B关于对称轴:直线x=1对称,故有P A=PB,则C△P AC=AC+PC+P A=AC+PC+PB,所以当C、P、B在同一直线上时,C△P AC=AC+CB最小.利用点A、B、C的坐标求AC、CB的长,求直线BC解析式,把x=1代入即求得点P纵坐标.(3)由S△P AM=S△P AC可得,当两三角形以P A为底时,高相等,即点C和点M到直线P A距离相等.若点M在点P上方,则有CM∥P A.由点A、P坐标求直线AP解析式,即得到直线CM解析式.把直线CM解析式与抛物线解析式联立方程组即求得点M坐标.若点M在点P下方,则此时M所在的直线到直线P A的距离等于第一种情况时CM到P A的距离,故可用平移的方法来求此时点M所在直线的解析式.【解答】解:(1)∵抛物线与x轴交于点A(﹣1,0)、B(3,0)∴可设交点式y=a(x+1)(x﹣3)把点C(0,3)代入得:﹣3a=3∴a=﹣1∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3∴抛物线解析式为y=﹣x2+2x+3(2)在抛物线的对称轴上存在一点P,使得△P AC的周长最小.如图1,连接PB、BC∵点P在抛物线对称轴直线x=1上,点A、B关于对称轴对称∴P A=PB∴C△P AC=AC+PC+P A=AC+PC+PB∵当C、P、B在同一直线上时,PC+PB=CB最小∵A(﹣1,0)、B(3,0)、C(0,3)∴AC=,BC=∴C△P AC=AC+CB=最小设直线BC解析式为y=kx+3把点B代入得:3k+3=0,解得:k=﹣1∴直线BC:y=﹣x+3∴y P=﹣1+3=2∴点P(1,2)使△P AC的周长最小,最小值为.(3)存在满足条件的点M,使得S△P AM=S△P AC.∵S△P AM=S△P AC∴当以P A为底时,两三角形等高∴点C和点M到直线P A距离相等①若点M在点P上方,如图2,∴CM∥P A∵A(﹣1,0),P(1,2),设直线AP解析式为y=px+d∴解得:∴直线AP:y=x+1∴直线CM解析式为:y=x+3∵解得:(即点C),∴点M坐标为(1,4)②若点M在点P下方,如图3,则点M所在的直线l∥P A,且直线l到P A的距离等于直线y=x+3到P A的距离∴直线AP:y=x+1向下平移2个单位得y=x﹣1即为直线l的解析式∵解得:∵点M在x轴上方∴y>0∴点M坐标为(,)综上所述,点M坐标为(1,4)或(,)时,S△P AM=S△P AC.。
2019年四川省凉山州中考数学试卷一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)2的相反数是()A .2B .2C .12D .122.(4分)2018年凉山州生产总值约为153300000000,用科学记数法表示数153300000000是()A .91.53310B .101.53310C .111.53310D .121.533103.(4分)如图,//BD EF ,AE 与BD 交于点C ,30B,75A,则E 的度数为()A .135B .125C .115D .1054.(4分)下列各式正确的是()A .224235aaaB .23a a aC .235()a aD .2aa5.(4分)不等式11x x …的解集是()A .1x …B .1x …C .1x,D .1x,6.(4分)某班40名同学一周参加体育锻炼时间统计如表所示:人数(人)317137时间(小时)78910那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A .17,8.5B .17,9C .8,9D .8,8.57.(4分)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是()A .1B .2C .3D .48.(4分)如图,正比例函数y kx与反比例函数4yx的图象相交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则ABC的面积等于() A.8B.6C.4D.29.(4分)如图,在ABC中,4CA CB,1cos4C,则sin B的值为()A.102B.153C.64D.10410.(4分)如图,在ABC中,D在AC边上,:1:2AD DC,O是BD的中点,连接AO 并延长交BC于E,则:(BE EC)A.1:2B.1:3C.1:4D.2:311.(4分)如图,在AOC中,3OA cm,1OC cm,将AOC绕点O顺时针旋转90后得到BOD,则AC边在旋转过程中所扫过的图形的面积为(2)cm.A .2B .2C .178D .19812.(4分)二次函数2y ax bxc 的部分图象如图所示,有以下结论:①30ab;②240bac ;③520a bc;④430b c,其中错误结论的个数是()A .1B .2C .3D .4二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组10216x y xy 的解是.14.(4分)方程2212111x x x的解是.15.(4分)如图所示,AB 是O 的直径,弦CDAB 于H ,30A ,23CD,则O的半径是.16.(4分)在ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC相交于F ,则:AEFCBFSS是.17.(4分)将抛物线2(3)2y x 向左平移个单位后经过点(2,2)A .三、解答题(共5小题,共32分)18.(5分)计算:021tan 45(32)()|32|2.19.(5分)先化简,再求值:2(3)(1)(1)2(24)aa aa,其中12a.20.(6分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AMBE ,垂足为M ,AM 与BD 相交于点F .求证:OEOF .21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D 是以AB 为直径的O 上一点,过点B 作O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F .(1)求证:DF 是O 的切线;(2)若OB BF ,4EF ,求AD 的长.四、B 卷填空题(共2小题,每小题5分,共10分)23.(5分)当03x 剟时,直线y a 与抛物线2(1)3y x 有交点,则a 的取值范围是.24.(5分)如图,正方形ABCD 中,12AB ,14AE AB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQEP ,交CD 于点Q ,则CQ 的最大值为.五、解答题(共4小题,共40分)25.(8分)已知二次函数2yxxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,且2212111xx,求a 的值.26.(10分)根据有理数乘法(除法)法则可知:①若0ab(或0)a b ,则00a b 或00a b ;②若0ab (或0)a b,则00a b或00a b .根据上述知识,求不等式(2)(3)0x x 的解集解:原不等式可化为:(1)203x x或(2)203x x.由(1)得,2x ,由(2)得,3x,原不等式的解集为:3x或2x.请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x 的解集为.(2)求不等式401x x的解集(要求写出解答过程)27.(10分)如图,90ABD BCD,DB 平分ADC ,过点B 作//BM CD 交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD ;(2)若6CD,8AD,求MN 的长.28.(12分)如图,抛物线2y axbxc 的图象过点(1,0)A 、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小,若存在,请求出点P的坐标及PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAMPACS S?若存在,请求出点M 的坐标;若不存在,请说明理由.2019年四川省凉山州中考数学试卷答案与解析一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的宇母填涂在答题卡上相应的位置1.(4分)【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.(4分)【分析】利用科学记数法表示即可【解答】解:科学记数法表示:153 300 000 11000 1.53310故选:C.【点评】本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式,,n为整数),这种记数法叫做科学记数法.a(1103.(4分)【分析】直接利用三角形的外角性质得出ACD度数,再利用平行线的性质分析得出答案.A,B,75【解答】解:30ACD,3075105BD EF,//E ACD.105故选:D.【点评】此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.4.(4分)【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及二次根式的性质解答即可.【解答】解:A、222a a a,故选项A不合题意;235B、23a a a,故选项B符合题意;C 、236()a a ,故选项C 不合题意;D 、2||aa ,故选项D 不合题意.故选:B .【点评】本题主要考查了合并同类项的法则、幂的运算法则以及二次根式的性质,熟练掌握相关运算性质是解答本题的关键.5.(4分)【分析】移项、合并同类项,系数化为1即可求解.【解答】解:11x x …,22x …1x,.故选:C .【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.6.(4分)【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【解答】解:众数是一组数据中出现次数最多的数,即8;由统计表可知,处于20,21两个数的平均数就是中位数,这组数据的中位数为898.52;故选:D .【点评】本题考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7.(4分)【分析】根据点到直线的距离,线段的性质,弧、弦、圆心角之间的关系以及垂径定理判断即可.【解答】解:①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题;②两点之间线段最短;真命题;③相等的圆心角所对的弧相等;假命题;④平分弦的直径垂直于弦;假命题;真命题的个数是1个;故选:A .【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(4分)【分析】由于点A 、C 位于反比例函数图象上且关于原点对称,则OBAOBCSS,再根据反比例函数系数k 的几何意义作答即可.【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即1||2S k .所以ABC 的面积等于12||||42k k .故选:C .【点评】主要考查了反比例函数k yx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为||k ,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即1||2Sk .9.(4分)【分析】过点A 作AD BC ,垂足为D ,在Rt ACD 中可求出AD ,CD 的长,在Rt ABD中,利用勾股定理可求出AB 的长,再利用正弦的定义可求出sin B 的值.【解答】解:过点A 作AD BC ,垂足为D ,如图所示.在Rt ACD 中,cos 1CD CA C ,2215ADADCD;在Rt ABD 中,3BD CBCD,15AD,2226AB BD AD ,10sin 4AD BAB.故选:D .【点评】本题考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD ,AB 的长是解题的关键.10.(4分)【分析】过O 作BC 的平行线交AC 与G ,由中位线的知识可得出:1:2AD DC,根据已知和平行线分线段成比例得出ADDGGC ,:2:1AG GC,:2:1AO OF ,再由同高不同底的三角形中底与三角形面积的关系可求出:BF FC 的比.【解答】解:如图,过O 作//OG BC ,交AC 于G ,O 是BD 的中点,G 是DC 的中点.又:1:2AD DC ,ADDGGC ,:2:1AG GC ,:2:1AO OE,:2AOBBOES S 设BOES S ,2AOB S S ,又BO OD ,2AOD SS ,4ABDSS ,:1:2AD DC ,28BDCABDS SS ,7CDOES S 四边形,9AECSS ,3ABES S ,3193ABE AECS BE S ECSS故选:B .【点评】本题考查平行线分线段成比例及三角形的中位线的知识,难度较大,注意熟练运用中位线定理和三角形面积公式.11.(4分)如图,在AOC中,3OA cm,1OC cm,将AOC绕点O顺时针旋转90后得到BOD,则AC边在旋转过程中所扫过的图形的面积为(2)cm.A.2B.2C.178D.198【分析】根据旋转的性质可以得到阴影部分的面积扇形OAB的面积扇形OCD的面积,利用扇形的面积公式即可求解.【解答】解:AOC BOD,阴影部分的面积扇形OAB的面积扇形OCD的面积22 9039012 360360,故选:B.【点评】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积扇形OAB的面积扇形OCD的面积是解题关键.12.(4分)二次函数2y ax bx c的部分图象如图所示,有以下结论:①30a b;②240b ac;③520a b c;④430b c,其中错误结论的个数是()A .1B .2C .3D .4【分析】①对称轴为32x,得3ba ;②函数图象与x 轴有两个不同的交点,得△240bac ;③当1x时,0abc,当3x时,930abc,得520ab c;④由对称性可知1x 时对应的y 值与4x 时对应的y 值相等,当1x 时0a bc,43333333()0bcbbcba c abc ;【解答】解:由图象可知0a,0c,对称轴为32x,322b x a,3ba ,①正确;函数图象与x 轴有两个不同的交点,△240bac ,②正确;当1x 时,0a b c ,当3x 时,930a b c ,10420a b c ,520abc,③正确;由对称性可知1x 时对应的y 值与4x 时对应的y 值相等,当1x 时0a bc,3b a ,43333333()0b c b b c b a c a b c ,430bc,④错误;故选:C .【点评】本题考查二次函数的图象及性质;熟练掌握从函数图象获取信息,将信息与函数解析式相结合解题是关键.二、填空题(共5个小题,每小题4分,共20分)13.(4分)方程组10216x y xy 的解是64x y.【分析】利用加减消元法解之即可.【解答】解:10216x y xy①②,②①得:6x,把6x 代入①得:610y,解得:4y,方程组的解为:64x y ,故答案为:64x y.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.14.(4分)方程2212111x x x的解是2x .【分析】去分母,把分式方程化为整式方程,求解并验根即可.【解答】解:21211(1)(1)x x x x 去分母,得(21)(1)2(1)(1)x x x x 去括号,得22231x x x 移项并整理,得22x x所以(2)(1)0x x解得2x或1x经检验,2x 是原方程的解.故答案为:2x .【点评】本题考查了分式方程、一元二次方程的解法.掌握分式方程的解法是解决本题的关键.注意验根.15.(4分)如图所示,AB 是O 的直径,弦CD AB 于H ,30A ,23CD ,则O的半径是2.【分析】连接BC ,由圆周角定理和垂径定理得出90ACB ,132CH DHCD ,由直角三角形的性质得出223ACCH,323ACBC,2ABBC ,得出2BC,4AB ,求出2OA 即可.【解答】解:连接BC ,如图所示:AB 是O 的直径,弦CD AB 于H ,90ACB ,132CHDHCD,30A ,223ACCH,在Rt ABC 中,30A,323AC BC ,2ABBC ,2BC ,4AB ,2OA ,即O 的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.16.(4分)在ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC相交于F ,则:AEFCBFSS是4:25或9:25.【分析】分:2:3AE ED 、:3:2AE ED两种情况,根据相似三角形的性质计算即可.【解答】解:①当:2:3AE ED时,四边形ABCD 是平行四边形,//AD BC ,:2:5AE BC ,AEF CBF ∽,22:()4:255AEFCBFSS;②当:3:2AE ED 时,同理可得,23:()9:255AEFCBFSS,故答案为:4:25或9:25.【点评】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.17.(4分)将抛物线2(3)2yx向左平移3个单位后经过点(2,2)A .【分析】直接利用二次函数的平移规律结合二次函数图象上点的性质进而得出答案.【解答】解:将抛物线2(3)2yx向左平移后经过点(2,2)A ,设平移后解析式为:2(3)2yx a ,则22(23)2a ,解得:3a 或1a(不合题意舍去),故将抛物线2(3)2y x向左平移3个单位后经过点(2,2)A .故答案为:3.【点评】此题主要考查了二次函数图象与几何变换,正确记忆平移规律是解题关键.三、解答题(共5小题,共32分)18.(5分)计算:021tan 45(32)()|32|2.【分析】分别进行特殊角的三角函数值的运算,任何非零数的零次幂等于1,负整数指数幂以及绝对值的意义化简,然后按照实数的运算法则进行计算求得结果.【解答】解:原式112(23)23.【点评】本题考查了实数的运算法则,属于基础题,解答本题的关键是熟练掌握负整数指数幂、特殊角的三角函数值等知识.19.(5分)先化简,再求值:2(3)(1)(1)2(24)a a a a ,其中12a.【分析】注意到2(3)a 可以利用完全平方公式进行展开,(1)(1)a a 利润平方差公式可化为2(1)a,则将各项合并即可化简,最后代入12a进行计算.【解答】解:原式2269(1)48aa aa 22a 将12a代入原式12()212【点评】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变20.(6分)如图,正方形ABCD 的对角线AC 、BD 相交于点O ,E 是OC 上一点,连接EB .过点A 作AMBE ,垂足为M ,AM 与BD 相交于点F .求证:OEOF .【分析】根据正方形的性质对角线垂直且平分,得到OBOA ,根据AM BE ,即可得出90MEAMAEAFOMAE ,从而证出Rt BOE Rt AOF ,得到OEOF .【解答】证明:四边形ABCD 是正方形.90BOEAOF,OBOA .又AM BE,90MEA MAE AFO MAE,MEA AFO.()BOE AOF AAS.OE OF.【点评】本题主要考查了正方形的性质、三角形全等的性质和判定,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有40人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.【分析】(1)利用鼓励奖的人数除以它所占的百分比得到的总人数;(2)用360乘以二等奖人数占被调查人数的比例即可得;(3)计算出一等奖和二等奖的人数,然后补全条形统计图;(4)画树状图(用A、B、C分别表示七年级、八年级和九年级的学生)展示所有12种等可能的结果数,再找出所选出的两人中既有七年级又有九年级同学的结果数,然后利用概率公式求解.【解答】解:(1)参加此次诗词大会预选赛的同学共有1845%40(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为103609040,故答案为:90.(3)获二等奖的人数4020%8,一等奖的人数为40810184(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率41 123.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.22.(8分)如图,点D是以AB为直径的O上一点,过点B作O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是O的切线;(2)若OB BF,4EF,求AD的长.【分析】(1)连接OD,由AB为O的直径得90BDC,根据BE EC知13、由OD OB知24,根据BC是O的切线得3490,即1290,得证;(2)根据直角三角形的性质得到30F,12 2BE EF,求得2DE BE,得到6DF,根据三角形的内角和得到OD OA,求得1302A ADO BOD,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,连接OD,BD,AB为O的直径,90ADB BDC,在Rt BDC中,BE EC,DE EC BE,13,BC是O的切线,3490,1490,又24,1290,DF为O的切线;(2)OB BF,2OF OD,30F,90FBE,122BE EF,2DE BE,6DF,30F,90ODF,60FOD,OD OA,1302A ADO BOD,A F,6AD DF.【点评】本题考查了切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.四、B 卷填空题(共2小题,每小题5分,共10分)23.(5分)当03x 剟时,直线y a 与抛物线2(1)3y x 有交点,则a 的取值范围是31a 剟.【分析】直线y a 与抛物线2(1)3yx 有交点,则可化为一元二次方程组利用根的判别式进行计算.【解答】解:法一:y a 与抛物线2(1)3yx 有交点则有2(1)3a x,整理得222x xa△2444(2)0baca …解得3a …,03x 剟,对称轴1x 2(31)31y1a,法二:由题意可知,抛物线的顶点为(1,3),而03x 剟抛物线y 的取值为31y 剟y a ,则直线y 与x 轴平行,要使直线ya 与抛物线2(1)3yx 有交点,抛物线y 的取值为31y 剟,即为a 的取值范围,31a 剟故答案为:31a 剟【点评】此题主要考查二次函数图象的性质及交点的问题,此类问题,通常可化为一元二次方程,利用根的判别式或根与系数的关系进行计算.24.(5分)如图,正方形ABCD 中,12AB ,14AEAB ,点P 在BC 上运动(不与B 、C 重合),过点P 作PQEP ,交CD 于点Q ,则CQ 的最大值为4.【分析】先证明BPE CQP ∽,得到与CQ 有关的比例式,设CQy ,BP x ,则12CP x ,代入解析式,得到y 与x 的二次函数式,根据二次函数的性质可求最值.【解答】解:90BEPBPE,90QPCBPE,BEP CPQ .又90BC,BPE CQP ∽.BE BP PC CQ.设CQy ,BP x ,则12CPx .912x x y,化简得21(12)9y xx ,整理得21(6)49y x,所以当6x时,y 有最大值为4.故答案为4.【点评】本题主要考查了正方形的性质、相似三角形的判定和性质,以及二次函数最值问题,几何最值用二次函数最值求解考查了树形结合思想.五、解答题(共4小题,共40分)25.(8分)已知二次函数2yxxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,且2212111xx,求a 的值.【分析】有韦达定理得121x x ,12x x a ,将式子2212111x x化简代入即可;【解答】解:2y xxa 的图象与x 轴交于1(A x ,0)、2(B x ,0)两点,121x x ,12x x a ,222121212222222121212()211121()x xx x x x a x x x x x x a,12a或12a;【点评】本题考查二次函数的性质;灵活运用完全平方公式,掌握根与系数的关系是解题的关键.26.(10分)根据有理数乘法(除法)法则可知:①若0ab(或0)a b ,则00a b 或00a b ;②若0ab (或0)a b,则00a b或00a b .根据上述知识,求不等式(2)(3)0x x 的解集解:原不等式可化为:(1)203x x或(2)203x x.由(1)得,2x ,由(2)得,3x,原不等式的解集为:3x或2x.请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x 的解集为13x .(2)求不等式401x x的解集(要求写出解答过程)【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【解答】解:(1)原不等式可化为:①3010xx 或②301x x .由①得,空集,由②得,13x,原不等式的解集为:13x,故答案为:13x.(2)由401xx知①4010x x 或②401x x,解不等式组①,得:1x ;解不等式组②,得:4x ;所以不等式401x x的解集为1x 或4x .【点评】本题主要考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.27.(10分)如图,90ABD BCD ,DB 平分ADC ,过点B 作//BM CD 交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD ;(2)若6CD,8AD,求MN 的长.【分析】(1)通过证明ABD BCD ∽,可得AD BD BDCD,可得结论;(2)由平行线的性质可证MBDBDC ,即可证4AM MDMB,由2BDAD CD和勾股定理可求MC 的长,通过证明MNB CND ∽,可得23BM MN CDCN,即可求MN 的长.【解答】证明:(1)DB 平分ADC ,ADBCDB ,且90ABDBCD,ABD BCD ∽AD BD BDCD2BD AD CD (2)//BM CDMBDBDCADB MBD ,且90ABD BM MD ,MAB MBA4BMMDAM2BD AD CD ,且6CD ,8AD ,248BD ,22212BC BDCD22228MC MB BC 27MC//BM CD MNB CND ∽23BM MN CD CN ,且27MC475MN【点评】本题考查了相似三角形的判定和性质,勾股定理,直角三角形的性质,求MC 的长度是本题的关键.28.(12分)如图,抛物线2yaxbx c 的图象过点(1,0)A 、(3,0)B 、(0,3)C .(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC 的周长最小,若存在,请求出点P的坐标及PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAMPACS S?若存在,请求出点M 的坐标;若不存在,请说明理由.【分析】(1)由于条件给出抛物线与x 轴的交点(1,0)A 、(3,0)B ,故可设交点式(1)(3)ya xx,把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x 对称,故有P AP B ,则PACCAC PC PA AC PCPB ,所以当C 、P 、B 在同一直线上时,PACCACCB最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x 代入即求得点P 纵坐标.(3)由PA MP AC SS 可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标.【解答】解:(1)抛物线与x 轴交于点(1,0)A 、(3,0)B 可设交点式(1)(3)ya x x 把点(0,3)C 代入得:33a1a 2(1)(3)23yxxxx抛物线解析式为223yx x(2)在抛物线的对称轴上存在一点P ,使得PAC 的周长最小.如图1,连接PB 、BC 点P 在抛物线对称轴直线1x上,点A 、B 关于对称轴对称PA PBPACCAC PC PA AC PC PB 当C 、P 、B 在同一直线上时,PCPBCB 最小(1,0)A 、(3,0)B 、(0,3)C 221310AC ,223332BC 1032PACCACCB最小设直线BC 解析式为3y kx把点B 代入得:330k ,解得:1k直线:3BC y x132Py 点(1,2)P 使PAC 的周长最小,最小值为1032.(3)存在满足条件的点M ,使得PAMPACS S.PAM PACSS当以PA 为底时,两三角形等高点C 和点M 到直线PA 距离相等M 在x 轴上方//CM PA(1,0)A ,(1,2)P ,设直线AP 解析式为y pxd2p d pd 解得:11p d直线:1AP y x 直线CM 解析式为:3y x2323y x yxx解得:1103x y (即点)C ,2214x y 点M 坐标为(1,4)【点评】本题考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x轴上方,无需分类讨论,解法较常规而简单。
凉山州2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
1.2017年按照济南市政府“拆违拆临,建绿透绿”决策部署,济南市各个部门通力协作,年内共拆除违法建设约32900000平方米,拆违拆临工作取得重大历史性突破,数字32900000用科学计数法表示为 A. 329×105B. 3.29×105C. 3.29×106D. 3.29×1072.下面的图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3.一组数据1,2,a 的平均数为2,另一组数据-l ,a ,1,2,b 的唯一众数为-l ,则数据-1,a ,b ,1,2的中位数为A .-1B .1C . 2D .34. 如右图,已知AB 、CD 是⊙O 的两条直径,∠ABC=30°,那么∠BAD = A.45° B. 60° C.90° D. 30°5.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是A.1<a ≤7B.a ≤7C.a <1或a ≥7D.a =76.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y =x 2+1,则原抛物线的解析式不可能的是A .y =x 2-1B .y =x 2+6x +5C .y =x 2+4x +4D .y =x 2+8x +177.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是A .平行四边形B .矩形C .对角线相等的四边形D .对角线互相垂直的四边形 8.若A (x 1,y 1)、B (x 2,y 2)是一次函数2-+=x ax y 图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是 A .a <0B .a >0C .a <1-D .a >1-OD CBA(第5题图)9. 完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部 分的周长是A . 6(m -n )B . 3(m +n )C . 4nD . 4mmn10.如图,OM =2,MN =6,A 为射线ON 上的动点,以OA 为一边作内角∠OAB =120°的菱形OABC ,则BM +BN 的最小值为 CA .26B . 6C .132D .152二、填空题(本大共6小题,每小题5分,满分30分)11.若关于x 的一元二次方程(a -2) x 2-2x +1=0有两个实数根,则a 的取值范围是 . 12.已知关于x 的分式方程2332+-=--x mx x 无解,则m 的值是 . 13.面积为40的△ABC 中,AC =BC =10,∠ACB >90°,半径为1.5的⊙O 与AC 、BC 都相切,则OC的长为 .14.(5分)九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S 2如下表:甲 乙 丙 丁 平均数(分)95 97 95 97 方差0.50.50.20.2老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选 . 15.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,︒=∠601则2∠的度数为________。
2019年四川省凉山市金阳县中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.下列实数0,,,π,其中,无理数共有()A.1个B.2个C.3个D.4个2.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°3.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A.﹣B.﹣C.﹣3D.﹣24.如图,在△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求;(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求.对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确5.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数6.在实数范围内把二次三项式x 2+x ﹣1分解因式正确的是( )A .(x ﹣)(x ﹣) B .(x ﹣)(x +) C .(x +)(x ﹣) D .(x +)(x +)7.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .308.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是( )A .5,5B .5,6C .6,6D .6,59.一张矩形纸片在太阳光线的照射下,形成影子不可能是( )A .平行四边形B .矩形C .正方形D.梯形10.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A ,B 两点间的距离为( )米.A .750B .375C .375D .75011.如图,在Rt △ABC 中,∠BAC =90°,且AB =3,BC =5,⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,则图中阴影部分的面积为( )A.12﹣πB.12﹣πC.6﹣πD.6﹣π12.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a ﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④二.填空题(共5小题,满分20分,每小题4分)13.若代数式有意义,则实数x的取值范围是.14.如图,将长方形纸片ABCD沿直线EN、EM进行折叠后(点E在AB边上),B′点刚好落在A′E上,若折叠角∠AEN=30°15′,则另一个折叠角∠BEM=.15.如图△ABC是坐标纸上的格点三角形,试写出△ABC外接圆的圆心坐标.16.如图,AB是⊙O的直径,弦CD垂直平分半径OA,AB=6,则BC的长是.17.从满足不等式﹣3<x<3的所有整数中任意取一个数记作a,则关于x的一元二次方程x2﹣(a﹣1)x+有两个不相等的实数根的概率是.三.解答题(共5小题,满分32分)18.计算:(3.14﹣π)0+|1﹣|+(﹣)﹣1﹣2sin60°.19.当x是不等式组的正整数解时,求多项式(1﹣3x)(1+3x)+(1+3x)2+(﹣x2)3÷x4的值.20.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.21.现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,我市为了解学生的视力变化情况,从全市八年级随机抽取了1200名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中“其他”所在扇形的圆心角度数为;(2)若2016年全市八年级学生共有24000名,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你认为造成中学生视力下降最主要的因素是什么,你觉得中学生应该如何保护视力?22.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.四.填空题(共2小题,满分10分,每小题5分)23.化简:2<x<4时,﹣=.24.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为.五.解答题(共4小题,满分40分)25.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=4,过A,D两点作⊙O,交AB于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.26.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:(2)一般地,如果那么a+c b+d(用“<”或“>”填空).请你说明上述性质的正确性.27.某宾馆有若干间住房,住宿记录提供了如下信息:(1)4月17日全部住满,一天住宿费收入为12000元;(2)4月18日有20间房空着,一天住宿费收入为9600元;(3)该宾馆每间房每天收费标准相同.①一个分式方程,求解该宾馆共有多少间住房,每间住房每天收费多少元?②通过市场调查发现,每间住房每天的定价每增加10元,就会有5个房间空闲;已知该宾馆空闲房间每天每间支出费用10元,有顾客居住房间每天每间支出费用20元,问房价定为多少元时,该宾馆一天的利润为11000元?(利润=住宿费收入﹣支出费用)③在(2)的计算基础上,你能发现房价定为多少元时,该宾馆一天的利润最大?请直接写出结论.28.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM 周长的最小值;若不存在,请说明理由.2019年四川省凉山市金阳县中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1-5BCBCC6BDBDA11---12CD二.填空题(共5小题,满分20分,每小题4分)13.x≥﹣3且x≠2.14.59°45′.15(5,2).16 317三.解答题(共5小题,满分32分)18.解:原式=1+﹣1﹣4﹣=﹣4.19解:,由①得:x<2,由②得:x>﹣,∴不等式组的解集为﹣<x<2,正整数x的值为1,则原式=1﹣9x2+1+6x+9x2﹣x2=﹣x2+6x+2=﹣1+6+2=7.20证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE ≌△B 'EC(2)四边形AECF 是菱形∵△ADE ≌△B 'EC∴AE =CE∵AE =CE ,EF ⊥AC∴EF 垂直平分AC ,∠AEF =∠CEF∴AF =CF∵CD ∥AB∴∠CEF =∠EFA 且∠AEF =∠CEF∴∠AEF =∠EFA∴AF =AE∴AF =AE =CE =CF∴四边形AECF 是菱形21解:(1)根据题意得:360×(1﹣40%﹣25%﹣20%)=54°; 故答案为:54°;(2)根据题意得:24000×=16000(名),则估计视力在4.9以下的学生约有16000名;(3)造成中学生视力下降最主要的因素是手机,应少看电视,远离手机.22解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b , 得k =1×4,1+b =4,解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上,∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C ,∵当x =0时,y =3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.四.填空题(共2小题,满分10分,每小题5分)23.解:∵2<x<4,∴x﹣2>0,x﹣4<0,∴原式=﹣=|x﹣2|﹣|x﹣4|=x﹣2﹣(4﹣x)=x﹣2﹣4+x=2x﹣6.故答案为:2x﹣6.24解:如图,连接EC,作AH⊥BC于H.∵△ABC∽△ADE,∴∠AED=∠ACD,∴A,D,C,E四点共圆,∴∠DAE+∠DCE=180°,∴∠DCE=∠DAE=90°,∴EC⊥BC,∴NE⊥EC时,EN的值最小,作AG⊥CE交CE的延长线于G.在Rt△ABC中,∵BC=5,AB=3,∴AC=4,∵△ENC∽△△ACB,∴=,∴=,∴EC=,∴AH=CG==,CH=AG=,∵NE∥AG,AN=NC,∴GE=EC=,∵∠HAG=∠DAE,∴∠DAH=∠EAG,∵∠AHD=∠G=90°,∴△AHD∽△AGE,∴=,∴=,∴DH=,∴CD=DH+CH=.故答案为.五.解答题(共4小题,满分40分)25.解:(1)∵∠BAC=90°,点D是BC中点,BC=4,∴AD=BC=2;(2)连DE、ME,如图,∵DM>DE,当ED和EM为等腰三角形EDM的两腰,∴OE⊥DM,∴△ADC为等边三角形,∴∠CAD=60°,∴∠DAO=30°,∴∠DON=60°,在Rt△ADN中,DN=AD=,在Rt△ODN中,ON=DN=1,∴当ON等于1时,三点D、E、M组成的三角形是等腰三角形;当MD=ME,DE为底边,如图3,作DH⊥AE,∵AD=2,∠DAE=30°,∴DH=,∠DEA=60°,DE=2,∴△ODE为等边三角形,∴OE=DE=2,OH=1,∵∠M=∠DAE=30°,而MD=ME,∴∠MDE=75°,∴∠ADM=90°﹣75°=15°,∴∠DNO=45°,∴△NDH为等腰直角三角形,∴NH=DH=,∴ON=﹣1;综上所述,当ON等于1或﹣1时,三点D、E、M组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=2.理由如下:连AP、AQ,如图2,∵∠C=∠CAD=60°,而DP⊥AB,∴AC∥DP,∴∠PDB=∠C=60°,又∵∠PAQ=∠PDB,∴∠CAQ=∠PAD,∵AC=AD,∠AQC=∠P,∴△AQC≌△APD,∴DP=CQ,∴DP﹣DQ=CQ﹣DQ=CD=2.26.解:(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1;故答案为>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为>.27.解:①设每间住房每天收费x元,根据题意,得=+20,解得x=120,经经验,x=120是原方程的根.12000÷120=100.答:该宾馆共有100间住房,每间住房每天收费120元;②设每间房的房价为y元,根据题意,得(y﹣20)(100﹣×5)﹣10××5=11000,解得:y1=160,y2=170.答:房价定为160元或170元时,该宾馆一天的利润为11000元;③设房价定为每间a元时,该宾馆一天的利润为w元,根据题意,得w=(a﹣20)(100﹣×5)﹣10××5=﹣a2+165a﹣2600=﹣(a﹣165)2+11012.5,∴当房价定为165元时,该宾馆一天的利润最大,为11012.5元.28.解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.。
四川省凉山州市2019年中考数学试卷数 学(考试时间:120分钟 满分:150分) 本试卷分为A 卷(100分)、B 卷(50分)A 卷(共100分) 第Ⅰ卷(选择题 共48分)一、选择题(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确选项的字母填涂在答题卡上相应的位置. 1.2-的相反数是( )A .2B .2-C .12D .12-2.2018年凉山州生产总值约为153 300 000 000,用科学记数法表示数153 300 000 000是( )A .91.53310⨯B .101.53310⨯C .111.53310⨯D .121.53310⨯3.如图,BD EF ∥,AE 与BD 交于点C ,B 30∠=︒,A 75∠=︒,则E ∠的度数为( )第3题图A .135︒B .125︒C .115︒D .105︒ 4.下列各式正确的是( )A .224235a a a +=B .23a a a =gC .()325a a =Da5.不等式11x x --≥的解集是( )A .1x ≥B .1x -≥C .1x ≤D .1x -≤6那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) A .17,8.5B .17,9C .8,9D .8,8.57.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数是( ) A .1B .2C .3D .48.如图,正比例函数y kx =与反比例函数4y x=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则ABC △的面积等于( ) A .8B .6C .4D .2第8题图第9题图第10题图9.如图,在ABC △中,AC CB 4==,1cosC 4=,则sinB 的值为( )A.2B.3C.4D.410.如图,在ABC △中,D 在AC 边上,AD:DC 1:2=,O 是BD 的中点,连接AO 并延长交BC 于E ,则BE:EC =( )A .1:2B .1:3C .1:4D .2:311.如图,在AOC △中,OA 3cm =,OC 1cm =,将AOC △绕点O 顺时针旋转90︒后得到BOD △,则AC 边在旋转过程中所扫过的图形的面积为( )2cm . A .π2B .2πC .17π8D .19π8第11题图第12题图12.二次函数2y ax bx c =++的部分图象如图所示,有以下结论:①30a b -=;②240b ac ->;③520a b c -+>;④430b c +>,其中错误结论的个数是 ( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共52分)二、填空题(共5个小题,每小题4分,共20分) 13.方程组10216x y x y +=⎧⎨+=⎩的解是 .14.方程212111x x x-+=--的解是 . 15.如图所示,AB 是O e 的直径,弦CD AB ⊥于H ,30A ∠=︒,CD =,则O e 的半径是 .第15题图16.在□ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF :S S △△是 .17.将抛物线()232y x =--向左平移 个单位后经过点()A 2,2).三、解答题(共5小题,共32分) 18.(5分)计算:21tan 4522-⎛⎫︒+--+ ⎪⎝⎭.19.(5分)先化简,再求值:()()()()2311224a a a a +-+--+,其中12a =-.20.(6分)如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作AM BE⊥,垂足为M,AM与BD相交于点F.求证:OE OF=.21.(8分)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图.请结合图中相关数据解答下列问题:(1)参加此次诗词大会预选赛的同学共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为;(3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级,学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛,请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率.22.(8分)如图,点D 是以AB 为直径的O e 上一点,过点B 作O e 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F . (1)求证:DF 是O e 的切线; (2)若OB BF =,EF 4=,求AD 的长.B 卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.当03x ≤≤时,直线y a =与抛物线()213y x =--有交点,则a 的取值范围是 .24.如图,正方形ABCD 中,AB 12=,1AE AB 4=,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ EP ⊥,交CD 于点Q ,则CQ 的最大值为 .五、解答题(共4小题,共40分)25.(8分)已知二次函数2y x x a =++的图象与x 轴交于()1,0A x 、()2,0B x 两点,且2212111x x +=,求a 的值.26.(10分)根据有理数乘法(除法)法则可知: ①若0ab >(或0b a>),则00a b ⎧⎨⎩>>或00a b ⎧⎨⎩<< ②若0ab <(或0b a <),则00a b ⎧⎨⎩><或00a b ⎧⎨⎩<> 根据上述知识,求不等式()()230x x -+>的解集. 解:原不等式可化为:(1) 2030x x -⎧⎨+⎩>>或(2) 2030x x -⎧⎨+⎩<<,由(1)得,2x >, 由(2)得,3x -<,∴原不等式的解集为:3x -<或2x >.请你运用所学知识,结合上述材料解答下列问题: (1)不等式2230x x --<的解集为 . (2)求不等式401x x+-<的解集(要求写出解答过程).27.(10分)如图,ABD BCD 90∠=∠=︒,DB 平分ADC ∠,过点B 作BM CD ∥交AD 于M .连接CM 交DB 于N . (1)求证:2BD AD CD =g ; (2)若CD 6=,AD 8=,求MN 的长.28.(12分)如图,抛物线2y ax bx c =++的图象过点()A 1,0-、()B 3,0、()C 0,3. (1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得PAC △的周长最小,若存在,请求出点P 的坐标及PAC △的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S =△△?若存在,请求出点M 的坐标;若不存在,请说明理由.四川省凉山州市2019年中考数学试卷数学答案解析A 卷 第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义,2-的相反数是2. 故选:A .【考点】相反数的意义 2.【答案】C【解析】科学记数法表示:11153 300 000 000 1.53310=⨯. 故选:C .【考点】科学记数法的表示3.【答案】D【解析】30B ∠=︒Q ,75A ∠=︒,3075105ACD ∴∠=︒+︒=︒,BD EF Q ∥,105E ACD ∴∠=∠=︒.故选:D .【考点】平行线的性质以及三角形的外角 4.【答案】B【解析】A 、222235a a a +=,故选项A 不合题意; B 、23a a a =g ,故选项B 符合题意; C 、()632a a =,故选项C 不合题意;Da ,故选项D 不合题意. 故选:B .【考点】合并同类项的法则,幂的运算法则以及二次根式的性质 5.【答案】C 【解析】11x x --≥,22x --≥ 1x ∴≤.故选:C .【考点】解简单不等式 6.【答案】D【解析】众数是一组数据中出现次数最多的数,即8; 由统计表可知,处于20,21两个数的平均数就是中位数,∴这组数据的中位数为898.52+=; 故选:D .【考点】中位数、众数的概念,众数与中位数的意义 7.【答案】A【解析】①直线外一点到这条直线的垂线段,叫做点到直线的距离;假命题; ②两点之间线段最短;真命题; ③相等的圆心角所对的弧相等;假命题; ④平分弦的直径垂直于弦;假命题; 真命题的个数是1个; 故选:A .【考点】命题与定理 8.【答案】C【解析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值, 即12S k =. 所以ABC △的面积等于1242k k ⨯==. 故选:C .【考点】反比例函数ky x=中k 的几何意义 9.【答案】D【解析】过点A 作AD ⊥BC ,垂足为D ,如图所示. 在Rt ACD △中,cos 1CD CA C ==g ,AD ∴=;在Rt ABD △中,3BD CB CD =-=,AD =AB ∴==sin AD B AB ∴==. 故选:D .【考点】解直角三角形以及勾股定理 10.【答案】B【解析】如图,过O 作OG BC ∥,交AC 于G ,O Q 是BD 的中点, G ∴是DC 的中点.又:1:2AD DC =,AD DG GC ∴==,:2:1AG GC ∴=,:2:1AO OE =, 2:AOB BOE S S ∴=△△设BOE S S =△,2AOB S S =△,又BO OD =,2AOD S S ∴=△,4ABD S S =△,:1:2AD DC =Q ,28BDC ABD S S S ∴==△△,7CDOE S S =四边形, 9AEC S S ∴=△,3ABE S S =△, 3193ABE AEC S BE S EC S S ∴===△△ 故选:B .【考点】平行线分线段成比例及三角形的中位线 11.【答案】B故选:B .【考点】旋转的性质以及扇形的面积公式 12.【答案】A【解析】由图象可知0a <,0c >,对称轴为32x =-,322bx a ∴=-=-,3b a ∴=,①正确;Q 函数图象与x 轴有两个不同的交点,240b ac ∴∆=->,②正确;当1x =-时,0a b c -+>, 当3x =-时,930a b c -+>,10420a b c ∴-+>, 520a b c ∴-+>,③正确;由对称性可知1x =时对应的y 值与4x =-时对应的y 值相等,∴当1x =时0a b c ++<,3b a =Q ,()433333330b c b b c b a c a b c ∴+=++=++=++<,430b c ∴+<,④错误;故选:A . 【考点】二次函数的图象及性质第Ⅱ卷二、填空题13.【答案】64x y =⎧⎨=⎩ 【解析】10216x y x y +=⎧⎨+=⎩①②, -②①得:6x =,把6x =代入①得:610y +=,解得:4y =,方程组的解为:64x y =⎧⎨=⎩, 故答案为:64x y =⎧⎨=⎩. 【考点】解二元一次方程组14.【答案】2x =-【解析】()()2121111x x x x --=-+- 去分母,得()()()()211211x x x x -+-=+-去括号,得22231x x x -+=-移项并整理,得220x x +-=所以()()210x x +-=解得2x =-或1x =经检验,2x =-是原方程的解.故答案为:2x =-.【考点】分式方程、一元二次方程的解法15.【答案】2【解析】连接BC ,如图所示:AB Q 是O e 的直径,弦CD AB ⊥于H ,90ACB ∴∠=︒,12CH DH CD === 30A ∠=︒Q ,2AC CH ∴==在Rt ABC △中,30A ∠=︒,AC ∴==2AB BC =,2BC ∴=,4AB =,2OA ∴=,即O e 的半径是2;故答案为:2.【考点】垂径定理,圆周角定理,含30︒角的直角三角形的性质,勾股定理16.【答案】4:25或9:25【解析】①当:2:3AE ED =时,Q 四边形ABCD 是平行四边形,AD BC ∴∥,:2:5AE BC =,AEF CBF ∴△∽△,22:54:25AEF CBF S S ⎛⎫== ⎪⎝⎭∴△△; ②当:3:2AE ED =时, 同理可得,23:59:25AEF CBF S S ⎛⎫== ⎪⎝⎭△△, 故答案为:4:25或9:25.【考点】相似三角形的判定和性质,平行四边形的性质17.【答案】3【解析】Q 将抛物线()232y x =--向左平移后经过点()22A ,, ∴设平移后解析式为:()232y x a =-+-, 则()22232a =-+-,解得:3a =或1a =-(不合题意舍去),故将抛物线()232y x =--向左平移3个单位后经过点()22A ,. 故答案为:3.【考点】二次函数图象与几何变换三、解答题18.【答案】2-【解析】原式(11222=+-+=【考点】实数的运算法则19.【答案】1【解析】原式()2269148a a a a =---++-22a =+ 将12a =-代入原式12212⎛⎫=⨯-+= ⎪⎝⎭. 【考点】整式的混合运算20.【答案】证明:Q 四边形ABCD 是正方形.90BOE AOF ∴∠=∠=︒,OB OA =.又AM BE ⊥Q ,90MEA MAE AFO MAE ∴∠+∠=︒=∠+∠,MEA AFO ∴∠=∠.BOE AOF ∴△≌△(AAS ). OE OF ∴=.【解析】证明:Q 四边形ABCD 是正方形.90BOE AOF ∴∠=∠=︒,OB OA =.又AM BE ⊥Q ,90MEA MAE AFO MAE ∴∠+∠=︒=∠+∠,MEA AFO ∴∠=∠.BOE AOF ∴△≌△(AAS ). OE OF ∴=.【考点】正方形的性质,三角形全等的性质和判定21.【答案】(1)40(2)90︒(3)(4)1 3【解析】(1)参加此次诗词大会预选赛的同学共有1845%40÷=(人),故答案为:40;(2)扇形统计图中获三等奖的圆心角为103609040︒⨯=︒,故答案为:90︒.(3)获二等奖的人数4020%8=⨯=,一等奖的人数为40810184---=(人),条形统计图为:(4)由题意知,获一等奖的学生中,七年级有1人,八年级有1人,九年级有2人,画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率41 123=.【考点】列表法与树状图法22.【答案】(1)证明:如图,连接OD,BD,Q AB为Oe的直径,90ADB BDC∴∠=∠=︒,在Rt BDC△中,BE EC=Q,DE EC BE ∴==,13∴∠=∠,Q BC 是O e 的切线,3490∴∠+∠=︒,1490∴∠+∠=︒,又24∠=∠Q ,1290∴∠+∠=︒,∴DF 为O e 的切线;(2)OB BF =Q ,2OF OD ∴=,30F ∴∠=︒,90FBE ∠=︒Q ,122BE EF ∴==, 2DE BE ∴==,6DF ∴=,30F ∠=︒Q ,90ODF ∠=︒,60FOD ∴∠=︒,OD OA =Q ,1302A ADO BOD ∴∠=∠=∠=︒, A F ∴∠=∠,6AD DF ∴==.【解析】(1)如图,连接OD ,BD ,Q AB 为O e 的直径,90ADB BDC ∴∠=∠=︒,在Rt BDC △中,BE EC =Q ,DE EC BE ∴==,13∴∠=∠,Q BC 是O e 的切线,3490∴∠+∠=︒,1490∴∠+∠=︒,又24∠=∠Q ,1290∴∠+∠=︒,∴DF 为O e 的切线;(2)OB BF =Q ,2OF OD ∴=,30F ∴∠=︒,90FBE ∠=︒Q ,122BE EF ∴==, 2DE BE ∴==,6DF ∴=,30F ∠=︒Q ,90ODF ∠=︒,60FOD ∴∠=︒,OD OA =Q ,1302A ADO BOD ∴∠=∠=∠=︒, A F ∴∠=∠,6AD DF ∴==.【考点】切线的判定和性质,直角三角形的性质,等腰三角形的判定和性质B 卷四、填空题23.【答案】31a -≤≤【解析】法一:y a =与抛物线()213y x =--有交点则有()213a x =--,整理得2220x x a ---=()244420b ac a ∴∆=-=++≥解得3a -≥, 03x Q ≤≤,对称轴1x =,()23131y ∴=--=, 1a ∴≤.法二:由题意可知,Q 抛物线的顶点为()13-,,而03x ≤≤, ∴抛物线y 的取值为31y ﹣≤≤y a =Q ,则直线y 与x 轴平行,∴要使直线y a =与抛物线()213y x =--有交点, ∴抛物线y 的取值为31y -≤≤,即为a 的取值范围,31a ∴-≤≤.故答案为:31a -≤≤.【考点】二次函数图象的性质及交点的问题24.【答案】4【解析】90BEP BPE ∠+∠=︒Q ,90QPC BPE ∠+∠=︒,BEP CPQ ∴∠=∠.又90B C ∠=∠=︒,BPE CQP ∴△∽△.BE BP PC CQ∴=. 设CQ y =,BP x =,则12CP x =-.912x x y ∴=-,化简得()21129y x x -=-, 整理得()21649y x --+=, 所以当6x =时,y 有最大值为4.故答案为4.【考点】正方形的性质,相似三角形的判定和性质,二次函数最值问题五、解答题25.【答案】1a =-1a =-【解析】2y x x a =++的图象与x 轴交于()10A x ,、()20B x ,两点, 121x x ∴=+-,12x x a =g ,()()222121212222222121212211121x x x x x x a x x x x a x x +-+-+====Q ,1a ∴=-或1a =-【考点】二次函数的性质26.【答案】(1)13x -<<(2)1x >或4x -<【解析】(1)原不等式可化为:①3010x x -⎧⎨+⎩><或②3010x x -⎧⎨+⎩<>. 由①得,空集,由②得,13x -<<,∴原不等式的解集为:13x -<<, 故答案为:13x -<<.(2)由401x x +-<知①4010x x +⎧⎨-⎩><或②4010x x +⎧⎨-⎩<>, 解不等式组①,得:1x >;解不等式组②,得:4x -<; 所以不等式401x x+-<的解集为1x >或4x -<. 【考点】解不等式、不等式组27.【答案】(1)证明:Q DB 平分ADC ∠,ADB CDB ∴∠=∠,且90ABD BCD ∠=∠=︒,ABD BCD ∴△∽△AD BD BD CD∴= 2BD AD CD ∴=g(2)BM CD Q ∥MBD BDC ∴∠=∠ADB MBD ∴∠=∠,且90ABD ∠=︒BM MD ∴=,MAB MBA ∠=∠4BM M D AM ∴===2BD AD CD =Q g ,且6CD =,8AD =,248BD ∴=,22212BC BD CD ∴=-=22228MC MB BC +∴==MC ∴=BM CD Q ∥MNB CND ∴△∽△23BM MN CD CN ∴==,且MC =MN ∴【解析】(1)证明:Q DB 平分ADC ∠,ADB CDB ∴∠=∠,且90ABD BCD ∠=∠=︒,ABD BCD ∴△∽△AD BD BD CD∴= 2BD AD CD ∴=g(2)BM CD Q ∥MBD BDC ∴∠=∠ADB MBD ∴∠=∠,且90ABD ∠=︒BM MD ∴=,MAB MBA ∠=∠4BM M D AM ∴===2BD AD CD =Q g ,且6CD =,8AD =,248BD ∴=,22212BC BD CD ∴=-=22228MC MB BC +∴==MC ∴=BM CD Q ∥MNB CND ∴△∽△23BM MN CD CN ∴==,且MC =MN ∴【考点】相似三角形的判定和性质,勾股定理,直角三角形的性质28.【答案】(1)Q 抛物线与x 轴交于点()10A -,、()30B , ∴可设交点式()()13y a x x =+-把点()03C ,代入得:33a -= 1a ∴=-()()21323y x x x x ∴=-+-=-++∴抛物线解析式为223y x x =-++(2)在抛物线的对称轴上存在一点P ,使得PAC △的周长最小. 如图1,连接PB 、BCQ 点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称 PA PB ∴=PAC C AC PC PA AC PC PB ∴++=++=△Q 当C 、P 、B 在同一直线上时,PC PB CB +=最小()10A -Q ,、()30B ,、()03C ,AC ∴==BC =PAC C AC CB ∴+==△最小设直线BC 解析式为3y kx =+把点B 代入得:330k +=,解得:1k =-∴直线BC :3y x =-+132P y ∴+-==∴点()12P ,使PAC △+ (3)存在满足条件的点M ,使得PAM PAC S S =△△.PAM PAC S S =Q △△∴当以P A 为底时,两三角形等高∴点C 和点M 到直线P A 距离相等Q M 在x 轴上方CM PA ∴∥()10A -Q ,,()12P ,,设直线AP 解析式为y px d =+02p d p d -+=⎧∴⎨+=⎩解得:11p d =⎧∴⎨=⎩∴直线AP :1y x =+∴直线CM 解析式为:3y x =+2323y x y x x =+⎧⎨=-++⎩Q 解得:1100x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为()14,.【解析】(1)Q 抛物线与x 轴交于点()10A -,、()30B , ∴可设交点式()()13y a x x =+-把点()03C ,代入得:33a -= 1a ∴=-()()21323y x x x x ∴=-+-=-++∴抛物线解析式为223y x x =-++.(2)在抛物线的对称轴上存在一点P ,使得PAC △的周长最小.如图1,连接PB 、BCQ 点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∴++=++=△Q 当C 、P 、B 在同一直线上时,PC PB CB +=最小()10A -Q ,、()30B ,、()03C ,AC ∴==BC =PAC C AC CB ∴+==△最小设直线BC 解析式为3y kx =+把点B 代入得:330k +=,解得:1k =-∴直线BC :3y x =-+132P y ∴+-==∴点()12P ,使PAC △+ (3)存在满足条件的点M ,使得PAM PAC S S =△△.PAM PAC S S =Q △△∴当以P A 为底时,两三角形等高∴点C 和点M 到直线P A 距离相等Q M 在x 轴上方CM PA ∴∥()10A -Q ,,()12P ,,设直线AP 解析式为y px d =+02p d p d -+=⎧∴⎨+=⎩解得:11p d =⎧∴⎨=⎩∴直线AP :1y x =+∴直线CM 解析式为:3y x =+2323y x y x x =+⎧⎨=-++⎩Q 解得:1100x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩ ∴点M 坐标为()14,.【考点】待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法。
2019年四川省凉山市初中毕业、升学考试数学学科(满分150分,考试时间120分钟) 一、选择题:本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中只有一项是 正确的,把正确选项的字母填涂在答题卡上相应的位置. 1.(2019四川省凉山市,1,4) 1.-2的相反数是( ▲ )A.2B.-2C.21 D .21-【答案】A【解析】-2的相反数是2,故选A. 【知识点】相反数 2.(2019四川省凉山市,2,4)2018年凉山州生产总值约为153 300 000 000元,用科学记数法表示数153 300 000 000是 ( ▲ )A.1.533×109B.1.533×1010C.1.533×1011D.1.533×1012 【答案】C【解析】153 300 000 000用科学记数表示成111.5310⨯,故选C.【知识点】科学记数法 3.(2019四川省凉山市,3,4) 如图,BD ∥EF , AE 与 BD 交于点 C ,∠B =30°,∠A =75°,则 ∠E 的度数为( ▲ )A. 135°B.125° C . 115° D .105°第3题图 【答案】D【解析】∵∠ACD =∠A +∠B =30°+75°=105°,BD ∥EF ,∴∠E =∠ACD =105°,故选D. 【知识点】三角形的外角;平行线的性质 4.(2019四川省凉山市,4,4)下列各式正确的是( ▲ ) A. 2a 2 + 3a 2 =5a 4 B.a 2 •a = a 3 C .( a 2)3 = a 5 D . a a =2【答案】B【解析】∵222235a a a +=;23a a a ⋅=;236()a a =2a a = ,故选B.【知识点】整式的加减;同底数幂的乘法;同底数幂的乘方;二次根式的性质 5.(2019四川省凉山市,5,4) 不等式1–x ≥x -1的解集是( ▲ ) A.x ≥1 B.x ≥-1 C .x ≤1 D .x ≤-1【答案】C【解析】∵11x x -≥-,∴22x ≥ ,∴1x ≤,故选C. 【知识点】一元一次不等式的解法 6.(2019四川省凉山市,6,:人数(人) 3 17 13 7时间(小时) 78910那么该班40 ▲ )A.17, 8.5B.17, 9 C . 8, 9 D .8, 8.5 【答案】D【解析】由于8出现了17次,故这组数据的众数为8,而第20,21位数分别为8和9,这组数的中位为8.5.故选D.【知识点】众数;中位数7.(2019四川省凉山市,7,4)下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数(▲) A . 1 B . 2 C . 3 D . 4 【答案】A【解析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;两点之间线段最短;在同圆或等圆中,相等的圆心角所对的弧相等;平分弦(不是直径)的直径垂直于弦,所以只有①是对的,故选A.【知识点】点到直线的距离概念;线段基本事实;在同圆或等圆中圆心角与弧的关系;垂径定理的推论8.(2019四川省凉山市,8,4)如图,正比例函数y =kx 与反比例函数y =x4的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( ▲ ) A.8 B.6 C.4 D .2第8题图【答案】C【思路分析】根据点A 在反比例函数图像上假设点A 坐标,利用对称性求出C 的坐标,最后求得△ABC 的面积.【解题过程】设A 点的坐标为(m ,4m),则C 点的坐标为(-m ,-4m),∴1414422ABC OBC OAB S S S m mm m∆∆∆=+=⨯+-⨯-=,故选C.【知识点】正比例函数与反比例函数图像的对称性;三角形的面积9.(2019四川省凉山市,9,4) 如图,在△A B C 中,CA = CB = 4,cos C =14,则 sin B 的值为( ▲ ) A .102B .153C .64D .104第9题图【答案】D 【思路分析】过点A 作AD ⊥BC 于点D ,先利用cos C 求CD ,再借助勾股定理求AD 、AB ,最后求sin B . 【解题过程】过点A 作AD ⊥BC 于点D ,∵cos C =14,AC =4,∴CD =1,∴BD =3,AD 224115-,在Rt △ABD 中,AB 22(15)326+=sin B =151026AD AB ==,故选D.B第9题答图【知识点】锐角三角函数;勾股定理10.(2019四川省凉山市,10,4)如图,在△ABC 中,D 在AC 边上,AD ∶DC = 1∶2,O 是BD 的中点,连接A 0并延长交BC 于 E ,则BE ∶EC =( ▲ ) A. 1∶2 B . 1∶3 C . 1∶4 D . 2∶3 【答案】B【思路分析】过点D 作DF ∥AE ,利用平行线分线段成比例定理求BE ∶EF , EF ∶FC ,再求BE ∶EC .【解题过程】过点D 作DF ∥AE ,则1==OD BO EF BE ,21==CD AD FC EF ,∴BE ∶EF ∶FC =1∶1∶2,∴BE ∶EC =1∶3.故选B .【知识点】平行线分线段成比例定理 11.(2019四川省凉山市,11,4) 如图,在△AOC 中,OA =3cm ,OC =lcm ,将△AOC 绕点D 顺时针旋转90 °后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( ▲ )cm 2A .2π B .2π C .178π D .198π第11题图 【答案】B【思路分析】先用三角形与扇形的面积和差表示AC 边在旋转过程中所扫过的图形的面积,再借助全等转化为扇环的面积,最后求出扇环的面积.【解析】AC 边在旋转过程中所扫过的图形的面积=S △OCA +S 扇形OAB - S 扇形OCD - S △ODB ①,由旋转知:△OCA ≌△ODB ,∴S △OCA =S △ODB ,∴①式= S 扇形OAB - S 扇形OCD =3603902⨯π-3601902⨯π=2π,故选B .第11题答图【知识点】旋转性质;扇形面积12.(2019四川省凉山市,12,4)二次函数y =ax 2+bx +c 的部分图象如图所示,有以下结论:①3a –b =0;②b 2-4ac >0;③5a -2b +c >0; ④4b +3c >0,其中错误结论的个数是( ▲ ) A. 1 B . 2 C . 3 D . 4第12题图【答案】A【思路分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解析】根据对称轴232-=-a b 得b =3a ,故可得3a –b =0,所以结论①正确;由于抛物线与x 轴有两个不同的交点,所以b 2-4ac >0,结论②正确;根据结论①可知b =3a ,∴5a -2b +c =5a -6a +c =-a +c ,观察图像可知a <0,c >0,∴5a -2b +c =-a +c >0,结论③正确;根据抛物线的轴对称性可知抛物线与x 轴的右交点在原点与(1,0)之间(不含这两点),所以当x =1时,y =a +b +c <0,∵a =b 31,∴b 34+c <0,∴4b +3c <0,所以结论④错误.故选 A.【知识点】二次函数图象与系数的关系二、填空题:本大题共5小题,每小题4分,共20分.不需写出解答过程,请把最后结果填在题中横线上. 13.(2019四川省凉山市,13,4) 方程10216x y x y +=⎧⎨+=⎩,的解是 .【答案】64x y =⎧⎨=⎩,【解析】由方程②减去方程①,得x =6,把x =6 代入x +y =10,得y =4,∴⎩⎨⎧==46y x .故答案为64x y =⎧⎨=⎩,.【知识点】二元一次方程组的解法14.(2019四川省凉山市,14,4)方程1121122=-+--x x x 解是 ▲ . 【答案】x =-2【解析】解析:原方程可化为1)1)(1(2112=-+---x x x x ,去分母得(2x -1)(x +1)-2=(x +1)(x -1),解得x 1=1,x 2=-2,经检验x 1=1是增根,x 2=-2是原方程的解,∴原方程的解为x =-2.故答案为x =-2.【知识点】分式方程的解法15.(2019四川省凉山市,15,4)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A =30°,CD =23,则⊙O的半径是.第15题图【答案】2【解析】连接OC,则OA=OC,∴∠A=∠ACO=30°,∴∠COH=60°,∵OB⊥CD,CD=23,∴CH=3,∴OH=1,∴OC=2.第15题答图【知识点】等腰三角形性质;三角形外角性质;垂径定理;勾股定理16.(2019四川省凉山市,16,4)在□ABCD中,E是AD上一点,且点E将AD分为2∶3的两部分,连接BE、AC相交于F,则S△AEF∶S△CBF是▲ .【答案】4:25或9∶25【思路分析】分AE∶DE=2∶3与AE∶DE=3∶2两种情况讨论,借助相似三角形的性质求出面积比. 【解题过程】在□ABCD中,∵AD∥BC,∴△AEF∽△CBF.如答图1,当AE∶DE=2∶3时,AE∶AD=2∶5,∵AD=BC,∴AE∶BC=2∶5, ∴S△AEF∶S△CBF=4∶25;如答图2,当AE∶DE=3∶2时,AE∶AD=3∶5,∵AD=BC,∴AE∶BC=3∶5, ∴S△AEF∶S△CBF=9∶25.故答案为4∶25或9∶25.(第16题图答图1)(第16题图答图2)【知识点】三角形相似的判定与性质;分类讨论思想17.(2019四川省凉山市,17,4)将抛物线y=(x-3)2-2向左平移个单位后经过点A(2,2).【答案】3【思路分析】先假设平移后抛物线解析式,再代入A (2,2)求参数m .【解题过程】设抛物线向左平移m 个单位,则平移后的解析式为y =(x -3+m )2-2,将A (2,2)代入,有2=(2-3+m )2-2,解得:m 1=-1(舍去),m 2=3,∴m =3.故答案为3. 【知识点】抛物线的平移规律;待定系数法三、解答题(本大题共5小题,满分32分,解答应写出文字说明、证明过程或演算步骤)18.(2019四川省凉山市,18,5)计算:tan45° + (3-2)0-(-21)-2 + ︱3-2︱.【答案】-3【思路分析】先化简绝对值、求特殊角的三角函数值及实数的零指数幂、负指数幂的运算,把各个结果相加即可【解题过程】解:原式=1+1-(-2)2+2-3=2-4+2-3=-3.【知识点】绝对值;特殊角的三角函数值;实数的零指数幂;实数的负指数幂19.(2019四川省凉山市,19,5)先化简,再求值:(a +3)2- (a +1)(a -l )-2(2a +4),其中a =-12. 【思路分析】先利用完全平方公式、平方差公式、单项式乘多项式去括号化简,合并同类项;最后将a =-12代入化简后的式子即可得到结果.【解题过程】原式=a 2+6a +9-a 2+1-4a -8=2a +2,当a =-21时,原式==2×(-21)+2=-1+2=1. 【知识点】完全平方公式;平方差公式;单项式乘以多项式;代数式的值 20.(2019四川省凉山市,20,6)如图,正方形ABCD 的对角线AC 、BD 相交于点0,E 是OC 上一点,连接EB .过点A 作AM ⊥BE ,垂足为M ,AM 与BD 相交于点F .求证:OE = OF .【思路分析】先根据垂直定义以及正方形性质证明∠FAO =∠EBO ,OA =OB ,再证△AOF ≌△BOE 得出结论.【解题过程】证明:在正方形ABCD 中,∵AC ⊥BD ,AM ⊥BE ,∴∠AOF =∠BOE =∠AME =90°,∴∠FAO +∠AEB =∠EBO +∠AEB =90°,∴∠FAO =∠EBO ,∵AC =BD ,OA =21AC ,OB =21BD ,∴OA =OB ,∴△AOF ≌△BOE (AAS ),∴OE = OF .【知识点】正方形性质;三角形全等的判定与性质; 21.(2019四川省凉山市,21,8)某校初中部举行诗词大会预选赛,学校对参赛同学获奖情况进行统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.第21题图(1)参加此次诗词大会预选赛的同学共有 ▲ 人; (2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 ▲ ; (3)将条形统计图补充完整;(4)若获得一等奖的同学中有14来自七年级,12来自九年级,其余的来自八年级.学校决定从获得一等奖的同学中任选两名同学参加全市诗词大会比赛.请通过列表或树状图方法求所选两名同学中,恰好是一名七年级和一名九年级同学的概率. 【思路分析】(1)根据样本容量=鼓励奖人数÷鼓励奖百分率为求样本容量; (2)根据三等奖所对应的圆心角=样本数10÷样本容量×360°求圆心角; (3)先求二等奖人数,再得一等奖人数,最后画出条形图;(4)求出七年级、八年级、九年级的人数,画出树状图,再根据树状图求出概率. 【解题过程】(1)鼓励奖人数为18,百分率为45%,所以样本容量为:18÷45%=40(人)(2)三等奖所对应的圆心角=4010×360°=90°;(3)二等奖人数为:20%×40=8(人),一等奖人数为:40-8-10-18=4(人),条形统计图如下:第21题答图①(4)一等奖有4人,则七年级有1人,八年级1人,九年级2人,用树状图表示如下:第21题答图②由树状图可得,总共有12种结果,符合条件的有4种,故所选两名同学中,恰好是一名七年级和一名九年级同学的概率是4÷12=13.【知识点】扇形统计图;条形统计图;列表法与树状图法 22.(2019四川省凉山市,22,8)如图,点D 是以AB 为直径的⊙O 上一点,过点B 作⊙O 的切线,交AD 的延长线于点C ,E 是BC 的中点,连接DE 并延长与AB 的延长线交于点F . (1)求证:DF 是⊙O 的切线;(2)若OB =BF ,EF =4,求 AD 的长.【思路分析】(1)连接OD .先根据直径所对圆周角为直角证∠CDB =90°,再证ED =EB 得出∠EDB =∠EBD ,转化得到∠ODF =90°从而得出结论;(2)先利用锐角三角函数求∠F ,再证△ODB 是等边三角形,得出AD 、BD 的关系,最后借助锐角三角函数与勾股定理求得DB 的长从而得出结论. 【解题过程】(1)证明:连接OD .∵⊙O 的切线,∴BC ⊥OB ,∴∠OBC =90°.∵AB 为⊙O 直径,∴∠ADB =90°,∵∠ADB +∠CDB =180°,∴∠CDB =90°.∵E 是BC 的中点,∴ED =EB =21BC ,∴∠EDB =∠EBD .∵OD =OB ,∴∠ODB =∠OBD ,∴∠ODF =∠OBC =90°,∴DF ⊥OD ,∴DF 是⊙O 的切线;(2)由(1)知∠ODB =90°,∵OD =OB =BF ,∴sin ∠F =21=OF OD ,∴∠F =30°,∵∠DOB +∠F =90°,∴∠DOB =60°,∴△ODB 是等边三角形,∴∠OBD =60°,∴tan ∠OBD =BDAD=3,∴AD =3BD .∵BC⊥AF ,∴=BF BE sin ∠F =21,∵EF =4,∴BE =2,∴BF =22BE EF -=23=OB =DB ,∴AD =3BD =6.【知识点】B 卷(共50分)四、填空题(共2小题,每小题5分,共10分)23.(2019四川省凉山市,23,5)当0≤x ≤3时,直线y =a 与抛物线y =(x -l)2-3有交点,则a 的取值范围是 . 【答案】-3≤a ≤-2【解题过程】 抛物线y =(x -1)2-3的顶点坐标为(1,-3),当x =0时,y =-2,当x =3时,y =1,∴当0≤x ≤3时,-3≤y ≤-2,∴直线y =a 与抛物线有交点时,a 的取值范围为-3≤a ≤-2. 【知识点】二次函数的最值;数形结合思想24.(2019四川省凉山市,24,5)如图,正方形ABCD 中,AB =12, AE =41AB ,点P 在BC 上运动 (不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 ▲ .第24题图【思路分析】根据正方形形的性质得到∠B =∠C =90°,根据余角的性质得到∠BEP =∠CPQ ,根据相似三角形的性质得到CQ =4)6(912+--x ,根据二次函数的性质即可得到结论.【解题过程】在正方形ABCD 中,∵AB =12, AE =41AB =3,∴BC =AB =12,BE =9,设BP =x ,则CP =12-x .∵PQ ⊥EP ,∴∠EPQ =∠B =∠C =90°,∴∠BEP +∠BPE =∠CPQ +∠BPE =90°,∴∠BEP =∠CPQ ,∴△EBP∽△PCQ ,∴BE PC BP CQ =,∴912x x CQ -=,整理得CQ =4)6(912+--x ,∴当x =6时,CQ 取得最大值为4.故答案为4.【知识点】相似三角形的性质;正方形的性质;二次函数的最值五、解答题(共4小题,共40分) 25.(2019四川省凉山市,25,8)已知二次函数y =x 2+x +a 的图象与x 轴交于A (x 1,0)、B (x 2,0)两点,且221211x x +=1,求a 的值.【思路分析】根据抛物线与x 轴的交点得出x 1+x 2与x 1x 2,再将222111x x +用x 1+x 2与x 1x 2表示,最后列方程求a 的值并检验是否符合题意.【解题过程】解:对于抛物线y =x 2+x +a ,令y =0,∴x 2+x +a =0,∵抛物线与x 轴交于点A (x 1,0),(x 2,0),∴x 1+x 2=-1,x 1x 2=a ,∵222111x x +=22212221x x x x +=1,∴x 12+x 22=x 12x 22,∴(x 1+x 2)2-2x 1x 2==x 12x 22,代入x 1+x 2=-1,x 1x 2=a ,有:1-2a =a 2,解得a =-1 2±,∵方程有两个实数根,则△=1-4a >0,解得a <41,∴a =-1-2.【知识点】抛物线与x 轴的交点问题;根与系数的关系;一元二次方程的解法;根的判别式. 26.(2019四川省凉山市,26,10)根据有理数乘法(除法)法则可知:①若ab >0(或b a>0),则⎩⎨⎧>>00b a 或⎩⎨⎧<<00b a ;②若ab <0(或b a<0),则⎩⎨⎧<>00b a 或⎩⎨⎧><00b a .根据上述知识,求不等式(x -2)(x +3)>0的解集.解:原不等式可化为:(1)⎩⎨⎧>+>-0302x x 或(2)⎩⎨⎧<+<-0302x x ,由(1)得,x >2,由(2)得,x <-3,∴原不等式的解集为:x < -3或x >2.请你运用所学知识,结合上述材料解答下列问题: (1)不等式0322<--x x 的解集为 ▲ ..(2)求不等式xx -+14<0的解集(要求写出解答过程). 【思路分析】(1)将二次三项式因式分解,根据“异号得负”并将问题转化为两个不等式组来解决;(2)根据“异号得负”xx -+14<0转化成两个不等式组来解决问题.【解题过程】(1)-1<x <3,解析:原不等式可化为(x -3)(x +1)<0,从而可化为①⎩⎨⎧<+>-0103x x 或②⎩⎨⎧>+<-0103x x ,由①得不等式组无解;由②得-1<x <3,∴原不等式的解集为:-1<x <3.故答案为:-1<x <3.(2)原不等式可化为①⎩⎨⎧<->+0104x x 或②⎩⎨⎧>-<+0104x x ,由①得x >1;由②得x <-4,∴原不等式的解集为x >1或x <-4.【知识点】十字相乘法;不等式组的解法;转化思想 27.(2019四川省凉山市,27,10)如图,∠ABD =∠BCD =90°,DB 平分∠ADC ,过点B 作BM ∥CD 交AD 于M .连接CM 交DB 于N . (1)求证:BD 2 =AD ·CD ;(2)若CD =6,AD =8,求MN 的长.第27题图【思路分析】(1)利用两角分别相等证△DAB ∽△DBC ,再由相似性质得到结论;(2)先利用相似性质与勾股定理求 BD 、AB 的长,再借助角的关系得到△ABM 是等边三角形求得BM 的长,最后利用相似和勾股定理求BC 、CM 、MN 的长. 【解题过程】(1)证明:∵BD 平分∠ADC ,∴∠ADB =∠BDC ,∵∠ABD =∠BCD =90°,∴△DAB ∽△DBC ,∴CD BD =BDAD,∴BD 2=AD CD .(2)由(1)可知:BD 2=ADCD .∵CD =6,AD =8,∴BD =43,又AD =8,∴AB 4=,∴AB =12AD ,∴∠ADB =30°,∠BDC =∠ABD =30°,又∠ABD =∠BCD =90°,∴∠A =∠DBC =60°,∵BM ∥CD ,∴∠BDC =∠MBD =30°,∠ABM =∠ABD -∠MBD =60°,∴△ABM 是等边三角形,故BM =AB =4,∵△ABD ∽△BCD ,∴AB DBBC CD =,∴=AB CD BC DB ⨯,∵BM ∥CD ,∴∠CBM =180°-∠BCD=90°,∴CM =BM ∥CD ,∴△BMN ∽△DCN ,∴4263MN MB CN CD ===,∴CN =1.5MN ,又CN +MN =CM =MN【知识点】相似三角形的判定与性质;勾股定理;等边三角形的判定与性质;转化思想 28.(2019四川省凉山市,28,12)如图,抛物线y = ax 2+bx +c 的图象过点A (-1,0)、B (3,0)、C (0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点 P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得 S △PAM =S △PAC ,若存在,请求出点M 的坐标;若不存在,请说明理由. 【思路分析】(1)把A (-1,0)、B (3,0)、C (0,3)分别代入函数解析式,列出关于系数的方程组,通过解方程组解答问题;(2)在抛物线对称轴上存在一点P ,使得△PAC 周长最小,由题意可知A 和B 关于对称轴x =1对称,连接BC 交直线x =1于P ,此时PA +PC 的值最小,即△PAC 的周长的值最小,由待定系数法求得直线BC 的解析式,把x =1即可求得点P 的纵坐标,最后借助垂直平分线性质与勾股定理求△PAC 的周长;(3)存在.先求 S △PAC ,再求AP 解析式,最后分类讨论求M :①过点C 作AP 的平行线交x 轴上方的抛物线于M ,求M 坐标;②设抛物线对称轴交x 轴于点E (1,0),则S △PAC =21×2×2=2= S △PAC .过点E作AP 的平行线交x 轴上方的抛物线于M ,求M 坐标.【解题过程】解:(1)由题知⎪⎩⎪⎨⎧==++=+-30390c c b a c b a ,解得⎪⎩⎪⎨⎧==-=321c b a ,∴抛物线的解析式为y = -x 2+2x +3;(2)存在.连接BC 交抛物线对称轴于点P ,此时△PAC 的周长最小.设BC :y =kx +3,则3k +3=0,解得k =-1,∴BC :y =-x +3.由抛物线的轴对称性可得其对称轴为直线x =1,当x =1时,y =-x +3=2,∴P (1,2).在Rt △OAC 中,AC =2231+=10;在Rt △OBC 中,BC =2233+=32.∵点P 在线段AB 的垂直平分线上,∴PA =PB ,∴△PAC 的周长=AC +PC +PA = AC +PC +PB =AC +BC =10+32.综上,存在符合条件的点P ,其坐标为(1,2),此时△PAC 的周长为10+32;(3)存在.由题知AB =4,∴S △PAC = S △ABC - S △PAB =21×4×3-21×4×2=2.设:AP :y =mx +n ,则⎩⎨⎧=+=+-20n m n m ,解得⎩⎨⎧==11n m ,∴AP :y =x +1.①过点C 作AP 的平行线交x 轴上方的抛物线于M ,易得CM :y =x +3,由⎩⎨⎧++-=+=3232x x y x y 解得⎩⎨⎧==3011y x ,⎩⎨⎧==4122y x ,∴M (1,4); ②设抛物线对称轴交x 轴于点E (1,0),则S △PAC =21×2×2=2= S △PAC .过点E 作AP 的平行线交x 轴上方的抛物线于M ,设EM :y =x +t ,则1+t =0,∴t =-1,∴EM :y =x -1. 由⎩⎨⎧++-=-=3212x x y x y 解得⎪⎪⎩⎪⎪⎨⎧--=-=2171217111y x (舍),⎪⎪⎩⎪⎪⎨⎧+-=+=2171217122y x ,∴M (2171+,2171+-). 综上,存在符合条件的点M ,其坐标为(1,4)或(2171+,2171+-).【知识点】待定系数法求二次函数解析式,二次函数图象上点的坐标特征;待定系数法求一次函数解析式;三角形的面积的求法;数形结合。
2019年四川省凉山州中考数学模拟试卷(二)一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置.1.若|a|=a,则a的取值范围为()A.a>0 B.a≥0 C.1,0 D.02.已知∠A是锐角,sinA=,则5cosA=()A.4 B.3 C.D.53.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.B.C.D.4.在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(﹣1,)的对应点为A1,则A1的坐标为()A.(,1)B.(1,)C.(﹣,﹣1)D.(﹣1,﹣)5.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定6.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.B.C.D.17.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AC=BD C.AC⊥BD D.AB=DC8.如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为()A.4 B.5 C.6 D.不能确定9.如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD=3,BC=9,则GO:BG=()A.1:2 B.1:3 C.2:3 D.11:2010.为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定11.若关于x的一元二次方程(x﹣2)(x﹣3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>﹣;③二次函数y=(x﹣x1)(x﹣x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B.1 C.2 D.312.如图,A点的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为()A.﹣2 B.﹣C.﹣D.﹣二、填空题:(共5小题,每小题4分,共20分)13.分解因式:x2﹣xy+xz﹣yz=.14.底面半径为1,高为的圆锥的侧面积等于.15.若分式方程:有增根,则k=.16.若一个正六边形的周长为24,则该六边形的面积为.17.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.三、解答题:(共2小题,每小题6分,共12分)18.先化简,再在0,﹣1,2中选取一个适当的数代入求值.19.如图,梯形ABCD是等腰梯形,且AD∥BC,O是腰CD的中点,以CD长为直径作圆,交BC于E,过E作EH⊥AB于H.EH=CD,(1)求证:OE∥AB;(2)求证:AB是⊙O的切线;(3)若BE=4BH,求的值.四、解答题:(共3小题,20题7分,21题、22题各8分,共23分)20.关于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.21.某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示,但不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数及课外阅读量的众数;(2)求扇形统计图汇总的a、b值;(3)将条形统计图补充完整;(4)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人?22.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?五、解答题:(共2小题,23题8分,24题9分,共17分)23.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长.24.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.六、填空题:(共2小题,每小题5分,共10分)25.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.26.如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是cm.七、解答题:(共2小题,27题8分,28题12分,共20分)27.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)如果∠A=60°,则DE与DF有何数量关系?请说明理由;(3)如果AB=5,BC=6,求tan∠BAC的值.28.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.2019年四川省凉山州中考数学模拟试卷(二)参考答案与试题解析一、选择题:(共12个小题,每小题4分,共48分)在每小题给出的四个选项中只有一项是正确的,把正确的字母填涂在答题卡上相应的位置.1.若|a|=a,则a的取值范围为()A.a>0 B.a≥0 C.1,0 D.0【考点】绝对值.【分析】根据|a|=a时,a≥0,即可求得a的取值范围.【解答】解:∵|a|=a,∴a≥0,故选B【点评】此题考查绝对值问题,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.已知∠A是锐角,sinA=,则5cosA=()A.4 B.3 C.D.5【考点】同角三角函数的关系.【分析】根据已知条件设出直角三角形一直角边与斜边的长,再根据勾股定理求出另一直角边的长,由三角函数的定义直接解答即可.【解答】解:由sinα==知,如果设a=3x,则c=5x,结合a2+b2=c2得b=4x;∴cosA==,∴5cosA=4.故选A.【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.3.在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.B.C.D.【考点】概率公式;三角形的面积.【分析】按照题意分别找出点C所在的位置:当点C与点A在同一条直线上时,AC边上的高为1,AC=2,符合条件的点C有2个;当点C与点B在同一条直线上时,BC边上的高为1,BC=2,符合条件的点C有2个,再根据概率公式求出概率即可.【解答】解:可以找到4个恰好能使△ABC的面积为1的点,则概率为:4÷16=.故选:C.【点评】此题主要考查了概率公式,解决此题的关键是正确找出恰好能使△ABC的面积为1的点.4.在平面直角坐标系中,将线段OA绕原点O逆时针旋转90°,记点A(﹣1,)的对应点为A1,则A1的坐标为()A.(,1)B.(1,)C.(﹣,﹣1)D.(﹣1,﹣)【考点】坐标与图形变化-旋转.【分析】根据题意画出草图,将线段OA转化到直角三角形中,利用旋转的性质求解.【解答】解:如图.∵A(﹣1,),∴OB=1,AB=.将线段OA绕原点O逆时针旋转90°,即将△OAB绕原点O逆时针旋转90°到达图中△OA1B1的位置.根据旋转的性质,OB1=1,A1B1=.∴点A1(﹣,﹣1).故选C.【点评】坐标系内的点绕原点逆时针旋转90°后,对应点之间的关系是:横坐标变为纵坐标;纵坐标取相反数变为横坐标.5.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.【解答】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.【点评】此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB与∠ACB 是优弧AB所对的圆周角.6.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()A.B.C.D.1【考点】概率公式;中心对称图形.【分析】确定既是中心对称的有几个图形,除以4即可求解.【解答】解:∵是中心对称图形的有圆、菱形,所以从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是=;故选B.【点评】此题考查了概率公式,概率等于所求情况数与总情况数之比,关键是能够找出中心对称图形.7.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB∥DC B.AC=BD C.AC⊥BD D.AB=DC【考点】矩形的判定.【专题】压轴题.【分析】根据矩形的判定定理(有一个角为直角的平行四边形是矩形).先证四边形EFGH是平行四边形,要使四边形EFGH为矩形,需要∠EFG=90度.由此推出AC⊥BD.【解答】解:依题意得,四边形EFGH是由四边形ABCD各边中点连接而成,连接AC、BD,故EF∥AC∥HG,EH∥BD∥FG,所以四边形EFGH是平行四边形,要使四边形EFGH为矩形,根据矩形的判定(有一个角为直角的平行四边形是矩形)故当AC⊥BD时,∠EFG=∠EHG=90度.四边形EFGH为矩形.故选C.【点评】本题考查了矩形的判定定理:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.难度一般.8.如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为()A.4 B.5 C.6 D.不能确定【考点】等腰梯形的性质;坐标与图形性质;勾股定理.【专题】数形结合.【分析】根据题意可得OB=4,OD=3,从而利用勾股定理可求出BD,再有等腰梯形的对角线相等的性质可得出AC的值.【解答】解:如图,连接BD,由题意得,OB=4,OD=3,故可得BD==5,又∵ABCD是等腰梯形,∴AC=BD=5.故选B.【点评】此题考查了等腰梯形的性质及勾股定理,解答本题的关键是熟练掌握等腰梯形对角线相等的性质,难度一般.9.如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD=3,BC=9,则GO:BG=()A.1:2 B.1:3 C.2:3 D.11:20【考点】梯形.【分析】根据梯形的性质容易证明△AOD∽△COB,然后利用相似三角形的性质即可得到DO:BO 的值,再利用G是BD的中点即可求出题目的结果.【解答】解:∵四边形ABCD是梯形,∴AD∥CB,∴△AOD∽△COB,∴DO:BO=AD:BC=3:9,∴DO=BD,BO=BD,∵G是BD的中点,∴BG=GD=BD,∴GO=DG﹣OD=BD﹣BD=BD,∴GO:BG=1:2.故选:A.【点评】此题主要考查了梯形的性质,利用梯形的上下底平行得到三角形相似,然后用相似三角形的性质解决问题.10.为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是( )A .甲秧苗出苗更整齐B .乙秧苗出苗更整齐C .甲、乙出苗一样整齐D .无法确定【考点】方差.【专题】压轴题.【分析】方差反映一组数据的波动大小,方差越大,波动性越大,反之也成立,即可得出答案.【解答】解:∵甲、乙方差分别是3.9、15.8,∴S 2甲<S 2乙,∴甲秧苗出苗更整齐;故选A .【点评】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.若关于x 的一元二次方程(x ﹣2)(x ﹣3)=m 有实数根x 1、x 2,且x 1≠x 2,有下列结论:①x 1=2,x 2=3;②m >﹣;③二次函数y=(x ﹣x 1)(x ﹣x 2)+m 的图象与x 轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是( )A .0B .1C .2D .3 【考点】抛物线与x 轴的交点;一元二次方程的解;根的判别式;根与系数的关系.【专题】计算题;压轴题.【分析】将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m 的不等式,求出不等式的解集即可对选项②进行判断;再利用根与系数的关系求出两根之积为6﹣m ,这只有在m=0时才能成立,故选项①错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x 的方程,求出方程的解得到x 的值,确定出二次函数图象与x 轴的交点坐标,即可对选项③进行判断.【解答】解:一元二次方程(x﹣2)(x﹣3)=m化为一般形式得:x2﹣5x+6﹣m=0,∵方程有两个不相等的实数根x1、x2,∴b2﹣4ac=(﹣5)2﹣4(6﹣m)=4m+1>0,解得:m>﹣,故选项②正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=5,x1x2=6﹣m,而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;二次函数y=(x﹣x1)(x﹣x2)+m=x2﹣(x1+x2)x+x1x2+m=x2﹣5x+(6﹣m)+m=x2﹣5x+6=(x﹣2)(x﹣3),令y=0,可得(x﹣2)(x﹣3)=0,解得:x=2或3,∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.综上所述,正确的结论有2个:②③.故选:C.【点评】此题考查了抛物线与x轴的交点,一元二次方程的解,根与系数的关系,以及根的判别式的运用,是中考中常考的综合题.12.如图,A点的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为()A.﹣2 B.﹣C.﹣D.﹣【考点】一次函数图象上点的坐标特征;解直角三角形.【专题】压轴题.【分析】由直线y=x+n与坐标轴交于点B,C,得B点的坐标为(﹣n,0),C点的坐标为(0,n),由A点的坐标为(﹣4,0),∠ACD=90°,用勾股定理列出方程求出n的值.【解答】解:∵直线y=x+n与坐标轴交于点B,C,∴B点的坐标为(﹣n,0),C点的坐标为(0,n),∵A点的坐标为(﹣4,0),∠ACD=90°,∴AB2=AC2+BC2,∵AC2=AO2+OC2,BC2=0B2+0C2,∴AB2=AO2+OC2+0B2+0C2,即(﹣n+4)2=42+n2+(﹣n)2+n2解得n=﹣,n=0(舍去),故选:C.【点评】本题主要考查了一次函数图象上点的坐标特征及解直角三角形,解题的关键是利用勾股定理列出方程求n.二、填空题:(共5小题,每小题4分,共20分)13.分解因式:x2﹣xy+xz﹣yz=(x﹣y)(x+z).【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.【解答】解:x2﹣xy+xz﹣yz,=(x2﹣xy)+(xz﹣yz),=x(x﹣y)+z(x﹣y),=(x﹣y)(x+z).【点评】本题考查用分组分解法进行因式分解.难点是采用两两分组还是三一分组.本题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.14.底面半径为1,高为的圆锥的侧面积等于2π.【考点】圆锥的计算.【分析】由于高线,底面的半径,母线正好组成直角三角形,故母线长可由勾股定理求得,再由圆锥侧面积=底面周长×母线长计算.【解答】解:∵高线长为,底面的半径是1,∴由勾股定理知:母线长==2,∴圆锥侧面积=底面周长×母线长=×2π×2=2π.故答案为:2π.【点评】本题考查圆锥的侧面积表达公式应用,需注意应先算出母线长.15.若分式方程:有增根,则k=1.【考点】分式方程的增根.【专题】计算题.【分析】把k当作已知数求出x=,根据分式方程有增根得出x﹣2=0,2﹣x=0,求出x=2,得出方程=2,求出k的值即可.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,∵分式方程有增根,∴x﹣2=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1.【点评】本题考查了对分式方程的增根的理解和运用,把分式方程变成整式方程后,求出整式方程的解,若代入分式方程的分母恰好等于0,则此数是分式方程的增根,即不是分式方程的根,题目比较典型,是一道比较好的题目.16.若一个正六边形的周长为24,则该六边形的面积为.【考点】正多边形和圆.【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为24,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【解答】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为24,∴BC=24÷6=4,∴OB=BC=4,∴BM=BC=2,∴OM==2,∴S△OBC=×BC×OM=×4×2=4,∴该六边形的面积为:4×6=24.故答案为:24.【点评】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.17.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为.【考点】扇形面积的计算;旋转的性质.【专题】压轴题;探究型.【分析】先根据Rt△ABC中,∠C=90°,∠BAC=30°,AB=2求出BC及AC的长,再根据题意得出=AB扫过的扇形面积﹣AC扫过的扇形面积.S阴影【解答】解:∵Rt△ABC中,∠C=90°,∠BAC=30°,AB=2,∴BC=AB=×2=1,AC=2×=,∴∠BAB′=150°,=AB扫过的扇形面积﹣AC扫过的扇形面积=﹣=.∴S阴影故答案为:.=AB扫过的扇形面积﹣AC扫过的扇形【点评】本题考查的是扇形的面积公式,根据题意得出S阴影面积是解答此题的关键.三、解答题:(共2小题,每小题6分,共12分)18.先化简,再在0,﹣1,2中选取一个适当的数代入求值.【考点】分式的化简求值.【专题】计算题.【分析】先根据分式混合运算的法则把原式进行化简,再在0,﹣1,2中选取一个适当的数代入求值即可.【解答】解:原式=(+)÷=×x(x﹣2)=x(x+3),∵x≠0,x≠2,∴当x=﹣1时,原式=﹣(﹣1+3)=﹣2.【点评】本题考查的是分式的化简求值,在解答此题时要注意x≠0,x≠2.19.如图,梯形ABCD是等腰梯形,且AD∥BC,O是腰CD的中点,以CD长为直径作圆,交BC于E,过E作EH⊥AB于H.EH=CD,(1)求证:OE∥AB;(2)求证:AB是⊙O的切线;(3)若BE=4BH,求的值.【考点】圆的综合题.【专题】压轴题.【分析】(1)根据等腰梯形的性质、等腰三角形的性质可以判断出∠B=∠OEC,然后由同位角相等得出OE∥AB;(2)作辅助线(过点O作OF⊥AB于点F,过点O作OG∥BC交AB于点G)构建平行四边形OEHF,然后由“平行四边形的对边相等的性质”、已知条件求得OF=EH=CD,即OF是⊙O的半径;最后根据切线的判定得出结论;(3)求出△EHB∽△DEC,根据相似三角形的性质和勾股定理解答.【解答】(1)证明:∵四边形ABCD是等腰梯形,且AD∥BC,∴AB=CD,∠B=∠C;又∵CD是直径,点O是腰CD的中点,∴点O是圆心,∴OE=OC,∴∠OEC=∠C(等边对等角),∴∠OEC=∠B(等量代换),∴OE∥AB(同位角相等,两直线平行);(2)证明:过点O作OF⊥AB于点F.∵由(1)知,OE∥AB,∴OE∥FH;又∵EH⊥AB,∴FO∥HE,∴四边形OEHF是平行四边形(有两组对边平行的四边形是平行四边形),∴OF=EH (平行四边形的对边相等);∵EH=CD ,∴OF=CD ,即OF 是⊙O 的半径,∴AB 是⊙O 的切线;(3)解:连接DE .∵CD 是直径,∴∠DEC=90°(直径所对的圆周角是直角),则∠DEC=∠EHB ,又∵∠B=∠C ,∴△EHB ∽△DEC ,∴=;∵BE=4BH ,∴设BH=k ,则BE=4k ,EH==k ;∴CD=2EH=2k∴===.【点评】本题考查了圆的切线性质,运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形、矩形解决有关问题.四、解答题:(共3小题,20题7分,21题、22题各8分,共23分)20.关于x 的一元二次方程x 2﹣(m ﹣3)x ﹣m 2=0.(1)证明:方程总有两个不相等的实数根;(2)设这个方程的两个实数根为x 1,x 2,且|x 1|=|x 2|﹣2,求m 的值及方程的根.【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)找出一元二次方程中的a,b及c,表示出b2﹣4ac,然后判断出b2﹣4ac大于0,即可得到原方程有两个不相等的实数根;(2)利用根与系数的关系表示出两根之和与两根之积,判断出两根之积小于0,得到两根异号,分两种情况考虑:若x1>0,x2<0,利用绝对值的代数意义化简已知的等式,将表示出的两根之和代入,列出关于m的方程,求出方程的解得到m的值,进而确定出方程,求出方程的解即可;若x1<0,x2>0,同理求出m的值及方程的解.【解答】解:(1)一元二次方程x2﹣(m﹣3)x﹣m2=0,∵a=1,b=﹣(m﹣3)=3﹣m,c=﹣m2,∴△=b2﹣4ac=(3﹣m)2﹣4×1×(﹣m2)=5m2﹣6m+9=5(m﹣)2+,∴△>0,则方程有两个不相等的实数根;(2)∵x1•x2==﹣m2≤0,x1+x2=m﹣3,∴x1,x2异号,又|x1|=|x2|﹣2,即|x1|﹣|x2|=﹣2,若x1>0,x2<0,上式化简得:x1+x2=﹣2,∴m﹣3=﹣2,即m=1,方程化为x2+2x﹣1=0,解得:x1=﹣1+,x2=﹣1﹣,若x1<0,x2>0,上式化简得:﹣(x1+x2)=﹣2,∴x1+x2=m﹣3=2,即m=5,方程化为x2﹣2x﹣25=0,解得:x1=1﹣,x2=1+.【点评】此题考查了一元二次方程根的判别式,以及根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程没有实数根.21.某学校为了解八年级学生的课外阅读情况,钟老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示,但不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数及课外阅读量的众数;(2)求扇形统计图汇总的a、b值;(3)将条形统计图补充完整;(4)若规定:假期阅读3本以上(含3本)课外书籍者为完成假期作业,据此估计该校600名学生中,完成假期作业的有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据读2本的人数与所占的百分比列式计算即可求出被调查的学生人数;根据扇形统计图,读3本的人数最多,再根据众数的定义即可得解;(2)根据各部分的百分比等于各部分的人数除以总人数的方计算求出a的值,再求出读4本的人数,然后根据百分比的求解方法列式计算即可求出b的值;(3)根据(2)的计算补全统计图即可;(4)根据完成假期作业的人数所占的百分比,乘以总人数600,计算即可.【解答】解:(1)10÷20%=50人,根据扇形统计图,读3本的人数所占的百分比最大,所以课外阅读量的众数是3;(2)∵a%=×100%=32%,∴a=32,读4本书的人数为50﹣4﹣10﹣16﹣6=50﹣36=14,∵b%=×100%=28%,∴b=28;(3)补全图形如图;(4)×600=×600=432人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?【考点】反比例函数的应用.【专题】计算题.【分析】首先根据题意,药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,将数据代入用待定系数法可得反比例函数的关系式;进一步求解可得答案.【解答】解:(1)设反比例函数解析式为y=(k≠0),将(25,6)代入解析式得,k=25×6=150,则函数解析式为y=(x≥15),将y=10代入解析式得,10=,x=15,故A(15,10),设正比例函数解析式为y=nx,将A(15,10)代入上式即可求出n的值,n==,则正比例函数解析式为y=x(0≤x<15).(2)当y=2时,=2,2=x1(0≤x<15).解得x=75.x﹣x 1=75﹣3=72答:师生至少在72分钟内不能进入教室.【点评】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.五、解答题:(共2小题,23题8分,24题9分,共17分)23.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长.【考点】勾股定理;平行线的性质;含30度角的直角三角形;等腰直角三角形.【分析】过点F作FM⊥AD于M,利用在直角三角形中,30°角所对的直角边等于斜边的一半和平行线的性质以及等腰直角三角形的性质即可求出BD的长.【解答】解:过点F作FM⊥AD于M,∵∠EDF=90°,∠E=60°,∴∠EFD=30°,∵DE=8,∴EF=16,∴DF==8,∵EF∥AD,∴∠FDM=30°,∴FM=DF=4,∴MD==12,∵∠C=45°,∴∠MFB=∠B=45°,∴FM=BM=4,∴BD=DM﹣BM=12﹣4.【点评】本题考查了勾股定理的运用、平行线的性质以及等腰直角三角形的性质,解题的关键是作垂直构造直角三角形,利用勾股定理求出DM的长.24.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.【专题】应用题.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500。
四川省凉山州2019年中考[数学]考试真题与答案解析一、选择题在每小题给出的四个选项中只有一项是正确的,把正确选项的字母填涂在答题卡上相应的位置.1.﹣12020=()A.1B.﹣1C.2020D.﹣2020答案:B.2.如图,下列几何体的左视图不是矩形的是()A.B.C.D.答案:B.3.点P (2,3)关于x轴对称的点P'的坐标是()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(3,2)答案:A.4.已知一组数据1,0,3,﹣1,x,2,3的平均数是1,则这组数据的众数是()A.﹣1B.3C.﹣1和3D.1和3答案:C.5.一元二次方程x2=2x的根为()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣2答案:C.6.下列等式成立的是()A.=±9B.|﹣2|=﹣+2C.(﹣)﹣1=﹣2D.(tan45°﹣1)0=1答案:C.7.若一次函数y=(2m+1)x+m﹣3的图象不经过第二象限,则m的取值范围是()A.m>﹣B.m<3C.﹣<m<3D.﹣<m≤3答案:D.8.点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A.10cm B.8cm C.10cm 或8cm D.2cm 或4cm答案:C.9.下列命题是真命题的是()A.顶点在圆上的角叫圆周角B.三点确定一个圆C.圆的切线垂直于半径D.三角形的内心到三角形三边的距离相等答案:D.10.如图所示,△ABC的顶点在正方形网格的格点上,则tanA的值为()A.B.C.2D.2答案:A.11.如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=()A.2:B.:C.:D.:2答案:B.12.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b﹣2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个答案:D.二、填空题13.函数y=中,自变量x的取值范围是x≥﹣1 .14.因式分解:a3﹣ab2=a(a+b)(a﹣b).15.如图,▱ABCD的对角线AC、BD相交于点O,OE∥AB交AD于点E,若OA=1,△AOE的周长等于5,则▱ABCD的周长等于16 .16.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积是π,则半圆的半径OA的长为3 .17.如图,矩形OABC的面积为,对角线OB与双曲线y=(k>0,x>0)相交于点D,且OB:OD=5:3,则k的值为12 .三、解答题解答应写出文字说明、证明过程或演算步骤.18.解方程:x﹣=1+.解:去分母,得:6x﹣3(x﹣2)=6+2(2x﹣1),去括号,得:6x﹣3x+6=6+4x﹣2,移项,得:6x﹣3x﹣4x=6﹣6﹣2,合并同类项,得:﹣x=﹣2,系数化为1,得:x=2.19.化简求值:(2x+3)(2x﹣3)﹣(x+2)2+4(x+3),其中x=.解:原式=4x2﹣9﹣(x2+4x+4)+4x+12=4x2﹣9﹣x2﹣4x﹣4+4x+12=3x2﹣1,当x=时,原式=3×()2﹣1=3×2﹣1=6﹣1=5.20.如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC 上,这个正方形零件的边长是多少?答案:正方形零件的边长为48mm.21.某校团委在“五•四”青年节举办了一次“我的中国梦”作文大赛,分三批对全校20个班的作品进行评比.在第一批评比中,随机抽取A、B、C、D四个班的征集作品,对其数量进行统计后,绘制如图两幅不完整的统计图.(1)第一批所抽取的4个班共征集到作品24 件;在扇形统计图中表示C班的扇形的圆心角的度数为150° ;(2)补全条形统计图;(3)第一批评比中,A班D班各有一件、B班C班各有两件作品获得一等奖.现要在获得一等奖的作品中随机抽取两件在全校展出,用树状图或列表法求抽取的作品来自两个不同班级的概率.答案:24、150°;(2)补全图形如下:(3)列表如下:A B B C C DA BA BA CA CA DAB AB BB CB CB DBB AB BB CB CB DBC AC BC BC CC DCC AC BC BC CC DCD AD BD BD CD CD由表可知,共有30种等可能结果,其中抽取的作品来自两个不同班级的有26种结果,∴抽取的作品来自两个不同班级的概率为=.22.如图,AB是半圆AOB的直径,C是半圆上的一点,AD平分∠BAC交半圆于点D,过点D作DH⊥AC与AC的延长线交于点H.(1)求证:DH是半圆的切线;(2)若DH=2,sin∠BAC=,求半圆的直径.解析:(1)证明:连接OD,∵OA=OD,∴∠DAO=∠ADO,∵AD平分∠BAC,∴∠CAD=∠OAD,∴∠CAD=∠ADO,∴AH∥OD,∵DH⊥AC,∴OD⊥DH,∴DH是半圆的切线;(2)解:连接BC交OD于E,∵AB是半圆AOB的直径,∴∠ACB=90°,∴四边形CEDH是矩形,∴CE=DH=2,∠DEC=90°,∴OD⊥BC,∴BC=2CE=4,∵sin∠BAC==,∴AB=12,即半圆的直径为12.四、填空题23.若不等式组恰有四个整数解,则a的取值范围是﹣≤a<﹣.答案:﹣≤a<﹣.24.如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F 是BC上一动点,若将△EBF沿EF对折后,点B落在点P处,则点P到点D的最短距离为10 .答案:10.五、解答题解答应写出文字说明、证明过程或演算步骤.25.如图,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发.(1)如图1,连接AQ、CP.求证:△ABQ≌△CAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数.解:(1)证明:如图1,∵△ABC是等边三角形∴∠ABQ=∠CAP=60°,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,,∴△ABQ≌△CAP(SAS);(2)点P、Q在AB、BC边上运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△ACM的外角,∴∠QMC=∠ACP+∠MAC=∠BAQ+∠MAC=∠BAC∵∠BAC=60°,∴∠QMC=60°;(3)如图2,点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC 不变理由:同理可得,△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC是△APM的外角,∴∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°,即若点P、Q在运动到终点后继续在射线AB、BC上运动,∠QMC的度数为120°.26.如图,已知直线l:y=﹣x+5.(1)当反比例函数y=(k>0,x>0)的图象与直线l在第一象限内至少有一个交点时,求k的取值范围.(2)若反比例函数y=(k>0,x>0)的图象与直线1在第一象限内相交于点A(x1,y1)、B(x2,y2),当x2﹣x1=3时,求k的值,并根据图象写出此时关于x的不等式﹣x+5<的解集.解:(1)将直线l的表达式与反比例函数表达式联立并整理得:x2﹣5x+k=0,由题意得:△=25﹣4k≥0,解得:k≤,故k的取值范围0<k≤;(2)设点A(m,﹣m+5),而x2﹣x1=3,则点B(m+3,﹣m+2),点A、B都在反比例函数上,故m(﹣m+5)=(m+3)(﹣m+2),解得:m =1,故点A、B的坐标分别为(1,4)、(4,1);将点A的坐标代入反比例函数表达式并解得:k=4×1=4,观察函数图象知,当﹣x+5<时,0<x<1或x>4.27.如图,⊙O的半径为R,其内接锐角三角形ABC中,∠A、∠B、∠C所对的边分别是a、b、c.(1)求证:===2R;(2)若∠A=60°,∠C=45°,BC=4,利用(1)的结论求AB的长和sin ∠B的值.解析:(1)证明:作直径BE,连接CE,如图所示:则∠BCE=90°,∠E=∠A,∴sinA=sinE==,∴=2R,同理:=2R,=2R,∴===2R;(2)解:由(1)得:=,即==2R,∴AB==4,2R==8,过B作BH⊥AC于H,∵∠AHB=∠BHC=90°,∴AH=AB•cos60°=4×=2,CH=BC=2,∴AC=AH+CH=2(),∴sin∠B===.28.如图,二次函数y=ax2+bx+x的图象过O(0,0)、A(1,0)、B(,)三点.(1)求二次函数的解析式;(2)若线段OB的垂直平分线与y轴交于点C,与二次函数的图象在x轴上方的部分相交于点D,求直线CD的解析式;(3)在直线CD下方的二次函数的图象上有一动点P,过点P作PQ⊥x轴,交直线CD于Q,当线段PQ的长最大时,求点P的坐标.解:(1)将点O、A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=x2﹣x;(2)由点B的坐标知,直线BO的倾斜角为30°,则OB中垂线(CD)与x 负半轴的夹角为60°,故设CD的表达式为:y=﹣x+b,而OB中点的坐标为(,),将该点坐标代入CD表达式并解得:b=,故直线CD的表达式为:y=﹣x+;(3)过点P作y轴额平行线交CD于点H,设点P(x,x2﹣x),则点H(x,﹣x+),则PH=﹣x+﹣(x2﹣x)=﹣x2﹣x+,∵<0,故PH有最大值,此时点P的坐标为(﹣,).。
2019年四川省凉山市金阳县中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.下列实数0,,,π,其中,无理数共有()A.1个B.2个C.3个D.4个2.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°3.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A.﹣B.﹣C.﹣3D.﹣24.如图,在△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求;(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求.对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确5.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数6.在实数范围内把二次三项式x2+x﹣1分解因式正确的是()A.(x﹣)(x﹣)B.(x﹣)(x+)C .(x +)(x ﹣)D .(x +)(x +)7.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .308.某车间20名工人每天加工零件数如表所示:每天加工零件数4 5 6 7 8人数 3 6 5 4 2 这些工人每天加工零件数的众数、中位数分别是( )A .5,5B .5,6C .6,6D .6,59.一张矩形纸片在太阳光线的照射下,形成影子不可能是( )A .平行四边形B .矩形C .正方形D .梯形10.如图,在小山的东侧A 点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A ,B 两点间的距离为( )米.A .750B .375C .375D .75011.如图,在Rt △ABC 中,∠BAC =90°,且AB =3,BC =5,⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,则图中阴影部分的面积为( )A .12﹣πB .12﹣πC .6﹣πD .6﹣π12.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣1,0),B (3,0).下列结论:①2a ﹣b =0;②(a +c )2<b 2;③当﹣1<x <3时,y <0;④当a =1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y =(x ﹣2)2﹣2.其中正确的是( )A.①③B.②③C.②④D.③④二.填空题(共5小题,满分20分,每小题4分)13.若代数式有意义,则实数x的取值范围是.14.如图,将长方形纸片ABCD沿直线EN、EM进行折叠后(点E在AB边上),B′点刚好落在A′E上,若折叠角∠AEN=30°15′,则另一个折叠角∠BEM=.15.如图△ABC是坐标纸上的格点三角形,试写出△ABC外接圆的圆心坐标.16.如图,AB是⊙O的直径,弦CD垂直平分半径OA,AB=6,则BC的长是.17.从满足不等式﹣3<x<3的所有整数中任意取一个数记作a,则关于x的一元二次方程x2﹣(a﹣1)x+有两个不相等的实数根的概率是.三.解答题(共5小题,满分32分)18.计算:(3.14﹣π)0+|1﹣|+(﹣)﹣1﹣2sin60°.19.当x是不等式组的正整数解时,求多项式(1﹣3x)(1+3x)+(1+3x)2+(﹣x2)3÷x4的值.20.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.21.现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,我市为了解学生的视力变化情况,从全市八年级随机抽取了1200名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.解答下列问题:(1)图中“其他”所在扇形的圆心角度数为;(2)若2016年全市八年级学生共有24000名,请你估计视力在4.9以下的学生约有多少名?(3)根据扇形统计图信息,你认为造成中学生视力下降最主要的因素是什么,你觉得中学生应该如何保护视力?22.如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.四.填空题(共2小题,满分10分,每小题5分)23.化简:2<x<4时,﹣=.24.如图,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,点D是线段BC上一动点,连接AD,以AD为边作△ADE∽△ABC,点N是AC的中点,连接NE,当线段NE最短时,线段CD的长为.五.解答题(共4小题,满分40分)25.已知Rt△ABC,∠BAC=90°,点D是BC中点,AD=AC,BC=4,过A,D两点作⊙O,交AB 于点E,(1)求弦AD的长;(2)如图1,当圆心O在AB上且点M是⊙O上一动点,连接DM交AB于点N,求当ON等于多少时,三点D、E、M组成的三角形是等腰三角形?(3)如图2,当圆心O不在AB上且动圆⊙O与DB相交于点Q时,过D作DH⊥AB(垂足为H)并交⊙O于点P,问:当⊙O变动时DP﹣DQ的值变不变?若不变,请求出其值;若变化,请说明理由.26.我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.(1)完成下列填空:已知用“<”或“>”填空5+23+1﹣3﹣1﹣5﹣21﹣24+1(2)一般地,如果那么a+c b+d(用“<”或“>”填空).请你说明上述性质的正确性.27.某宾馆有若干间住房,住宿记录提供了如下信息:(1)4月17日全部住满,一天住宿费收入为12000元;(2)4月18日有20间房空着,一天住宿费收入为9600元;(3)该宾馆每间房每天收费标准相同.①一个分式方程,求解该宾馆共有多少间住房,每间住房每天收费多少元?②通过市场调查发现,每间住房每天的定价每增加10元,就会有5个房间空闲;已知该宾馆空闲房间每天每间支出费用10元,有顾客居住房间每天每间支出费用20元,问房价定为多少元时,该宾馆一天的利润为11000元?(利润=住宿费收入﹣支出费用)③在(2)的计算基础上,你能发现房价定为多少元时,该宾馆一天的利润最大?请直接写出结论.28.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.2019年四川省凉山市金阳县中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】根据无理数的定义解答即可.【解答】解:下列实数0,,,π,其中,无理数有,π,故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样无限不循环小数.2.【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【解答】解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3.【分析】直接根据勾股定理,结合数轴即可得出结论.【解答】解:∵在Rt△AOB中,OA=2,AB=1,∴OB==.∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,∴OC=OB=,∴点C表示的实数是﹣.故选:B.【点评】本题考查的是实数与数轴以及复杂作图,熟知实数与数轴上各点是一一对应关系是解答此题的关键.4.【分析】根据甲乙两人作图的作法利用等腰三角形的性质和三角形外角的性质即可证出结论.【解答】解:如图1,由甲的作图知PQ垂直平分AB,则PA=PB,∴∠PAB=∠PBA,又∠APC=∠PAB+∠PBA,∴∠APC=2∠ABC,故甲的作图正确;如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠ABC,∴∠APC≠2∠ABC,∴乙错误;故选:C.【点评】本题考查了线段的垂直平分线的性质,三角形外角的性质,正确的理解题意是解题的关键.5.【分析】直接利用随机事件、必然事件、不可能事件分别分析得出答案.【解答】解:A、一个图形平移后所得的图形与原来的图形不全等,是不可能事件,故此选项错误;B、不等式的两边同时乘以一个数,结果仍是不等式,是随机事件,故此选项错误;C、200件产品中有5件次品,从中任意抽取6件,至少有一件是正品,是必然事件,故此选项正确;D、随意翻到一本书的某页,这页的页码一定是偶数,是随机事件,故此选项错误;故选:C.【点评】此题主要考查了随机事件、必然事件、不可能事件,正确把握相关定义是解题关键.6.【分析】令二次三项式等于0,求出x的值,即可得到分解因式的结果.【解答】解:令x2+x﹣1=0,解得:x1=,x2=,则x2+x﹣1=(x﹣)(x﹣)=(x﹣)(x+).故选:B.【点评】此题考查了实数范围内分解因式,求根公式法当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号.注意当无法用十字相乘法的方法时用求根公式法可分解因式.7.【分析】根据求根公式x=求的α、β的值,然后将其代入所求,并求值.【解答】解:∵α、β是方程x2﹣2x﹣4=0的两个实数根,∴α+β=2,α2﹣2α﹣4=0,∴α2=2α+4∴α3+8β+6=α•α2+8β+6=α•(2α+4)+8β+6=2α2+4α+8β+6=2(2α+4)+4α+8β+6=8α+8β+14=8(α+β)+14=30,故选:D.【点评】本题主要考查了一元二次方程的解.解答本题时,采用了“公式法”.8.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.【分析】根据平行投影的性质求解可得.【解答】解:一张矩形纸片在太阳光线的照射下,形成影子不可能是梯形,故选:D.【点评】本题主要考查平行投影,解题的关键是掌握平行投影的性质.10.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故选:A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.11.【分析】连接AD,根据勾股定理求出AC,根据三角形的面积公式求出AD,根据三角形面积公式、扇形面积公式计算即可.【解答】解:连接AD,在Rt△ABC中,∠BAC=90°,∴AC==4,∵BC是⊙A的切线,∴AD⊥BC,△ABC的面积=×AB×AC=×BC×AD,解得,AD=,∴阴影部分的面积=×AB×AC﹣=6﹣π,故选:C.【点评】本题考查的是切线的性质、扇形面积的计算,掌握圆的切线垂直于经过切点的半径、扇形面积公式是解题的关键.12.【分析】根据二次函数图象与系数之间的关系即可求出答案.【解答】解:①图象与x轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x==1∴=1∴2a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)2=b2,故②错误;③由图可知:当﹣1<x<3时,y<0,故③正确;④当a=1时,∴y=(x+1)(x﹣3)=(x﹣1)2﹣4将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正确;故选:D.【点评】本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型.二.填空题(共5小题,满分20分,每小题4分)13.【分析】直接利用二次根式的有意义的条件分析得出答案.【解答】解:∵代数式有意义,∴x+3≥0,且x﹣2≠0,∴实数x的取值范围是:x≥﹣3且x≠2.故答案为:x≥﹣3且x≠2.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14.【分析】由折叠性质得∠AEN=∠A′EN,∠BEM=∠B′EM,即可得出结果;【解答】解:由折叠性质得:∠AEN=∠A′EN,∠BEM=∠B′EM,∴∠A′EN=30°15′,∠BEM=(180°﹣∠AEN﹣∠A′EN)=(180°﹣30°15′﹣30°15′)=59°45′,故答案为:59°45′.【点评】本题主要考查了翻折变换的性质及其应用问题;灵活运用翻折变换的性质来分析、判断、推理是解决问题的关键.15.【分析】根据C、B的坐标求出D的纵坐标,设D(a,2),根据DA=DC和勾股定理得出方程,求出方程的解即可.【解答】解:由图象可知B(1,4),C(1,0),根据△ABC的外接圆的定义,圆心的纵坐标是y=2,设D(a,2),根据勾股定理得:DA=DC(1﹣a)2+22=42+(3﹣a)2解得:a=5,∴D(5,2).故答案为:(5,2).【点评】本题主要考查了对三角形的外接圆与外心,坐标与图形性质,勾股定理,垂径定理等知识点的理解和掌握,能根据题意得出D点的纵坐标和得出方程是解此题的关键.16.【分析】根据垂径定理得出CD的长,利用勾股定理解答即可.【解答】解:AB交CD于E点,连接OC∵AB是⊙O的直径,弦CD垂直平分半径OA,AB=6,∴OE=1.5,OC=3,∴CE=,∵BE=4.5,∴BC=,故答案为:3【点评】此题考查垂径定理,关键是根据垂径定理得出CD的长.17.【分析】先根据方程有2个不相等的实数根得出a的取值范围,再根据概率公式计算可得.【解答】解:∵关于x的一元二次方程x2﹣(a﹣1)x+有两个不相等的实数根,∴△=(a﹣1)2﹣4×1×=﹣4a+7>0,解得:a<,∴在﹣3<x<3的所有整数中任意取一个数记作a,符合条件的a的值为﹣2、﹣1、0、1这4个,则该方程有有两个不相等的实数根的概率是,故答案为:【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三.解答题(共5小题,满分32分)18.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+﹣1﹣4﹣=﹣4.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.19.【分析】求出不等式组的解集,找出解集中的正整数解确定出x的值,原式利用平方差公式,完全平方公式,以及幂的乘方及单项式除以单项式法则计算得到最简结果,把x的值代入计算即可求出值.【解答】解:,由①得:x<2,由②得:x>﹣,∴不等式组的解集为﹣<x<2,正整数x的值为1,则原式=1﹣9x2+1+6x+9x2﹣x2=﹣x2+6x+2=﹣1+6+2=7.【点评】此题考查了整式的混合运算﹣化简求值,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【解答】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF =AE =CE =CF ∴四边形AECF 是菱形【点评】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.21.【分析】(1)求出“其他”占的百分比,乘以360即可得到结果; (2)求出2015年视力在4.9以下的百分比,乘以24000即可得到结果;(3)根据扇形统计图,得到学生视力下降的最主要的因素,写出建议,合理即可. 【解答】解:(1)根据题意得:360×(1﹣40%﹣25%﹣20%)=54°; 故答案为:54°; (2)根据题意得:24000×=16000(名),则估计视力在4.9以下的学生约有16000名;(3)造成中学生视力下降最主要的因素是手机,应少看电视,远离手机.【点评】此题考查了折线统计图,用样本估计总体,以及扇形统计图,弄清题中的数据是解本题的关键. 22.【分析】(1)把点A 坐标分别代入反比例函数y =,一次函数y =x +b ,求出k 、b 的值,再把点B 的坐标代入反比例函数解析式求出n 的值,即可得出答案;(2)求出直线AB 与y 轴的交点C 的坐标,分别求出△ACO 和△BOC 的面积,然后相加即可; (3)根据A 、B 的坐标结合图象即可得出答案.【解答】解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上, ∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.四.填空题(共2小题,满分10分,每小题5分)23.【分析】首先根据x的范围确定x﹣2与x﹣4的符号,然后利用算术平方根的定义,以及绝对值的性质即可化简.【解答】解:∵2<x<4,∴x﹣2>0,x﹣4<0,∴原式=﹣=|x﹣2|﹣|x﹣4|=x﹣2﹣(4﹣x)=x﹣2﹣4+x=2x﹣6.故答案为:2x﹣6.【点评】本题考查了二次根式的化简,正确理解算术平方根的性质是关键.24.【分析】如图,连接EC,作AH⊥BC于H.首先证明EC⊥BC,推出EN⊥EC时,EN的值最小,解直角三角形求出CH,DH即可解决问题;【解答】解:如图,连接EC,作AH⊥BC于H.∵△ABC∽△ADE,∴∠AED=∠ACD,∴A,D,C,E四点共圆,∴∠DAE+∠DCE=180°,∴∠DCE=∠DAE=90°,∴EC⊥BC,∴NE⊥EC时,EN的值最小,作AG⊥CE交CE的延长线于G.在Rt△ABC中,∵BC=5,AB=3,∴AC=4,∵△ENC∽△△ACB,∴=,∴=,∴EC=,∴AH=CG==,CH=AG=,∵NE∥AG,AN=NC,∴GE=EC=,∵∠HAG=∠DAE,∴∠DAH=∠EAG,∵∠AHD=∠G=90°,∴△AHD∽△AGE,∴=,∴=,∴DH=,∴CD=DH+CH=.故答案为.【点评】本题考查相似三角形的性质、勾股定理、垂线段最短、四点共圆等知识,解题的关键是熟练掌握基本知识,属于中考填空题中的压轴题.五.解答题(共4小题,满分40分)25.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后根据含30°的直角三角形三边的关系得DN=AD=,ON=DN=1;当MD=ME,DE为底边,作DH⊥AE,由于AD=2,∠DAE=30°,得到DH=,∠DEA=60°,DE=2,于是OE=DE=2,OH=1,又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°﹣75°=15°,可得到∠DNO =45°,根据等腰直角三角形的性质得到NH=DH=,则ON=﹣1;(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP﹣DQ=CQ﹣DQ=CD,而△ADC为等边三角形,CD=AD=2,即可得到DP﹣DQ 的值.【解答】解:(1)∵∠BAC=90°,点D是BC中点,BC=4,∴AD=BC=2;(2)连DE、ME,如图,∵DM>DE,当ED和EM为等腰三角形EDM的两腰,∴OE⊥DM,又∵AD=AC,∴△ADC为等边三角形,∴∠CAD=60°,∴∠DAO=30°,∴∠DON=60°,在Rt△ADN中,DN=AD=,在Rt△ODN中,ON=DN=1,∴当ON等于1时,三点D、E、M组成的三角形是等腰三角形;当MD=ME,DE为底边,如图3,作DH⊥AE,∵AD=2,∠DAE=30°,∴DH=,∠DEA=60°,DE=2,∴△ODE为等边三角形,∴OE=DE=2,OH=1,∵∠M=∠DAE=30°,而MD=ME,∴∠MDE=75°,∴∠ADM=90°﹣75°=15°,∴∠DNO=45°,∴△NDH为等腰直角三角形,∴NH=DH=,∴ON=﹣1;综上所述,当ON等于1或﹣1时,三点D、E、M组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=2.理由如下:连AP、AQ,如图2,∵∠C=∠CAD=60°,而DP⊥AB,∴AC∥DP,∴∠PDB=∠C=60°,又∵∠PAQ=∠PDB,∴∠PAQ=60°,∴∠CAQ=∠PAD,∵AC=AD,∠AQC=∠P,∴△AQC≌△APD,∴DP=CQ,∴DP﹣DQ=CQ﹣DQ=CD=2.【点评】本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.26.【分析】(1)根据不等式的性质即可判断;(2)利用(1)中规律即可判断,根据不等式的性质即可证明;【解答】解:(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1;故答案为>,>,<;(2)结论:a+c>b+d.理由:因为a>b,所以a+c>b+c,因为c>d,所以b+c>b+d,所以a+c>b+d.故答案为>.【点评】本题考查不等式的性质、解题的关键是熟练掌握不等式的性质解决问题,属于中考常考题型.27.【分析】①设每间住房每天收费x元,由信息(1)可知该宾馆共有住房间,由信息(2)可知该宾馆有顾客居住的房间间,根据该宾馆的住房间数不变列出分式方程,求解即可;②根据利润的计算方法,设每间房的房价为y元,分别表示每间利润和住房间数及支出费用,根据该宾馆一天的利润为11000元得方程求解;③设房价定为每间a元时,该宾馆一天的利润为w元,根据利润的计算方法,列出w关于a的函数关系式,再根据函数的性质即可求解.【解答】解:①设每间住房每天收费x元,根据题意,得=+20,解得x=120,经经验,x=120是原方程的根.12000÷120=100.答:该宾馆共有100间住房,每间住房每天收费120元;②设每间房的房价为y元,根据题意,得(y﹣20)(100﹣×5)﹣10××5=11000,解得:y1=160,y2=170.答:房价定为160元或170元时,该宾馆一天的利润为11000元;③设房价定为每间a元时,该宾馆一天的利润为w元,根据题意,得w=(a﹣20)(100﹣×5)﹣10××5=﹣a2+165a﹣2600=﹣(a﹣165)2+11012.5,∴当房价定为165元时,该宾馆一天的利润最大,为11012.5元.【点评】本题考查了分式方程的应用以及二次函数的应用,运用二次函数知识求最值问题,常常用公式法或配方法求解.28.【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P 的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式=﹣x2﹣x+3,再利用二次函数的性质,即可解决最值问题;可得出S△APC(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【解答】解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x =﹣1时,y =﹣x +1=2,∴此时点M 的坐标为(﹣1,2).∵点A 的坐标为(1,0),点C 的坐标为(﹣2,3),点N 的坐标为(0,3),∴AC ==3,AN ==, ∴C △ANM =AM +MN +AN =AC +AN =3+.∴在对称轴上存在一点M (﹣1,2),使△ANM 的周长最小,△ANM 周长的最小值为3+.【点评】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式找出S △APC =﹣x 2﹣x +3;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.。