2014年北京中考数学试题及答案
- 格式:doc
- 大小:369.51 KB
- 文档页数:14
2014年北京市高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共32分)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2的相反数是( )A.2B.-2C.-D.2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为( )A.0.3× 06B.3× 05C.3× 06D.30× 043.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )D.A. B. C.34.如图是某几何体的三视图,该几何体是( )A.圆锥B.圆柱C.正三棱柱D.正三棱锥5.某篮球队12则这12名队员年龄的众数和平均数分别是( )A.18,19B.19,19C.18,19.5D.19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( )A.40平方米B.50平方米C.80平方米D.100平方米7.如图,☉O的直径AB垂直于弦CD,垂足是E,∠A= .5°,OC= ,CD的长为( )A.2B.4C.4D.88.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( )第Ⅱ卷(非选择题,共88分)二、填空题(本题共16分,每小题4分)9.分解因式:ax4-9ay2= .10.在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为m.11.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为.12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P'(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为,点A2 014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为.三、解答题(本题共30分,每小题5分)13.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.14.计算:(6-π)0+-5--3tan 30°+|-3|.15.解不等式x- ≤x-,并把它的解集在数轴上表示出来.316.已知x-y=3,求代数式(x+1)2-2x+y(y-2x)的值.17.已知关于x的方程mx2-(m+ )x+ =0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.18.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连结EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB= ,AD= ,∠ABC= 0°,求tan∠ADP的值.20.根据某研究院公布的2009—2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2013年成年国民倾向的阅读方式人数分布统计图2009—2013年成年国民根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为本.21.如图,AB是☉O的直径,C是的中点,☉O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交☉O于点H,连结BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC 上,∠BAD=75°,∠CAD=30°,AD= ,BD= DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2) .请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连结BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB= 0°,求∠ADF的度数;(3)如图2,若 5°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(- <x≤ )是不是有界函数?若是有界函数,求其边界值;(2)若函数y=-x+ (a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x 2(- ≤x≤m,m≥0)的图象向下平移m 个单位,得到的函数的边界值是t,当m 在什么范围时,满足3≤t≤ ?答案全解全析:一、选择题1.B ∵ +(- )=0,∴ 的相反数为-2.故选B.2.B 300 000=3× 05.故选B.3.D 6张扑克牌中,点数为偶数的有3张,所以抽到点数为偶数的概率是3 =.故选D.4.C 选项A 、B 中的几何体,三视图中一定有一个圆,与所给的三视图不符,排除A,B;选项D 中的几何体的三视图是三个三角形,与所给的三视图也不相符,排除D.只有选项C 中的几何体与所给的三视图相符,故选C.5.A 年龄为18岁的队员最多,故众数为18;12名队员年龄的平均数为5 9 0=19.故选A.6.B 休息的过程中是不进行绿化工作的,即绿化面积S 不变化,由图象可知第1~2小时为园林队休息时间,则休息后园林队的绿化面积为160-60=100(平方米),所用的时间为4-2=2(小时),所以休息后园林队每小时绿化面积为 00÷ =50(平方米).故选B. 7.C∵CO=AO,∴∠COE= ∠A= 5°.∵OC= ,∴CE=OC·sin∠COE= ×=2 .∵AB⊥CD,∴CD= C E=4 故选C.8.A 由图象可知,AP 先由短变长,然后略微变短再变长,最后AP 由长变短.选项A 与题目要求相符;选项B 是先由短变长,然后略微变短再变长,接着再略微变短再变长,最后由长变短,与题目要求不符;选项C 是先由短变长,到达第一个顶点后继续变长,到达第二个顶点后开始变短,到达第三个顶点后继续变短,与题目要求不符;选项D 是先由短变长,在经过点A 的直径与圆的另一个交点处时最长,然后开始变短,与题目要求不符.故选A.评析 解决本题的关键是根据图形特征分析函数图象随自变量变化的趋势,结合图形性质通过定性分析来确定选项.属中档题. 二、填空题9.答案 a(x 2+3y)(x 2-3y)解析 ax 4-9ay 2=a(x 4-9y 2)=a(x 2+3y)(x 2-3y). 10.答案 15解析 设旗杆的高度为x m,则 . 3=5,解得x=15.即旗杆的高度为15 m.11.答案 y=(答案不唯一,满足0<k≤ 即可)解析 要使反比例函数的图象与正方形有交点,则至少要经过点B,且k>0,而点B 的坐标为(2,2),所以k 的最大值为4,即0<k≤ . 12.答案 (-3,1);(0,4);-1<a<1,0<b<2解析 由题意可知,点A 2的坐标为(0,4),点A 3的坐标为(-3,1),点A 4的坐标为(0,-2),点A 5的坐标为(3, ),…,所以每四个点坐标为一个循环.∵ 0 ÷ =503…… ,∴点A 2 014的坐标与点A 2的坐标一致,为(0,4).因为每四个点坐标为一个循环,所以要求a,b 应满足的条件,只需要知道前4个点的坐标即可.∵点A 1的坐标为(a,b),∴点A 2、A 3、A 4的坐标依次为(-b+1,a+1)、(-a,-b+2)、(b-1,-a+ ).∵点A n 均在x 轴上方,∴0,0,-0,-0,∴-1<a<1,0<b<2.评析解决本题的关键是读懂题目要求,并按照题目要求正确操作.尤其是“在x轴上方”即为“纵坐标>0”.属中档题.三、解答题13.证明∵BC∥DE,∴∠ABC=∠D.在△ABC和△EDB中,,∠∠,,∴△ABC≌△EDB.∴∠A=∠E.14.解析原式=1-5-3×33+3=-4.15.解析去分母,得3x- ≤ x-3,移项,得3x- x≤ -3.合并同类项,得-x≤3,系数化为1,得x≥-3.不等式的解集在数轴上表示如下:16.解析(x+1)2-2x+y(y-2x)=x2+2x+1-2x+y2-2xy=x2-2xy+y2+1.∵x-y=∴原式=(x-y)2+1=4.17.解析(1)证明:∵m≠0,∴mx2-(m+2)x+2=0是关于x的一元二次方程.∴Δ=[-(m+2)]2- × m=(m-2)2.∵(m-2)2≥0,∴方程总有两个实数根.(2)由求根公式,得x=( )(- ).∴x1=1,x2=.∵方程的两个实数根都是整数,且m为正整数,∴m= 或2.18.解析设新购买的纯电动汽车每行驶1千米所需的电费为x元.由题意,得 7= 00.5.解得x=0.18.经检验,x=0.18是原方程的解,且符合题意.答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.四、解答题19.解析(1)证明:∵BF是∠ABC的平分线,∴∠ABF=∠EBF.∴∠AFB=∠EBF.∴∠AFB=∠ABF.∴AB=AF.同理,AB=BE.∴AF=BE.又∵AF∥BE,∴四边形ABEF是平行四边形.∵AB=AF,∴四边形ABEF是菱形.(2)过点P作PG⊥AD于点G,如图.∵四边形ABEF是菱形,∠ABC= 0°,∴△ABE是等边三角形.∵AB= ,∴AE=AB= ,∴AP=AE=2.在Rt△AGP中,可求得∠PAG= 0°.∴AG=AP·cos 0°= ,GP=AP·sin 0°=3.∵AD= ,∴DG=5,.∴tan∠ADP==3520.解析(1)66.0.( )5.00±0.0 .(3)7 500±30.(990÷ .0%×5=7 500) 21.解析(1)证明:连结BC.∵AB是☉O的直径,∴∠ACB=90°.∵C是的中点,∴=.∴AC=BC.∴∠CAB=∠CBA= 5°.∵BD是☉O的切线,∴∠ABD=90°.可得∠CBD=∠D= 5°.∴BC=CD.∴AC=CD.(2)连结OC.∴∠OCA=∠CAB= 5°.∴∠COE=90°.∵E是OB的中点,∴OE=BE.∵∠CEO=∠FEB,∴Rt△COE≌Rt△FBE.∴BF=OC.∵OB= ,∴BF= .由勾股定理,得AF=2.∵∠ABF=∠AHB=90°,∴BH=·=55.22.解析∠ACE的度数为75°,AC的长为3.解决问题:过点D作DF∥AB交AC于点F,如图.∴∠DFE=∠BAC=90°,又∠AEB=∠FED,∴△ABE∽△FDE.∴==.∵BE= ED,AE= ,∴FE= ,∴AF=3.∵∠CAD=30°,∴FD=,AD=2∵= ,∴AB=∵∠ADC=75°,∠CAD=30°,∴∠ACD=75°,∴AC=AD= 3.在Rt△ABC中,由勾股定理可得BC=2.评析本题考查了相似三角形的判定与性质、三角函数等知识.解决本题的关键是读懂题目中给出的操作方法,由平行想到相似三角形.属中档题.五、解答题23.解析( )∵点A,B在抛物线y=2x2+mx+n上,∴-,33m n.解得- ,- .∴抛物线的表达式为y=2x2-4x-2.∴抛物线的对称轴为x=1.(2)由题意可知,点C的坐标为(-3,-4). 设直线BC的表达式为y=kx+b(k≠0).∴3,--3,解得3,0.∴直线BC的表达式为y=3x.∴当x=1时,y=3.结合图象可知,点A在直线BC的下方,且抛物线的顶点坐标为(1,-4),∴- ≤t≤3.24.解析(1)补全图形,如图所示.(2)连结AE,如图.∵点E与点B关于直线AP对称,∴AE=AB,∠EAP=∠BAP= 0°.∵AB=AD,∴AE=AD,∴∠AED=∠ADF.又∠BAD=90°,∴ ∠ADF+ 0°+90°= 0°.∴∠ADF= 5°.(3)AB,FE,FD满足的数量关系为FE2+FD2=2AB2. 证明:连结AE,BF,BD,设BF交AD于点G,如图.∵点E与点B关于直线AP对称,∴AE=AB,FE=FB.可证得∠FEA=∠FBA.∵AB=AD,∴AE=AD.∴∠ADE=∠AED.∴∠ADE=∠ABF.又∵∠DGF=∠AGB,∴∠DFB=∠BAD=90°.∴FB2+FD2=BD2.∵BD2=2AB2,∴FE2+FD2=2AB2.25.解析(1)y=(x>0)不是有界函数;y=x+1(- <x≤ )是有界函数,边界值是3.(2)对于函数y=-x+ (a≤x≤b,b>a),∵y随x的增大而减小,∴y的最大值是-a+1,y的最小值是-b+1.∵函数的最大值是2,∴a=-1.又∵函数的边界值是2,∴-b+ ≥-2,∴b≤3.∴- <b≤3.(3)由题意,函数平移后的表达式为y=x2-m(- ≤x≤m,m≥0).当x=-1时,y=1-m;当x=0时,y=-m;当x=m时,y=m2-m.根据二次函数的对称性,当0≤m≤ 时,1-m≥m2-m;当m>1时,1-m<m2-m.①当0≤m≤时,1-m≥m,由题意,边界值t=1-m.当3≤t≤ 时,0≤m≤.∴0≤m≤.②当<m≤ 时,1-m<m.由题意,边界值t=m.当3≤t≤ 时,3≤m≤ .∴3≤m≤ .③当m>1时,由题意,边界值t≥m.∴不存在满足3≤t≤ 的m值.综上所述,当0≤m≤或3≤m≤ 时,满足3≤t≤ .。
(2014朝阳)22.以下是小辰同学阅读的一份材料和思考:五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).小辰阅读后发现,拼接前后图形的面积相等....,若设新的正方形的边长为x (x >0),可得x 2=5,x =5.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长. 参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.具体要求如下: (1)设拼接后的长方形的长为a ,宽为b ,则a 的长度为 ; (2)在图④中,画出符合题意的两条分割线(只要画出一种即可); (3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)(2014大兴)22. 如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被 过P 点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法).图④ 图⑤O BACOBA 图① 图② 图③FE DCB A EDCB A(2014东城)22. 阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF =45°,连结EF ,则EF =BE +DF ,试说明理由.F E DCBAGF EDCBA图1 图2小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB ,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A 逆时针旋转90°得到△ADG ,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD 中,AB =AD ,∠BAD =90°点E ,F 分别在边BC ,CD 上,∠EAF =45°.若∠B ,∠D 都不是直角,则当∠B 与∠D 满足_ 关系时,仍有EF =BE +DF ; (2)如图4,在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 均在边BC 上,且∠DAE =45°,若BD =1, EC =2,求DE 的长.图3 图4(2014房山)22.阅读下列材料:小明遇到这样一个问题:已知:在△ABC 中,AB ,BC ,AC 三边的长分别为5、10、13 ,求△ABC 的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积. 他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为;参考小明解决问题的方法,完成下列问题:(2)图2是一个6×6的正方形网格(每个小正方形的边长为1) .①利用构图法在答题卡的图2中画出三边长分别为13、25、29的格点△DEF;②计算△DEF的面积为.(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF .若22,13,17PQ PR QR=== ,则六边形AQRDEF的面积为__________.FAQDEPR(2014丰台)22. 在学习三角形中线的知识时,小明了解到:三角形的任意一条中线所在的直线可以把该三角形分为面积相等的两部分。
2014年北京市中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)(2014•北京)2的相反数是()A.2 B.-2 C.-D.答案:B解析:根据相反数的定义可知:2的相反数是-2.故选:B.2.(4分)(2014•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104答案:B解析:300 000=3×105,故选:B.3.(4分)(2014•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.答案:D解析:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选D.4.(4分)(2014•北京)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥答案:C解析:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选C.解析:年龄为18岁的队员人数最多,众数是18;平均数=12221120419518⨯⨯⨯⨯+++=19.故选A.6.(4分)(2014•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米答案:B解析:根据图象可得,休息后园林队2小时绿化面积为160-60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.7.(4分)(2014•北京)如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,CD 的长为( )A . 22B . 4C . 42D .8答案:C解析:∵∠A =22.5°,∴∠BOC =2∠A =45°,∵圆O 的直径AB 垂直于弦CD ,∴CE =DE ,△OCE 为等腰直角三角形,∴CE =22OC =22, ∴CD =2CE =42.故选C .8.(4分)(2014•北京)已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图,则该封闭图形可能是( )A .B .C .D .答案:A解析:A 、等边三角形,点P 在开始与结束的两边上直线变化,在点A 的对边上时,设等边三角形的边长为a ,则y =22)23()23(x a a -+ (a <x <2a),符合题干图象; B 、菱形,点P 在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C 、正方形,点P 在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A 的对角顶点,再变速减小至另一顶点,题干图象不符合;D 、圆,AP 的长度,先变速增加至AP 为直径,然后再变速减小至点P 回到点A ,题干图象不符合.故选A .二、填空题(本题共16分,每小题4分)9.(4分)(2014•北京)分解因式:ax 4-9ay 2= .答案:a(x 2-3y)(x 2+3y).解析:ax 4-9ay 2=a(x 4-9y 2)=a(x 2-3y)(x 2+3y).故答案为:a(x 2-3y)(x 2+3y).10.(4分)(2014•北京)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m .答案:15解析:设旗杆高度为x 米, 由题意得,2538.1x =,解得x =15. 故答案为:15.11.(4分)(2014•北京)如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数y =xk (k ≠0),使它的图象与正方形OABC 有公共点,这个函数的表达式为 .解析:∵正方形OABC 的边长为2,∴B 点坐标为(2,2),当函数y =xk (k ≠0)过B 点时,k =2×2=4,∴满足条件的一个反比例函数解析式为y =x 1. 故答案为:y =x 1,y =xk (0<k ≤4)(答案不唯一).12.(4分)(2014•北京)在平面直角坐标系xOy 中,对于点P(x ,y),我们把点P(-y +1,x +1)叫做点P ′伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 ,点A 2014的坐标为 ;若点A 1的坐标为(a ,b),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为 .答案:(-3,1),(0,4);-1<a <1且0<b <2.解析:∵A 1的坐标为(3,1),∴A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A 2014的坐标与A 2的坐标相同,为(0,4);∵点A 1的坐标为(a ,b),∴A 2(-b +1,a +1),A 3(-a ,-b +2),A 4(b -1,-a +1),A 5(a ,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n ,点A n 均在x 轴上方, ∴,,解得-1<a <1,0<b <2.故答案为:(-3,1),(0,4);-1<a <1且0<b <2.三、解答题(本题共30分,每小题5分)13.(5分)(2014•北京)如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,BC =DB .求证:∠A =∠E .答案: 见解析。
2014年北京市高级中等学校招生考试数学试卷(附参考答案)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2的相反数是( B ).A .2B .2-C .12 D .12- 2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨,将300 000用科学记数法表示应为( B ).A .60.310⨯B .5310⨯C .6310⨯D .43010⨯ 3.如图,有6张扑克如下,从中随机抽取一张,点数为偶数的概率是( D ).A .16 B .14 C .13D .12 4.右图是几何体的三视图,该几何体是( C ). A .圆锥 B .圆柱 C .正三棱柱 D .正三棱锥5.某篮球队12名队员的年龄如下表所示.则这12名队员年龄的众数和平均数分别是( A ). A .18,19 B .19,19 C .18,19.5 D .19,19.56.园林队在某公园进行绿化,是间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( B ).A .40平方米B .50平方米C .80平方米D .100平方米7.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,CD 的长为( C ).A .22B .4C .42D .88.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周,设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图所示,则该封闭图形可能是( A ).A B C D二、填空题(本题共16分,每小题4分) 9. 分解因式:429ax ay -=()()2233a x y x y +-.10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2,写出一个函数()0ky k x=≠,使它的图象与正方形有公共点,这个函数的表达式为4y x=. 12.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ’(1y -+,1x +)叫做点P 的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An ,….若点A1的坐标为(3,1),则点A3的坐标为 (-3,1) ,点A2014的坐标为 (0,4) ;若点A1的坐标为(a ,b ),对于任意的正整数n ,点An 均在x 轴上方,则a 、b 应满足的条件为1102a b -<<⎧⎨<<⎩.三、解答题(本题共30分,每小题5分)13.如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,BC =DB . 求证:∠A =∠E .证明:∵BC ∥DE ,∴∠ABC =∠EDB 又∵AB =ED ,BC =BD ∴△ABC ≌△EDB (SAS ) ∴∠A =∠E . 14.计算:()1163tan 3035π-⎛⎫-+--+- ⎪⎝⎭.解:原式=315333--⨯+ =433- =-415.解不等式:1211232x x -≤-,并把它的解集在数轴上表示出来. 解:1211232x x -≤-3643x x -≤- 3463x x -≤- 3x -≤ 3x ≥-16.已知3x y -=,求代数式()()2122x x y y x +-+-的值.解:原式222122x x x y xy =++-+- 当3x y -=时 2221x xy y =-++ ()21x y -+231=+31=+4=()21x y =-+17.已知关于x 的方程()()22200mx m x m -++=≠.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.解:(1)∵0m ≠ (2)∵()()22200mx m x m -++=≠ ∴△()2242m m =⎡-+⎤-⨯⎣⎦ ∴()()210mx x --= 2448m m m =++- ∴12x m=,21x = 244m m =-+ ∵方程的两个实数根都是整数,且m 是正整数 ()22m =- ∴1m =或2m =. ∵△≥0∴方程总有两个实数根. 18.列方程或方程组解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.解:设新购买的纯电动汽车每行驶1千米所需的电费为x 元,则原燃油汽车每行驶1千米所需的油费为()0.54x +元,依题意列方程得:108270.54x x=+ 经检验,0.18x =是原分式方程的解. 解得:0.18x = 答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元. 四、解答题(本题共20分,每小题5分)19.如图,在□ABCD 中,AE 平分∠BAD ,交BC 于点E ,BF 平分∠ABC ,交AD 于点F ,AE 与BF 交于点P ,连接EF 、PD .(1)求证:四边形ABEF 是菱形;(2)若AB =4,AD =6,∠ABC =60°,求tan ∠ADP 的值. (1)证明:∵AE 平分∠BAD ,BF 平分∠ABC ,∴∠BAE =∠FAE ,∠ABF =∠EBF (2)在菱形ABEF 中,∠ABC =60° 在□ABCD 中,AD ∥BC ∴∠AFE =60°.又AF =EF ∴∠BEA =∠FAE ,∠AFB =∠EBF ∴△AEF 是正三角形 ∴∠BAE =∠BEA ,∠ABF =∠AFB ∴∠EAF =60°,AE =AB =4 ∴AB =EB ,AB =AF ∴AP =12AE =2 即:AB =EB =AF 作PM ⊥AD 于点M ,则∠APM =30° 又AE 平分∠BAD ,BF 平分∠ABC ∴AM =12AP =1,PM 3 ∴AE 垂直平分BF ,BF 垂直平分AE ∴DM =AD -AM =5 ∴四边形ABEF 是菱形. ∴tan ∠ADP =PM 3DM (说明:①本题有多种证明方法,这里不一一列举;②考虑到排版的问题,(2)未插入添加辅助线的图.) 20.根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制统计图表如下:2009~2013年成年国民 年人均阅读图书数量统计表 年份 年人均阅读图书数量(本)2009 3.88 2010 4.12 20114.352013年成年国民倾向的阅读方式人数分布统计图2012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;解:m=66.(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为5本.(3)2013年某小区倾向图书阅读的成年国民有900人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为7500本.21.如图,AB是⊙O的直径,C是AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.(1)证明:连接BC.∵AB是⊙O的直径∴∠ACB=90°,即BC⊥AD.∵C是AB的中点,∴AC=BC.∴AC=BC,∴△ACB是等腰Rt△.∴∠BAC=45°.∵BD是⊙O的切线,∴∠ABD=90°.∴△ABD是等腰Rt△,又BC⊥AD∴AC=CD.(2)解:如图,连接OC.∵AC=BC,AO=BO∴OC⊥AB,又BD是⊙O的切线∴∠COE=∠FBE=90°∵E是OB的中点,∴OE=BE又∠CEO=∠FEB∴△COE≌△FBE(ASA)∴BF=OC=OB=2∵AB是⊙O的直径∴∠AHB=∠BHF=90°,AB=2OB=4∴∠HAB+∠ABH=∠HAB+∠BFH=90°∴∠ABH=∠BFH∴△ABH∽△BFH∴BH∶HF=AB∶BF=4∶2=2,即BH=2HF 在Rt△BHF中,BF=2,由勾股定理可得:BH2+HF2=BF2,即:5HF2=4∴HF 25 5∴BH 455.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.图1 图2小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算,能够使问题得到解决(如图2).请回答:∠ACE的度数为75°,AC的长为3.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC =75°,AC 与BD 交于点E ,AE =2,BE =2DE ,求BC 的长. 图3 解:如图,作DM ⊥AC 于点M .则∠DME =∠BAE =90°. ∴DM ∥AB ∴△DME ∽△BAE∴ME ∶AE =DE ∶BE =MD ∶AB =1∶2 ∴ME =12AE =1 ∴AM =3 ∵∠CAD =30°∴DM =AM ·tan30°=3,AD =2DM=23 ∴AB =2DM =23∵∠CAD =30°,∠ADC =75°∴∠ACD =180°-∠CAD -∠ADC =75° ∴∠ACD =∠ADC ° ∴AC =AD =23 ∵∠BAC =90° ∴BC 2=AB 2+AC 2=24 ∴BC =26.23.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (0,-2),B (3,4).(1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A 、B 之间的部分为图象G (包含A 、B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.解:(1)∵抛物线22y x mx n =++经过点A (0,-2),B (3,4)∴222334n m n =-⎧⎨⨯++=⎩,解得:42m n =-⎧⎨=-⎩ ∴抛物线的表达式是2242y x x =-- ∴该抛物线的对称轴为直线4122x -=-=⨯(2)如右图:∵点B (3,4)关于原点与点C 对称 ∴C 点坐标为(-3,-4) ∴直线BC 的解析式为43y x =. 由题意可知,当直线CD 经过点B 时,D 点纵坐标t 有最大值. 此时1x =,∴4t 3=. 又抛物线的顶点坐标为(1,-4)∴当直线CD 经过顶点即D 点与顶点重合时,D 点纵坐标t 有最小值. 此时t =-4.∴符合条件的点D 的纵坐标t 的取值范围是: -4≤t ≤43.24.在正方形ABCD 的外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE 、DE ,其中DE 交直线AP 于点F .(1)依题意补全图1;(2)若∠PAB =20°,求∠ADF 的度数;(3)如图2,若45°<∠PAB <90°,用等式表示线段AB 、FE 、FD 之间的数量关系,并证明.图1 图2解:(1)补全图1如下所示:第(1)题图 第(2)题图 (2)连接AE .点B 、点E 关于直线AP 对称 ∴∠EAP =∠BAP =20°,AE =AB . ∵四边形ABCD 是正方形 ∴AE =AB =AD ,∠BAD =90° ∴∠EAD =130° ∴∠ADE =12(180°-∠EAD )=25°.(3)EF 、DF 、AB 之间的数量关系是:EF 2+DF 2=2AB 2.证明如下: 第(3)题图 如图:连接AE 、BF 、BD ,设BF 交AD 于点G . ∴∠AEF =∠ADE ,∴∠ABF =∠ADE 由轴对称可知:EF =BF ,AE =AB ,又AF =AF 又∠AGB =∠DGF ,∴∠BAF =∠DFE =90° ∴△AEF ≌△ABF (SSS ) ∴BF 2+DF 2=BD 2 ∴∠AEF =∠ABF 而BD 2=AB 2+AD 2=2AB 2 又AE =AD =AB ∴EF 2+DF 2=2AB 2. 25.对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数,在所 有满足条件的M 中,其最小值称为这个函数的边界值.例如, 右图中的函数是有界函数,其边界值是1. (1)分别判断函数()10y x x=>和()142y x x =+-<≤是不是 有界函数?若是有界函数,求其边界值;(2)若函数()1y x a x b b a =-+≤≤>,的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3)将函数()210y x x m m =-≤≤≥,的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足3t 14≤≤? 解:(1)函数()10y x x=>不是有界函数,()142y x x =+-<≤是有界函数,其边界值是3.(2)∵()1y x a x b b a =-+≤≤>,,∴y 随x 增大而减小 当x a =时,12y a =-+=,则1a =-; 当x b =时,1y b =-+; ∴{212b b a ⎧-≤-+<⎪⎨>⎪⎩解不等式组得:13b -<≤-.(3)若1m >,函数向下平移m 个单位后,2y x m =-. 当0x =,则1y m =-<-.而此时函数边界值t>1,与题意不符. ∴1m ≤.若1m =,函数向下平移m 个单位后,21y x =-. 当1x =±时,=y 最大值0; 当0x =时,=y 最小值-1; 此时函数边界值t =1;若01m <<,函数向下平移m 个单位后,2y x m =-. 此时1y m =-最大值,y m =-最小值. 当1m m ->时,t 1m =-, ∵3t 14≤≤,∴3114m ≤-≤,∴104m ≤≤; 当1m m -<时,t m =,∵3t 14≤≤,∴314m ≤≤ 综上所述:104m ≤≤或314m ≤≤.。
2014年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分) 1、(2014北京中考,1,4分) 2的相反数是 A 、2 B 、-2 C 、21- D 、21【答案】B2、(2014北京中考,2,4分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨,将300 000用科学计数法表示应为A 、6103.0⨯B 、5103⨯C 、6103⨯D 、41030⨯ 【答案】B3、(2014北京中考,3,4分)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是A 、61B 、41C 、31D 、21 【答案】D4、(2014北京中考,4,4分)右图是几何体的三视图,该几何体是 A 、圆锥 B 、圆柱 C 、正三棱柱 D 、正三棱锥【答案】C5、(2014北京中考,5,4分)某篮球队12名队员的年龄如下表所示:年龄(岁)18 19 20 21人数 5 4 1 2则这12 名队员年龄的众数和平均数分别是A、18,19B、19,19C、18,19.5D、19,19.5 【答案】A6、(2014北京中考,6,4分)园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时的绿化面积为A、40平方米B、50平方米C、80平方米D、100平方米【答案】B7、(2014北京中考,7,4分)如图,○O的直径AB⊥弦CD垂足是E,∠A=22.5°,OC=4,CD的长为A、24D、8 2B、4 C、2【答案】C8、(2014北京中考,8,4分)已知点A为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周,设点P 运动的时间为x ,线段AP 的长为y ,表示y 与x 的函数关系大致如右图所示,则该封闭图形可能是【答案】A二、填空题(本题共16分,每小题4分)9、(2014北京中考,9,4分)分解因式:_____________________924=-ay ax 【答案】)3)(3(22y x y x a +-10、(2014北京中考,10,4分)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25米,那么这根旗杆的高度为_____________m 【答案】1511、(2014北京中考,11,4分)如图,在平面直角坐标系xoy 中,正方形OABC 的边长为2,写出一个函数)0(≠=k xky 使它的图象与正方形OABC 有公共点,这个函数的表达式为 __________________【答案】xy 1=,)40(≤=k x k y ,(答案不唯一)12、(2014北京中考,12,4分)在平面直角坐标系xoy 中,对于点P (x ,y )我们把点P ’(-y+1,x+1)叫做点P 的伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,这样依次得到A 1 ,A 2,A 3,……A n ……,若点A 1的坐标为(3,1),则点A 3的坐标为___________,点A 2014的坐标为___________;若点A 1的坐标为(a,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为___________。
2014年北京中考题数学题一、选择题(本题共32分,每题4分)下面各题均有四个选项,其中只有一个是符合题意的1.2的相反数是().A.2B.2-C.12-D.122.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨,将300000用科学计数法表示应为().A.60.310⨯B.5310⨯C.6310⨯D.43010⨯3.如图,有6张扑克牌,从中随机抽取1张,点数为偶数的概率().A.16B.14C.13D.124.右图是某几何体的三视图,该几何体是().A.圆锥B.圆柱C.正三棱柱D.正三棱锥5.某篮球队12名队员的年龄如下表所示:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是().A.18,19B.19,19C.18,19.5D.19,19.56.园林队公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)和工作时间t(单位:小时)的函数关系的图像如图所示,则休息后园林队每小时绿化面积为().A.40平方米B.50平方米C.80平方米D.100平方米7.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD的长为( ).A .2B .4C .42D .88.已知点A 为某封闭图形边界的一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周,设点P 的时间为x ,线段AP 的长为y ,表示y 和x 的函数关系的图象大致如图所示,则该封闭图形可能是( ).二.填空题(本体共16分,每题4分)9.分解因式:24ay 9x a -=___________________.10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为_________________m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)ky k x=≠使它的图象和正方形OABC 有公共点,这个函数的表达式为______________.12.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 伴随点,一直点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到点1A ,2A ,3A …,n A …,若点1A 的坐标为(3,1),则点3A 的坐标为__________,点2014A 的坐标为__________;若点1A 的坐标为(,)a b ,对于任意正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为_____________.三.解答题(本题共30分,每小题5分)13.如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.14.计算:()3-3tan30----+⎪⎭⎫⎝⎛+ 15160π.15.解不等式2132121-≤-x x ,并把它的解集在数轴上表示出来.(添加图)16、已知x-y=3,求代数式(x+1 )2 - 2x + y(y-2x) 的值.17、已知关于x的方程mx2-(m+2)x+2=0(m≠0).(1) 求证:方程总有两个实数根;(2) 若方程的两个实数根都是整数,求正整数m的值.18.列方程或方程组解使用题小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.19.如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE和BF 交于点P,连接EF.PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.根据某研究院公布的2009-2013年我国成年国民阅读调查报告的部分数据,绘制的统计图表如下:2013年成年国民2009~2013年成年国民倾向的阅读方式人数分布统计图年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为_______本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年和2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为_____本.21.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连结BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.E图1 图2小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为___________,AC的长为_____________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC和BD交于点E,AE=2,BE=2ED,求BC的长.五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD和图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB < 90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25. 对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y ,都满足-M≤y≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1) 分别判断函数y=x1(x > 0)和y= x + 1(-4 < x ≤ 2)是不是有界函数?若是有界函数,求边界值;(2) 若函数y=-x+1(a ≤ x ≤ b ,b > a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3) 将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足 143≤≤t ?2014年北京高级中等学校招生测试数学答案一.选择题(本题共32分,每小题4分):题号12345678选项B B D C A B C A二.填空题(本题共16分,每小题4分):题号9101112答案15(-3,1);(0,4);-1<a<1且0<b<2三.解答题(本题共30分,每小题5分):13.(本小题满分5分)证明:∵ BC∥DE∴∠ABC = ∠EDB;在△ABC和△EDB中:AB = ED;∠ABC = ∠ EDB;BC = DB;∴△ABC ≌△EDB;∴∠A = ∠E14.(本小题满分5分)解:原式===15.(本小题满分5分)解:移项得:;合并同类项得:系数化为1:x ≥在数轴上表示出来:16.(本小题满分5分)解:化简代数可得:原式===∵∴原式= = 417.(本小题满分5分)(1)证明:可知△ ===== ≥0∴方程总有两个实数根。
北京市2o14年中考数学试题及答案北京市2014年中考数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 一个数的相反数是-3,那么这个数是?A. 3B. -3C. 0D. 6答案:A3. 以下哪个选项是正确的不等式?A. 3 > 2B. 3 < 2C. 3 = 2D. 3 ≥ 2答案:A4. 计算下列表达式的结果:(2x - 3) + (4x + 5) = ?A. 6x + 2B. 6x - 2C. 2x + 2D. 2x - 2答案:A5. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:C6. 如果一个角的补角是120°,那么这个角的度数是?A. 60°B. 30°C. 45°D. 90°答案:A7. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C8. 一个数的平方根是2,那么这个数是?A. 4B. -4C. 2D. -2答案:A9. 以下哪个选项是正确的比例关系?A. 3:4 = 6:8B. 3:4 = 6:9C. 3:4 = 9:12D. 3:4 = 9:8答案:C10. 一个数的立方是-8,那么这个数是?A. 2B. -2C. 4D. -4答案:B二、填空题(每题3分,共15分)11. 一个数的绝对值是5,那么这个数可能是_________。
答案:±512. 计算下列表达式的结果:(-2)^3 = _________。
答案:-813. 一个直角三角形的两个锐角的度数分别是30°和60°,那么这个三角形的斜边与较短直角边的比是_________。
答案:214. 一个数的倒数是1/4,那么这个数是_________。
2014年北京市高级中等学校招生考试模拟卷数 学 试 卷学校姓名准考证号1.本试卷共 6 页,共五道大题,25 道小题,满分 120 分,考试时间 120 分钟。
招 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
生 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
须 4.在答题卡上,选择题、作图题用 2B 铅笔作答,其它试题用黑色字迹签字笔作答。
知5.考试结束,将本试卷、答题卡和草稿纸一并交回。
6.转载请注明学而思培优首发。
一、选择题(本题共 32 分,每小题 4 分) 下面各题均有四个选项,其中只有一.个.是符合题意的. 1.在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出 了共计约 3 960 亿元的投资计划,将 3 960 用科学记数法表示应为 A . 39.6 ⨯102 2. - 3 的倒数是 4 A . 4 3 B . 3.96 ⨯103 B . 3 4 C . 3.96 ⨯104 C . - 3 4D . 0.396 ⨯104D . - 43 3.在一个不透明的口袋中装有 5 个完全相同的小球,把它们分别标号为 1,2,3,4,5, 从中随机摸出一个小球,其标号大于 2 的概率为 A . 1 5 B . 25 C . 35D . 454.如图,直线 a , b 被直线 c 所截, a ∥b , ∠1 = ∠2 ,若 ∠3 = 40︒ , 则 ∠4 等于 A . 40︒ B . 50︒ C . 70︒ D .80︒ 5.如图,为估算某河的宽度,在河对岸边选定一个目标点 A ,在近 岸取点 B ,C , D ,使得 AB ⊥ BC ,CD ⊥ BC ,点 E 在 BC 上, 并 且 点 A , E , D 在 同 一条 直线 上, 若测 得 BE = 20 m , BE = 10 m , CD = 20 m ,则河的宽度 AB 等于 A . 60 m B . 40 m C . 30 m D . 20 m 6.下列图形中,是中心对称图形但不是轴对称图形的是c 3 a 2 1 4bABEC DAB C D7.某中学随机地调查了 50 名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:A . 6.2 小时B . 6.4 小时 PC . 6.5 小时D .7 小时 8.如图,点 P 是以 O 为圆心, AB 为直径的半圆上的动点, AB = 2 , 设弦 AP 的长为 x ,△APO 的面积为 y ,则下列图象中,能表示 y A OB与 x 的函数关系的图象大致是ABCD二、填空题(本题共 16 分,每小题 4 分) 9.分解因式: ab 2 - 4ab + 4a = . 10.请写出一个开口向上,并且与 y 轴交于点(0,1)的抛物线的解 析式, y = .AMD11.如图, O 是矩形 ABCD 的对角线 AC 的中点, M 是 AD 的中点,若 AB = 5 , AD = 12 ,则四边形 ABOM 的周长为. O12.如图,在平面直角坐标系 xOy 中,已知直线 l : y = -x - 1 ,双曲BC线 y = 1 ,在 l 上取一点 A ,过 A 作 x 轴的垂线交双曲线于点x1 1yB 1 ,过 B 1 作 y 轴的垂线交 l 于点 A 2 ,请继续操作并探究:过 A 2作 x 轴的垂线交双曲线于点 B 2 ,过 B 2 作 y 轴的垂线交 l 于点A 3 ,…,这样依次得到 l 上的点 A 1 , A 2 , A ,…, A n ,….记点 A n 的横坐标为 a n , 若 a 1 = 2 , 则 a 2 =,a 2013 =;若要将上述操作无限次地进行下云,则 a 1 不1 B 1A 2O1xA 1 l能取的值是 . 三、解答题(本题共 30 分,每小题 5 分)C13.已知:如图,D 是 AC 上一点,AB = DA ,DE ∥AB ,∠B = ∠DAE .E D求证: BC = AE .14.计算: (1 0 + | -2 c os 45︒ + ( 1 )-1 .4A B3x > x - 2 ,15.解不等式组:x x 231>+16.已知 x 2- 4x -1 = 0 ,求代数式 (2x - 3)2 - (x + y )(x - y ) - y 2 的值.17.列方程或方程组解应用题:某园林队计划由 6 名工人对 180 平方米的区域进行绿化,由于施工时增加了 2 名工 人,结果比计划提前 3 小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿 化面积.18.已知关于 x 的一元二次方程 x 2 + 2x + 2k - 4 = 0 有两个不相等的实数根.(1)求 k 的取值范围; (2)若 k 为正整数,且该方程的根都是整数,求 k 的值.四、解答题(本题共 20 分,每小题 5 分) 19.如图,在 ABCD 中, F 是 AD 的中点,延长 BC 到点 E , 使 CE = 1BC ,连接 DE , CF .2A F D (1)求证:四边形 CEDF 是平行四边形; (2)若 AB = 4 , AD = 6 , ∠B = 60︒ ,求 DE 的长. 20.如图 AB 是 O 的直径, PA , PC 与 O 分别相切于点 A , C ,PC 交 AB 的延长线于点D ,DE ⊥ PO 交 PO 的延长线 于点 E .(1)求证: ∠EPD = ∠EDO ; (2)若 PC = 6 , tan ∠PDA = 3,求 OE 的长.421.第九界中国国际园林博览会(园博会)已于 2013 年 5 月 18B CEPC BAO DE日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分。
2014北京中考数学1 北京中考数学是一门考察学生数学知识和解决实际问题能力的重要科目。
在这篇文章中,我将为大家详细介绍2014年北京中考数学的相关内容。
在2014年的北京中考数学卷中,包含了选择题、填空题和计算题三个部分。
其中,选择题是卷面上占比最大的题型,一共有25个题目,每个题目有4个选项,考察学生对基础知识的掌握和运用能力。
填空题和计算题则更注重学生的实际运用能力和解题思路。
选择题部分主要考察的是学生对基础知识的理解和应用能力。
例如,有一道题目是要求学生计算一个等差数列的前n项和,这涉及到学生对等差数列的性质和求和公式的掌握。
另外,还有一道题目是要求学生计算一个分数的大小,通过对分数的化简和比较,学生需要用到对分数的运算规则的理解和掌握。
填空题部分主要考察学生的解题思路和运算能力。
例如,有一道题目是要求学生计算一个长方体的体积,学生需要根据题目中给出的边长信息,套用体积公式进行计算。
此外,还有一道题目是要求学生计算一个几何图形的面积,学生需要根据题目中给出的图形信息,选择适当的公式进行计算。
计算题部分主要考察学生对实际问题的分析和解决能力。
例如,有一道题目是要求学生根据给出的实际问题,建立一个线性方程,并求解该方程。
学生需要将问题转化为数学语言,然后利用方程的解法进行计算。
另外,还有一道题目是要求学生根据给出的实际问题,计算一个比例的值。
学生需要根据问题的要求,进行比例设置和计算。
综上所述,2014年北京中考数学考查的内容主要包括基础知识的掌握与运用、解题思路与运算能力以及实际问题的分析与解决能力。
同学们在备考过程中,应注重对基础知识的巩固和运用能力的培养,同时多做一些实际问题的练习,提高解题思路和分析能力。
这样,在考试中才能取得更好的成绩。
2014年北京市中考数学试卷2014年北京市中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.2的相反数是()A.2B.−2C.−12D.1 22.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106 B.3×105 C.3×106 D.30×1043.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.1 6B.14C.13D.124.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥5.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米7.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A =22.5∘,OC =4,CD 的长为( )A.2√2B.4C.4√2D.88.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图,则该封闭图形可能是( )A.B.C.D.二、填空题(本题共16分,每小题4分)9.分解因式:ax4−9ay2=________.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为________m.11.如图,在平面直角坐标系xOy中,正方形OABC (k≠0),使它的边长为2.写出一个函数y=kx的图象与正方形OABC有公共点,这个函数的表达式为________.12.在平面直角坐标系xOy中,对于点P(x, y),我们把点P′(−y+1, x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3, 1),则点A3的坐标为________,点A2014的坐标为________;若点A1的坐标为(a, b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为________.三、解答题(本题共30分,每小题5分)13.如图,点B在线段AD上,BC // DE,AB=ED,BC=DB.求证:∠A=∠E.14.计算:(6−π)0+(−15)−1−3tan30∘+|−√3|15.解不等式12x−1≤23x−12,并把它的解集在数轴上表示出来.16.已知x−y=√3,求代数式(x+1)2−2x+ y(y−2x)的值.17.已知关于x的方程mx2−(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.18.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60∘,求tan∠ADP的值.20.根据某研究院公布的2009∼2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009∼2013年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为________本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为________本.21.如图,AB是⊙O的直径,C是AB^的中点,⊙O 的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD= 75∘,∠CAD=30∘,AD=2,BD=2DC,求AC 的长.小腾发现,过点C作CE // AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为________,AC的长为________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90∘,∠CAD=30∘,∠ADC=75∘,AC与BD交于点E,AE=2,BE=2ED,求BC的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=2x2+ mx+n经过点A(0, −2),B(3, 4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20∘,求∠ADF的度数;(3)如图2,若45∘<∠PAB<90∘,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.对某一个函数给出如下定义:若存在实数M> 0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(x>0)和y=x+ (1)分别判断函数y=1x1(−4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=−x+1(a≤x≤b, b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m, m≥0)的图象向下平移m个单位,得到的函数的边界值是t,≤t≤1?当m在什么范围时,满足34答案1. 【答案】B【解析】根据相反数的概念作答即可.【解答】解:根据相反数的定义可知:2的相反数是−2.故选:B.2. 【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:300 000=3×105,故选:B.3. 【答案】D【解析】由有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,=∴从中随机抽取一张,点数为偶数的概率是:361.2故选:D.4. 【答案】C【解析】如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.【解答】解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选:C.5. 【答案】A【解析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;=19.平均数=18×5+19×4+20×1+21×212故选:A.6. 【答案】B【解析】根据图象可得,休息后园林队2小时绿化面积为160−60=100平方米,然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160−60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.7. 【答案】C【解析】根据圆周角定理得∠BOC=2∠A=45∘,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角OC=2√2,然后利用CD=2CE 形,所以CE=√22进行计算.【解答】解:∵∠A=22.5∘,∴∠BOC=2∠A=45∘,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=√22OC=2√2,∴CD=2CE=4√2.故选:C.8. 【答案】A【解析】根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.【解答】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=√(√32a)2+(32a−x)2(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选:A.9. 【答案】a(x2−3y)(x2+3y)【解析】首先提取公因式a,进而利用平方差公式进行分解即可.【解答】解:ax4−9ay2=a(x4−9y2)=a(x2−3y)(x2+3y).故答案为:a(x2−3y)(x2+3y).10. 【答案】15【解析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,1.83=x25,解得x=15.故答案为:15.11. 【答案】y=1x ,y=kx(0<k≤4)(答案不唯一)【解析】先根据正方形的性质得到B点坐标为(2, 2),然后根据反比例函数图象上点的坐标特征求出过B点的反比例函数解析式即可.【解答】解:∵正方形OABC的边长为2,∴B点坐标为(2, 2),当函数y=kx (k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=1x.故答案为:y=1x ,y=kx(0<k≤4)(答案不唯一).12. 【答案】(−3, 1),(0, 4),−1<a<1且0<b< 2【解析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2014除以4,根据商和余数的情况确定点A2014的坐标即可;再写出点A1(a, b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.【解答】解:∵A1的坐标为(3, 1),∴A2(0, 4),A3(−3, 1),A4(0, −2),A5(3, 1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A 2014的坐标与A 2的坐标相同,为(0, 4); ∵点A 1的坐标为(a, b),∴A 2(−b +1, a +1),A 3(−a, −b +2),A 4(b −1, −a +1),A 5(a, b),…,依此类推,每4个点为一个循环组依次循环, ∵对于任意的正整数n ,点A n 均在x 轴上方, ∴{a +1>0−a +1>0,{−b +2>0b >0, 解得−1<a <1,0<b <2.故答案为:(−3, 1),(0, 4);−1<a <1且0<b <2.13. 【答案】证明:如图,∵BC // DE , ∴∠ABC =∠BDE .在△ABC 与△EDB 中,{AB =DE ∠ABC =∠BDE BC =BD∴△ABC ≅△EDB(SAS),∴∠A =∠E .【解析】由全等三角形的判定定理SAS 证得△ABC ≅△EDB ,则对应角相等:∠A =∠E .【解答】证明:如图,∵BC // DE ,∴∠ABC =∠BDE .在△ABC 与△EDB 中,{AB =DE ∠ABC =∠BDE BC =BD∴△ABC ≅△EDB(SAS),∴∠A =∠E .14. 【答案】解:原式=1−5−√3+√3 =−4.【解析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1−5−√3+√3 =−4.15. 【答案】解:去分母,得:3x −6≤4x −3, 移项,得:3x −4x ≤6−3,合并同类项,得:−x ≤3,系数化成1得:x ≥−3.则解集在数轴上表示出来为:.【解析】去分母、去括号,移项、合并同类项,系数化成1即可求解.【解答】解:去分母,得:3x−6≤4x−3,移项,得:3x−4x≤6−3,合并同类项,得:−x≤3,系数化成1得:x≥−3.则解集在数轴上表示出来为:.16. 【答案】解:∵x−y=√3,∴(x+1)2−2x+y(y−2x)=x2+2x+1−2x+y2−2xy=x2+y2−2xy+1=(x−y)2+1=(√3)2+1=3+1=4.【解析】先把代数式计算,进一步化简,再整体代入x−y=√3,求得数值即可.【解答】解:∵x−y=√3,∴(x+1)2−2x+y(y−2x)=x2+2x+1−2x+y2−2xy=x2+y2−2xy+1=(x−y)2+1=(√3)2+1=3+1=4.17. 【答案】(1)证明:∵m≠0,△=(m+2)2−4m×2=m2−4m+4=(m−2)2,而(m−2)2≥0,即△≥0,∴方程总有两个实数根;; (2)解:(x−1)(mx−2)=0,x−1=0或mx−2=0,∴x1=1,x2=2,m当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.【解析】(1)先计算判别式的值得到△=(m+ 2)2−4m×2=(m−2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;; (2)利用因式分解法解方程得到x1=1,x2=2,然后利用整数的整除性确定正m整数m的值.【解答】(1)证明:∵m≠0,△=(m+2)2−4m×2=m2−4m+4=(m−2)2,而(m−2)2≥0,即△≥0,∴方程总有两个实数根;; (2)解:(x−1)(mx−2)=0,x−1=0或mx−2=0,∴x1=1,x2=2,m当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.18. 【答案】纯电动汽车每行驶1千米所需的电费为0.18元.【解析】设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得108 x+0.54=27x,解得:x=0.18经检验x=0.18为原方程的解19. 【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD // BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.; (2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60∘,AB=4,∴AB=AF=4,∠ABF=∠AFB=30∘,AP⊥BF,∴AP=12AB=2,∴PH=√3,DH=5,∴tan∠ADP=PHDH =√35.【解析】(1)根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;; (2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60∘,AB=4,得到AB=AF=4,∠ABF=∠ADB=30∘,AP⊥BF,从而得到PH=√3,DH=5,然后利用锐角三角函数的定义求解即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD // BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.; (2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60∘,AB=4,∴AB=AF=4,∠ABF=∠AFB=30∘,AP⊥BF,∴AP=12AB=2,∴PH=√3,DH=5,∴tan∠ADP=PHDH =√35.20. 【答案】5;; ; (3)2014年该小区成年国民阅读图书的总数量约为:990×5=4950(本).故答案为:4950.【解析】(1)1直接减去个部分的百分数即可;;(2)直接利用从2009到2013年平均增长数量,求出即可;; (3)根据(2)的结果直接计算.【解答】解:(1)m%=1−1.0%−15.6%−2.4%−15.0%=66%,∴m=66.; (2)∵年平均增长幅度为(4.78−3.88)÷4=0.225(本),∴2014年的阅读量为:4.78+0.225≈5(本);; (3)2014年该小区成年国民阅读图书的总数量约为:990×5=4950(本).21. 【答案】(1)证明:连接OC,∵C是AB^的中点,AB是⊙O的直径,∴CO⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC // BD,∵OA=OB,∴AC =CD ;; (2)解:∵E 是OB 的中点, ∴OE =BE ,在△COE 和△FBE 中,{∠CEO =∠FEB OE =BE ∠COE =∠FBE,∴△COE ≅△FBE(ASA),∴BF =CO ,∵OB =2,∴BF =2,∴AF =√AB 2+BF 2=2√5,∵AB 是直径,∴BH ⊥AF ,∴△ABF ∽△BHF ,∴AB BH =AF BF ,∴AB ⋅BF =AF ⋅BH ,∴BH =AB⋅BF AF =2√5=4√55. 【解析】(1)连接OC ,由C 是AB ^的中点,AB 是⊙O的直径,则CO ⊥AB ,再由BD 是⊙O 的切线,得BD ⊥AB ,从而得出OC // BD ,即可证明AC =CD ;; (2)根据点E 是OB 的中点,得OE =BE ,可证明△COE ≅△FBE(ASA),则BF =CO ,即可得出BF =2,由勾股定理得出AF =√AB 2+BF 2,由AB 是直径,得BH ⊥AF ,可证明△ABF ∽△BHF ,即可得出BH 的长.【解答】(1)证明:连接OC ,∵C 是AB ^的中点,AB 是⊙O 的直径, ∴CO ⊥AB ,∵BD 是⊙O 的切线,∴BD ⊥AB ,∴OC // BD ,∵OA =OB ,∴AC =CD ;; (2)解:∵E 是OB 的中点, ∴OE =BE ,在△COE 和△FBE 中,{∠CEO =∠FEB OE =BE ∠COE =∠FBE,∴△COE≅△FBE(ASA),∴BF=CO,∵OB=2,∴BF=2,∴AF=√AB2+BF2=2√5,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴AB BH =AFBF,∴AB⋅BF=AF⋅BH,∴BH=AB⋅BFAF =2√5=4√55.22. 【答案】75∘,3【解析】根据相似的三角形的判定与性质,可得AB DF =AEEF=BEDE=2,根据等腰三角形的判定,可得AE=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.【解答】解:∠ABC+∠ACB=∠ECD+∠ACB=∠ACE= 180∘−75∘−30∘=75∘,∠E=75∘,BD=2DC,∴AD=2DE,AE=AD+DE=3,∴AC=AE=3,∠ACE=75∘,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90∘=∠DFA,∴AB // DF,∴△ABE∽△FDE,∴AB DF =AEEF=BEDE=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30∘,∠ADC=75∘,∴∠ACD=75∘,AC=AD.∵DF⊥AC,∴∠AFD=90∘,在△AFD中,AF=2+1=3,∠FAD=30∘,∴DF=AFtan30∘=√3,AD=2DF=2√3.∴AC=AD=2√3,AB=2DF=2√3.∴BC=√AB2+AC2=2√6.23. 【答案】解:(1)∵抛物线y=2x2+mx+n经过点A(0, −2),B(3, 4),代入得:{n=−218+3m+n=4,解得:{m=−4 n=−2,∴抛物线解析式为y=2x2−4x−2,对称轴为直线x=1;; (2)由题意得:C(−3, −4),二次函数y=2x2−4x−2的最小值为−4,由函数图象得出D纵坐标最小值为−4,设直线BC解析式为y=kx+b,将B与C坐标代入得:{3k+b=4−3k+b=−4,解得:k=43,b=0,∴直线BC解析式为y=43x,当x=1时,y=43,则t的范围为−4≤t≤43.【解析】(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;; (2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.【解答】解:(1)∵抛物线y=2x2+mx+n经过点A(0, −2),B(3, 4),代入得:{n=−218+3m+n=4,解得:{m=−4 n=−2,∴抛物线解析式为y=2x2−4x−2,对称轴为直线x=1;; (2)由题意得:C(−3, −4),二次函数y=2x2−4x−2的最小值为−4,由函数图象得出D纵坐标最小值为−4,设直线BC解析式为y=kx+b,将B与C坐标代入得:{3k+b=4−3k+b=−4,解得:k=43,b=0,∴直线BC解析式为y=43x,当x=1时,y=43,则t的范围为−4≤t≤43.24. 【答案】解:(1)如图1所示:; (2)如图2,连接AE,则∠PAB=∠PAE=20∘,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90∘,∴∠EAP=∠BAP=20∘,∴∠EAD=130∘,∴∠ADF=180∘−130∘2=25∘;; (3)如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB= AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90∘,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.【解析】(1)根据题意直接画出图形得出即可;;(2)利用对称的性质以及等角对等边进而得出答案;; (3)由轴对称的性质可得:EF=BF,AE= AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出答案.【解答】解:(1)如图1所示:; (2)如图2,连接AE,则∠PAB=∠PAE=20∘,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90∘,∴∠EAP=∠BAP=20∘,∴∠EAD=130∘,∴∠ADF=180∘−130∘=25∘;2; (3)如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB= AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90∘,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.25. 【答案】解:(1)根据有界函数的定义知,函(x>0)不是有界函数.数y=1xy =x +1(−4≤x ≤2)是有界函数.边界值为:2+1=3;; (2)∵函数y =−x +1的图象是y 随x 的增大而减小,∴当x =a 时,y =−a +1=2,则a =−1当x =b 时,y =−b +1.则{−2≤−b +1<2b >a a =−1,∴−1<b ≤3;; (3)若m >1,函数向下平移m 个单位后,x =0时,函数值小于−1,此时函数的边界t >1,与题意不符,故m ≤1. 当x =−1时,y =1即过点(−1, 1)当x =0时,y 最小=0,即过点(0, 0), 都向下平移m 个单位,则(−1, 1−m)、(0, −m)34≤1−m ≤1或−1≤−m ≤−34, ∴0≤m ≤14或34≤m ≤1.【解析】(1)根据有界函数的定义和函数的边界值的定义进行答题;; (2)根据函数的增减性、边界值确定a =−1;然后由“函数的最大值也是2”来求b 的取值范围;; (3)需要分类讨论:m <1和m ≥1两种情况.由函数解析式得到该函数图象过点(−1, 1)、(0, 0),根据平移的性质得到这两点平移后的坐标分别是(−1, 1−m)、(0, −m);最后由函数边界值的定义列出不等式34≤1−m ≤1或−1≤−m ≤−34,易求m 取值范围:0≤m ≤14或34≤m ≤1. 【解答】解:(1)根据有界函数的定义知,函数y =1x (x >0)不是有界函数. y =x +1(−4≤x ≤2)是有界函数.边界值为:2+1=3;; (2)∵函数y =−x +1的图象是y 随x 的增大而减小,∴当x =a 时,y =−a +1=2,则a =−1当x =b 时,y =−b +1.则{−2≤−b +1<2b >a a =−1,∴−1<b ≤3;; (3)若m >1,函数向下平移m 个单位后,x =0时,函数值小于−1,此时函数的边界t >1,与题意不符,故m ≤1. 当x =−1时,y =1即过点(−1, 1)当x =0时,y 最小=0,即过点(0, 0), 都向下平移m 个单位,则(−1, 1−m)、(0, −m)3 4≤1−m≤1或−1≤−m≤−34,∴0≤m≤14或34≤m≤1.。
绝密★启用前2014年普通高等学校招生全国统一考试(大纲卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,4,6,8}M =,{1,2,3,5,6,7}N =,则M N 中元素的个数为( )A .2B .3C .5D .7 2.已知角α的终边经过点(4,3)-,则cos α=( ) A .45B .35C .35- D .45- 3.不等式组(x 2)0,||1,x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16BC .13D5.函数1)(1)y x =>-的反函数是( )A .3(1e )(1)x y x =->-B .3(e 1)(1)x y x =->-C .3(1e )()x y x =-∈R D .3(e 1)()x y x =-∈R6.已知a 、b 为单位向量,其夹角为60 ,则(2a -b ) b =( )A .1-B .0C .1D .27.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60 种B .70 种C .75 种D .150 种 8.设等比数列{}n a 的前n 项和为n S .若23S =,415S =,则6S =( )A .31B .32C .63D .649.已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F,过2F 的直线l 交C 于A ,B 两点.若1AF B △的周长为,则C 的方程为( )A .22132x y += B .2213x y += C .221128x y += D .221124x y += 10.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .81π4B .16πC .9πD .27π411.双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A .2B.C .4D.12.奇函数()f x 的定义域为R .若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f += ( ) A .2- B .1-C .0D .1第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分.共20分,把答案填写在题中的横线上. 13.6(2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos 22sin y x x =+的最大值为 .15.设x ,y 满足约束条件02321x y x y x y -⎧⎪+⎨⎪-⎩≥≤≤,则4z x y =+的最大值为 .16.设直线1l 和2l 是圆222x y +=的两条切线.若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+. (Ⅰ)设1n n n b a a +=-,证明{}n b 是等差数列; (Ⅱ)求{}n a 的通项公式.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效------------- 姓名________________ 准考证号_____________18.(本小题满分12分)ABC △的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B .19.(本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,90ACB ∠= ,1BC =,12AC CC ==.(Ⅰ)证明:11AC A B ⊥;(Ⅱ)设直线1AA 与平面11BCC B,求二面角1A AB C --的大小.20.(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.21.(本小题满分12分)函数32()33(0)f x ax x x a =++≠. (Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 在区间(1,2)是增函数,求a 的取值范围.22.(本小题满分12分)已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且5||||4QF PQ =. (Ⅰ)求C 的方程;(Ⅱ)过F 的直线l 与C 相交于A 、B 两点,若AB 的垂直平分线l '与C 相交于M 、N 两点,且A 、M 、B 、N 四点在同一圆上,求l 的方程.。
2014年北京市中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)2的相反数是()A.2 B.﹣2 C.﹣ D.2.(4分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×1043.(4分)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.4.(4分)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥5.(4分)某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.56.(4分)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米7.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD 的长为()A.2 B.4 C.4 D.88.(4分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.二、填空题(本题共16分,每小题4分)9.(4分)分解因式:ax4﹣9ay2=.10.(4分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.(4分)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为.12.(4分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为.三、解答题(本题共30分,每小题5分)13.(5分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.14.(5分)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|15.(5分)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.16.(5分)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.17.(5分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.18.(5分)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.(5分)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.(5分)根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009~2013年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为本.21.(5分)如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.(5分)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D 在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.(7分)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.(8分)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4<x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?2014年北京市中考数学试卷参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)2的相反数是()A.2 B.﹣2 C.﹣ D.【分析】根据相反数的概念作答即可.【解答】解:根据相反数的定义可知:2的相反数是﹣2.故选:B.【点评】此题主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(4分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:300 000=3×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.【分析】由有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,直接利用概率公式求解即可求得答案.【解答】解:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选:D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.(4分)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥【分析】如图:该几何体的俯视图与左视图均为矩形,主视图为三角形,易得出该几何体的形状.【解答】解:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选:C.【点评】本题是个简单题,主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.5.(4分)某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.6.(4分)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米【分析】根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,然后可得绿化速度.【解答】解:根据图象可得,休息后园林队2小时绿化面积为160﹣60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.【点评】此题主要考查了函数图象,关键是正确理解题意,从图象中找出正确信息.7.(4分)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD 的长为()A.2 B.4 C.4 D.8【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.8.(4分)已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图,则该封闭图形可能是()A.B.C.D.【分析】根据等边三角形,菱形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.【解答】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点A的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、菱形,点P在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,AP的长度,先变速增加至AP为直径,然后再变速减小至点P回到点A,题干图象不符合.故选:A.【点评】本题考查了动点问题函数图象,熟练掌握等边三角形,菱形,正方形以及圆的性质,理清点P在各边时AP的长度的变化情况是解题的关键.二、填空题(本题共16分,每小题4分)9.(4分)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).【分析】首先提取公因式a,进而利用平方差公式进行分解即可.【解答】解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).【点评】此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.10.(4分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15m.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.(4分)如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为y=,y=(0<k≤4)(答案不唯一).【分析】先根据正方形的性质得到B点坐标为(2,2),然后根据反比例函数图象上点的坐标特征求出过B点的反比例函数解析式即可.【解答】解:∵正方形OABC的边长为2,∴B点坐标为(2,2),当函数y=(k≠0)过B点时,k=2×2=4,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,y=(0<k≤4)(答案不唯一).【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.(4分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为(﹣3,1),点A2014的坐标为(0,4);若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为﹣1<a<1且0<b<2.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2014除以4,根据商和余数的情况确定点A2014的坐标即可;再写出点A1(a,b)的“伴随点”,然后根据x轴上方的点的纵坐标大于0列出不等式组求解即可.【解答】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A2014的坐标与A2的坐标相同,为(0,4);∵点A1的坐标为(a,b),∴A2(﹣b+1,a+1),A3(﹣a,﹣b+2),A4(b﹣1,﹣a+1),A5(a,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n,点A n均在x轴上方,∴,,解得﹣1<a<1,0<b<2.故答案为:(﹣3,1),(0,4);﹣1<a<1且0<b<2.【点评】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题(本题共30分,每小题5分)13.(5分)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.【分析】由全等三角形的判定定理SAS证得△ABC≌△EDB,则对应角相等:∠A=∠E.【解答】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,∴△ABC≌△EDB(SAS),∴∠A=∠E.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.14.(5分)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣5﹣+=﹣4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(5分)解不等式x﹣1≤x﹣,并把它的解集在数轴上表示出来.【分析】去分母、去括号,移项、合并同类项,系数化成1即可求解.【解答】解:去分母,得:3x﹣6≤4x﹣3,移项,得:3x﹣4x≤6﹣3,合并同类项,得:﹣x≤3,系数化成1得:x≥﹣3.则解集在数轴上表示出来为:.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.16.(5分)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【分析】先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.【解答】解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.【点评】此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.17.(5分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【分析】(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.【解答】(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18.(5分)列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.【分析】设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,根据驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,所行的路程相等列出方程解决问题.【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费为x元,则原来的燃油汽车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解答:纯电动汽车每行驶1千米所需的电费为0.18元.【点评】此题考查分式方程的应用,找出题目蕴含的数量关系,列出方程解决问题.四、解答题(本题共20分,每小题5分)19.(5分)如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.【分析】(1)根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.【点评】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.20.(5分)根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2009~2013年成年国民年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为5本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为4950本.【分析】(1)1直接减去个部分的百分数即可;(2)直接利用从2009到2013年平均增长数量,求出即可;(3)根据(2)的结果直接计算.【解答】解:(1)m%=1﹣1.0%﹣15.6%﹣2.4%﹣15.0%=66%,∴m=66.(2)∵年平均增长幅度为(4.78﹣3.88)÷4=0.225(本),∴2014年的阅读量为:4.78+0.225≈5(本);故答案为:5;(3)2014年该小区成年国民阅读图书的总数量约为:990×5=4950(本).故答案为:4950.【点评】本题考查了扇形统计图,能从图表中找到相关信息并加以利用是解题的关键.21.(5分)如图,AB是⊙O的直径,C是的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【分析】(1)连接OC,由C是的中点,AB是⊙O的直径,则CO⊥AB,再由BD是⊙O的切线,得BD⊥AB,从而得出OC∥BD,即可证明AC=CD;(2)根据点E是OB的中点,得OE=BE,可证明△COE≌△FBE(ASA),则BF=CO,即可得出BF=2,由勾股定理得出AF=,由AB是直径,得BH⊥AF,可证明△ABF∽△BHF,即可得出BH的长.【解答】(1)证明:连接OC,∵C是的中点,AB是⊙O的直径,∴CO⊥AB,∵BD是⊙O的切线,∴BD⊥AB,∴OC∥BD,∵OA=OB,∴AC=CD;(2)解:∵E是OB的中点,∴OE=BE,在△COE和△FBE中,,∴△COE≌△FBE(ASA),∴BF=CO,∵OB=2,∴BF=2,∴AF==2,∵AB是直径,∴BH⊥AF,∴△ABF∽△BHF,∴=,∴AB•BF=AF•BH,∴BH===.【点评】本题考查了切线的性质以及全等三角形的判定和性质、勾股定理,是中档题,难度不大.22.(5分)阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D 在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为75°,AC的长为3.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.【分析】根据相似的三角形的判定与性质,可得=2,根据等腰三角形的判定,可得AE=AC,根据正切函数,可得DF的长,根据直角三角形的性质,可得AB与DF的关系,根据勾股定理,可得答案.【解答】解:∠ABC+∠ACB=∠ECD+∠ACB=∠ACE=180°﹣75°﹣30°=75°,∠E=75°,BD=2DC,∴AD=2DE,AE=AD+DE=3,∴AC=AE=3,∠ACE=75°,AC的长为3.过点D作DF⊥AC于点F.∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴=2,∴EF=1,AB=2DF.在△ACD中,∠CAD=30°,∠ADC=75°,∴∠ACD=75°,AC=AD.∵DF⊥AC,∴∠AFD=90°,在△AFD中,AF=2+1=3,∠FAD=30°,∴DF=AFtan30°=,AD=2DF=2.∴AC=AD=2,AB=2DF=2.∴BC==2.【点评】本题考查了相似三角形的判定与性质,利用了相似三角形的判定与性质,直角三角形的性质,勾股定理.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.【分析】(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可;(2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围.【解答】解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4),代入得:,解得:,∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1;(2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4,由函数图象得出D纵坐标最小值为﹣4,设直线BC解析式为y=kx+b,将B与C坐标代入得:,解得:k=,b=0,∴直线BC解析式为y=x,当x=1时,y=,则t的范围为﹣4≤t≤.【点评】此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键.24.(7分)在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.【分析】(1)根据题意直接画出图形得出即可;(2)利用对称的性质以及等角对等边进而得出答案;(3)由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,进而利用勾股定理得出答案.【解答】解:(1)如图1所示:(2)如图2,连接AE,则∠PAB=∠PAE=20°,AE=AB=AD,∵四边形ABCD是正方形,∴∠BAD=90°,∴∠EAP=∠BAP=20°,∴∠EAD=130°,∴∠ADF==25°;(3)如图3,连接AE、BF、BD,由轴对称的性质可得:EF=BF,AE=AB=AD,∠ABF=∠AEF=∠ADF,∴∠BFD=∠BAD=90°,∴BF2+FD2=BD2,∴EF2+FD2=2AB2.【点评】此题主要考查了正方形的性质以及勾股定理和等腰三角形的性质等知识,利用轴对称的性质得出对应边相等是解题关键.25.(8分)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(﹣4<x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1?【分析】(1)根据有界函数的定义和函数的边界值的定义进行答题;(2)根据函数的增减性、边界值确定a=﹣1;然后由“函数的最大值也是2”来求b的取值范围;(3)需要分类讨论:m<1和m≥1两种情况.由函数解析式得到该函数图象过点(﹣1,1)、(0,0),根据平移的性质得到这两点平移后的坐标分别是(﹣1,1﹣m)、(0,﹣m);最后由函数边界值的定义列出不等式≤1﹣m≤1或﹣1≤﹣m≤﹣,易求m取值范围:0≤m≤或≤m≤1.【解答】解:(1)根据有界函数的定义知,函数y=(x>0)不是有界函数.y=x+1(﹣4≤x≤2)是有界函数.边界值为:2+1=3;(2)∵函数y=﹣x+1的图象是y随x的增大而减小,∴当x=a时,y=﹣a+1=2,则a=﹣1当x=b时,y=﹣b+1.则,∴﹣1<b≤3;(3)若m>1,函数向下平移m个单位后,x=0时,函数值小于﹣1,此时函数的边界t>1,与题意不符,故m≤1.当x=﹣1时,y=1 即过点(﹣1,1)=0,即过点(0,0),当x=0时,y最小都向下平移m个单位,则(﹣1,1﹣m)、(0,﹣m)≤1﹣m≤1或﹣1≤﹣m≤﹣,∴0≤m≤或≤m≤1.【点评】本题考查了二次函数综合题型.掌握“有界函数”和“有界函数的边界值”的定义是解题的关键.。
14年北京中考数学真题卷一、选择题(本大题共8小题,每小题4分,满分32分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.2的相反数是A.2 B.-2 C.12D.122.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为A.0.3×106B.3×105C.3×106D.30×1043.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是A.16B.14C.13D.124.下图是某几何体的三视图,该几何体是A.圆锥B.圆柱C.正三棱柱D.正三棱锥B A第4题第6题第7题5.某篮球队12则这12A.18,19 B.19,19 C.18,19.5 D.19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为A.40平方米B.50平方米C.80平方米D.100平方米7.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为A.B.4C.D.88.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y.表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是A AAAA.B.C.D.二、填空题(本大题共4小题,每小题4分,满分16分.)9.分解因式:ax4-9ay2=__________.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为__________m.11.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数kyx=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为__________.12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为__________,点A2014的坐标为__________;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b 应满足的条件为__________.三、解答题(本大题共6小题,每小题5分,满分30分,解答应写出文字说明、证明过程或演算步骤)13.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.EB14.计算:(6-π)0+115-⎛⎫- ⎪⎝⎭-3tan30°+.15.解不等式1211232≤--x x,并把它的解集在数轴上表示出来.16.已知x-y(x+1)2-2x+y(y-2x)的值.17.已知关于x的方程mx2-(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.18.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.如图,在□ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.D AB20.根据某研究院公布的2009-2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009 到2013 年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014 年成年国民年人均阅读图书的数量约为__________本;(3)2013 年某小区倾向图书阅读的成年国民有990 人,若该小区2014 年与2013 年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为__________本.21.如图,AB是⊙O的直径,C是AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.D A B22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.BADBEA图1 图2小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为__________,AC的长为__________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.BDA图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图像,求点D纵坐标t的取值范围.24.在正方形ABCD外侧作直线AP,点B关于直线交直线AP于点F.(1)依题意补全图1;(2)若∠P AB=20°,求∠ADF的度数;(3)如图2,若45°<∠P AB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.P图1 图225.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数1yx(x>0)和y=x+1(-4<x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=-x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(-1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足34≤t≤1?。
2014年北京中考题数学题一、选择题(本题共32分,每题4分)
下面各题均有四个选项,其中只有一个是符合题意的
1.2的相反数是().
A.2B.2-C.
1
2
-D.
1
2
2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨,将300000用科学计数法表示应为().
A.6
0.310
⨯B.5
310
⨯C.6
310
⨯D.4
3010
⨯
3.如图,有6张扑克牌,从中随机抽取1张,点数为偶数的概率().
A.1
6
B.
1
4
C.
1
3
D.
1
2
4.右图是某几何体的三视图,该几何体是().
A.圆锥B.圆柱
C.正三棱柱D.正三棱锥
5.某篮球队12名队员的年龄如下表所示:
年龄(岁)18 19 20 21
人数 5 4 1 2
则这12
A.18,19B.19,19C.18,19.5D.19,19.5
6.园林队公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图像如图所示,则休息后园林队每小时绿化面积为
().
A.40平方米B.50平方米
C.80平方米D.100平方米
7.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD
的长为( ).
A .22
B .4
C .42
D .8
8.已知点A 为某封闭图形边界的一定点,动点P 从点A 出发,沿其边界顺时
针匀速运动一周,设点P 的时间为x ,线段AP 的长为y ,表示y 与x 的
函数关系的图象大致如图所示,则该封闭图形可能是( ).
二.填空题(本体共16分,每题4分)
9.分解因式:24ay 9x a -=___________________.
10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为
25m ,那么这根旗杆的高度为_________________m .
11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)
k
y k x
=≠使它的图象与正方形OABC 有公共点,这个函数的表达式为______________.
12.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 伴随点,一直点1A 的伴
随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到点1A ,2A ,3A …,n A …,若点1A 的坐标为(3,1),则点3A 的坐标为__________,点2014A 的坐标为__________;若点1A 的坐标为(,)a b ,对于任意正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为_____________.
三.解答题(本题共30分,每小题5分)
13.如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.
14.计算:()3-3tan30----+⎪⎭
⎫
⎝⎛+ο1
5160
π.
15.解不等式2
1
32121-≤-x x ,并把它的解集在数轴上表示出来.(添加图)
● 已知x-y=3,求代数式(x+1 )2 - 2x + y(y-2x) 的值.
● 已知关于x 的方程mx 2-(m+2)x+2=0(m≠0). (1) 求证:方程总有两个实数根;
(2) 若方程的两个实数根都是整数,求正整数m 的值.
18.列方程或方程组解应用题
小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.
19.如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF 交于点P,连接EF.PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
20.根据某研究院公布的2009-2013年我国成年国民阅读调查报告的部分数据,绘制的统计图表如下:
2013年成年国民2009~2013年成年国民
倾向的阅读方式人数分布统计图年人均阅读图书数量统计表
年份年人均阅读图书数量(本)
2009 3.88
2010 4.12
2011 4.35
2012 4.56
2013 4.78
根据以上信息解答下列问题:
(1)直接写出扇形统计图中m的值;
(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为_______本;
(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为_____本.
21.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连结BH.
(1)求证:AC=CD;
(2)若OB=2,求BH的长.
22.阅读下面材料:
小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.
E
图1 图2
小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).
请回答:∠ACE的度数为___________,AC的长为_____________.
参考小腾思考问题的方法,解决问题:
如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,
AE=2,BE=2ED,求BC的长.
五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.
24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.
(1)依题意补全图1;
(2)若∠PAB=20°,求∠ADF的度数;
(3)如图2,若45°<∠PAB < 90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.
25. 对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y ,都满足-M≤y≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.
(1) 分别判断函数y=x
1(x > 0)和y= x + 1(-4 < x ≤ 2)是不是有界函数?若是有界函数,求边界值;
(2) 若函数y=-x+1(a ≤ x ≤ b ,b > a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3) 将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么
范围时,满足 14
3
≤≤t ?。