2014年北京中考数学试题及答案
- 格式:doc
- 大小:369.51 KB
- 文档页数:14
2014年北京市高级中等学校招生考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共32分)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.2的相反数是( )A.2B.-2C.-D.2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为( )A.0.3× 06B.3× 05C.3× 06D.30× 043.如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是( )D.A. B. C.34.如图是某几何体的三视图,该几何体是( )A.圆锥B.圆柱C.正三棱柱D.正三棱锥5.某篮球队12则这12名队员年龄的众数和平均数分别是( )A.18,19B.19,19C.18,19.5D.19,19.56.园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( )A.40平方米B.50平方米C.80平方米D.100平方米7.如图,☉O的直径AB垂直于弦CD,垂足是E,∠A= .5°,OC= ,CD的长为( )A.2B.4C.4D.88.已知点A为某封闭图形边界上一定点,动点P从点A出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( )第Ⅱ卷(非选择题,共88分)二、填空题(本题共16分,每小题4分)9.分解因式:ax4-9ay2= .10.在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为m.11.如图,在平面直角坐标系xOy中,正方形OABC的边长为2.写出一个函数y=(k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式为.12.在平面直角坐标系xOy中,对于点P(x,y),我们把点P'(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A3的坐标为,点A2 014的坐标为;若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b应满足的条件为.三、解答题(本题共30分,每小题5分)13.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.14.计算:(6-π)0+-5--3tan 30°+|-3|.15.解不等式x- ≤x-,并把它的解集在数轴上表示出来.316.已知x-y=3,求代数式(x+1)2-2x+y(y-2x)的值.17.已知关于x的方程mx2-(m+ )x+ =0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.18.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.四、解答题(本题共20分,每小题5分)19.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连结EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB= ,AD= ,∠ABC= 0°,求tan∠ADP的值.20.根据某研究院公布的2009—2013年我国成年国民阅读调查报告的部分相关数据,绘制的统计图表如下:2013年成年国民倾向的阅读方式人数分布统计图2009—2013年成年国民根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为本.21.如图,AB是☉O的直径,C是的中点,☉O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交☉O于点H,连结BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC 上,∠BAD=75°,∠CAD=30°,AD= ,BD= DC,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2) .请回答:∠ACE的度数为,AC的长为.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连结BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB= 0°,求∠ADF的度数;(3)如图2,若 5°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足-M≤y≤M,则称这个函数是有界函数.在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1)分别判断函数y=(x>0)和y=x+1(- <x≤ )是不是有界函数?若是有界函数,求其边界值;(2)若函数y=-x+ (a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x 2(- ≤x≤m,m≥0)的图象向下平移m 个单位,得到的函数的边界值是t,当m 在什么范围时,满足3≤t≤ ?答案全解全析:一、选择题1.B ∵ +(- )=0,∴ 的相反数为-2.故选B.2.B 300 000=3× 05.故选B.3.D 6张扑克牌中,点数为偶数的有3张,所以抽到点数为偶数的概率是3 =.故选D.4.C 选项A 、B 中的几何体,三视图中一定有一个圆,与所给的三视图不符,排除A,B;选项D 中的几何体的三视图是三个三角形,与所给的三视图也不相符,排除D.只有选项C 中的几何体与所给的三视图相符,故选C.5.A 年龄为18岁的队员最多,故众数为18;12名队员年龄的平均数为5 9 0=19.故选A.6.B 休息的过程中是不进行绿化工作的,即绿化面积S 不变化,由图象可知第1~2小时为园林队休息时间,则休息后园林队的绿化面积为160-60=100(平方米),所用的时间为4-2=2(小时),所以休息后园林队每小时绿化面积为 00÷ =50(平方米).故选B. 7.C∵CO=AO,∴∠COE= ∠A= 5°.∵OC= ,∴CE=OC·sin∠COE= ×=2 .∵AB⊥CD,∴CD= C E=4 故选C.8.A 由图象可知,AP 先由短变长,然后略微变短再变长,最后AP 由长变短.选项A 与题目要求相符;选项B 是先由短变长,然后略微变短再变长,接着再略微变短再变长,最后由长变短,与题目要求不符;选项C 是先由短变长,到达第一个顶点后继续变长,到达第二个顶点后开始变短,到达第三个顶点后继续变短,与题目要求不符;选项D 是先由短变长,在经过点A 的直径与圆的另一个交点处时最长,然后开始变短,与题目要求不符.故选A.评析 解决本题的关键是根据图形特征分析函数图象随自变量变化的趋势,结合图形性质通过定性分析来确定选项.属中档题. 二、填空题9.答案 a(x 2+3y)(x 2-3y)解析 ax 4-9ay 2=a(x 4-9y 2)=a(x 2+3y)(x 2-3y). 10.答案 15解析 设旗杆的高度为x m,则 . 3=5,解得x=15.即旗杆的高度为15 m.11.答案 y=(答案不唯一,满足0<k≤ 即可)解析 要使反比例函数的图象与正方形有交点,则至少要经过点B,且k>0,而点B 的坐标为(2,2),所以k 的最大值为4,即0<k≤ . 12.答案 (-3,1);(0,4);-1<a<1,0<b<2解析 由题意可知,点A 2的坐标为(0,4),点A 3的坐标为(-3,1),点A 4的坐标为(0,-2),点A 5的坐标为(3, ),…,所以每四个点坐标为一个循环.∵ 0 ÷ =503…… ,∴点A 2 014的坐标与点A 2的坐标一致,为(0,4).因为每四个点坐标为一个循环,所以要求a,b 应满足的条件,只需要知道前4个点的坐标即可.∵点A 1的坐标为(a,b),∴点A 2、A 3、A 4的坐标依次为(-b+1,a+1)、(-a,-b+2)、(b-1,-a+ ).∵点A n 均在x 轴上方,∴0,0,-0,-0,∴-1<a<1,0<b<2.评析解决本题的关键是读懂题目要求,并按照题目要求正确操作.尤其是“在x轴上方”即为“纵坐标>0”.属中档题.三、解答题13.证明∵BC∥DE,∴∠ABC=∠D.在△ABC和△EDB中,,∠∠,,∴△ABC≌△EDB.∴∠A=∠E.14.解析原式=1-5-3×33+3=-4.15.解析去分母,得3x- ≤ x-3,移项,得3x- x≤ -3.合并同类项,得-x≤3,系数化为1,得x≥-3.不等式的解集在数轴上表示如下:16.解析(x+1)2-2x+y(y-2x)=x2+2x+1-2x+y2-2xy=x2-2xy+y2+1.∵x-y=∴原式=(x-y)2+1=4.17.解析(1)证明:∵m≠0,∴mx2-(m+2)x+2=0是关于x的一元二次方程.∴Δ=[-(m+2)]2- × m=(m-2)2.∵(m-2)2≥0,∴方程总有两个实数根.(2)由求根公式,得x=( )(- ).∴x1=1,x2=.∵方程的两个实数根都是整数,且m为正整数,∴m= 或2.18.解析设新购买的纯电动汽车每行驶1千米所需的电费为x元.由题意,得 7= 00.5.解得x=0.18.经检验,x=0.18是原方程的解,且符合题意.答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元.四、解答题19.解析(1)证明:∵BF是∠ABC的平分线,∴∠ABF=∠EBF.∴∠AFB=∠EBF.∴∠AFB=∠ABF.∴AB=AF.同理,AB=BE.∴AF=BE.又∵AF∥BE,∴四边形ABEF是平行四边形.∵AB=AF,∴四边形ABEF是菱形.(2)过点P作PG⊥AD于点G,如图.∵四边形ABEF是菱形,∠ABC= 0°,∴△ABE是等边三角形.∵AB= ,∴AE=AB= ,∴AP=AE=2.在Rt△AGP中,可求得∠PAG= 0°.∴AG=AP·cos 0°= ,GP=AP·sin 0°=3.∵AD= ,∴DG=5,.∴tan∠ADP==3520.解析(1)66.0.( )5.00±0.0 .(3)7 500±30.(990÷ .0%×5=7 500) 21.解析(1)证明:连结BC.∵AB是☉O的直径,∴∠ACB=90°.∵C是的中点,∴=.∴AC=BC.∴∠CAB=∠CBA= 5°.∵BD是☉O的切线,∴∠ABD=90°.可得∠CBD=∠D= 5°.∴BC=CD.∴AC=CD.(2)连结OC.∴∠OCA=∠CAB= 5°.∴∠COE=90°.∵E是OB的中点,∴OE=BE.∵∠CEO=∠FEB,∴Rt△COE≌Rt△FBE.∴BF=OC.∵OB= ,∴BF= .由勾股定理,得AF=2.∵∠ABF=∠AHB=90°,∴BH=·=55.22.解析∠ACE的度数为75°,AC的长为3.解决问题:过点D作DF∥AB交AC于点F,如图.∴∠DFE=∠BAC=90°,又∠AEB=∠FED,∴△ABE∽△FDE.∴==.∵BE= ED,AE= ,∴FE= ,∴AF=3.∵∠CAD=30°,∴FD=,AD=2∵= ,∴AB=∵∠ADC=75°,∠CAD=30°,∴∠ACD=75°,∴AC=AD= 3.在Rt△ABC中,由勾股定理可得BC=2.评析本题考查了相似三角形的判定与性质、三角函数等知识.解决本题的关键是读懂题目中给出的操作方法,由平行想到相似三角形.属中档题.五、解答题23.解析( )∵点A,B在抛物线y=2x2+mx+n上,∴-,33m n.解得- ,- .∴抛物线的表达式为y=2x2-4x-2.∴抛物线的对称轴为x=1.(2)由题意可知,点C的坐标为(-3,-4). 设直线BC的表达式为y=kx+b(k≠0).∴3,--3,解得3,0.∴直线BC的表达式为y=3x.∴当x=1时,y=3.结合图象可知,点A在直线BC的下方,且抛物线的顶点坐标为(1,-4),∴- ≤t≤3.24.解析(1)补全图形,如图所示.(2)连结AE,如图.∵点E与点B关于直线AP对称,∴AE=AB,∠EAP=∠BAP= 0°.∵AB=AD,∴AE=AD,∴∠AED=∠ADF.又∠BAD=90°,∴ ∠ADF+ 0°+90°= 0°.∴∠ADF= 5°.(3)AB,FE,FD满足的数量关系为FE2+FD2=2AB2. 证明:连结AE,BF,BD,设BF交AD于点G,如图.∵点E与点B关于直线AP对称,∴AE=AB,FE=FB.可证得∠FEA=∠FBA.∵AB=AD,∴AE=AD.∴∠ADE=∠AED.∴∠ADE=∠ABF.又∵∠DGF=∠AGB,∴∠DFB=∠BAD=90°.∴FB2+FD2=BD2.∵BD2=2AB2,∴FE2+FD2=2AB2.25.解析(1)y=(x>0)不是有界函数;y=x+1(- <x≤ )是有界函数,边界值是3.(2)对于函数y=-x+ (a≤x≤b,b>a),∵y随x的增大而减小,∴y的最大值是-a+1,y的最小值是-b+1.∵函数的最大值是2,∴a=-1.又∵函数的边界值是2,∴-b+ ≥-2,∴b≤3.∴- <b≤3.(3)由题意,函数平移后的表达式为y=x2-m(- ≤x≤m,m≥0).当x=-1时,y=1-m;当x=0时,y=-m;当x=m时,y=m2-m.根据二次函数的对称性,当0≤m≤ 时,1-m≥m2-m;当m>1时,1-m<m2-m.①当0≤m≤时,1-m≥m,由题意,边界值t=1-m.当3≤t≤ 时,0≤m≤.∴0≤m≤.②当<m≤ 时,1-m<m.由题意,边界值t=m.当3≤t≤ 时,3≤m≤ .∴3≤m≤ .③当m>1时,由题意,边界值t≥m.∴不存在满足3≤t≤ 的m值.综上所述,当0≤m≤或3≤m≤ 时,满足3≤t≤ .。
(2014朝阳)22.以下是小辰同学阅读的一份材料和思考:五个边长为1的小正方形如图①放置,用两条线段把它们分割成三部分(如图②),移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的新正方形(如图③).小辰阅读后发现,拼接前后图形的面积相等....,若设新的正方形的边长为x (x >0),可得x 2=5,x =5.由此可知新正方形边长等于两个小正方形组成的矩形的对角线长. 参考上面的材料和小辰的思考方法,解决问题:五个边长为1的小正方形(如图④放置),用两条线段把它们分割成四部分,移动其中的两部分,与未移动的部分恰好拼接成一个无空隙无重叠的矩形,且所得矩形的邻边之比为1:2.具体要求如下: (1)设拼接后的长方形的长为a ,宽为b ,则a 的长度为 ; (2)在图④中,画出符合题意的两条分割线(只要画出一种即可); (3)在图⑤中,画出拼接后符合题意的长方形(只要画出一种即可)(2014大兴)22. 如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6).(1)当G(4,8)时,则∠FGE= °(2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被 过P 点的一条直线分割成两部分后,可以拼成一个正方形.要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法).图④ 图⑤O BACOBA 图① 图② 图③FE DCB A EDCB A(2014东城)22. 阅读下面材料:小炎遇到这样一个问题:如图1,点E 、F 分别在正方形ABCD 的边BC ,CD 上,∠EAF =45°,连结EF ,则EF =BE +DF ,试说明理由.F E DCBAGF EDCBA图1 图2小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中.她先后尝试了翻折、旋转、平移的方法,最后发现线段AB ,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A 逆时针旋转90°得到△ADG ,再利用全等的知识解决了这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)如图3,四边形ABCD 中,AB =AD ,∠BAD =90°点E ,F 分别在边BC ,CD 上,∠EAF =45°.若∠B ,∠D 都不是直角,则当∠B 与∠D 满足_ 关系时,仍有EF =BE +DF ; (2)如图4,在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 均在边BC 上,且∠DAE =45°,若BD =1, EC =2,求DE 的长.图3 图4(2014房山)22.阅读下列材料:小明遇到这样一个问题:已知:在△ABC 中,AB ,BC ,AC 三边的长分别为5、10、13 ,求△ABC 的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积. 他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为;参考小明解决问题的方法,完成下列问题:(2)图2是一个6×6的正方形网格(每个小正方形的边长为1) .①利用构图法在答题卡的图2中画出三边长分别为13、25、29的格点△DEF;②计算△DEF的面积为.(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF .若22,13,17PQ PR QR=== ,则六边形AQRDEF的面积为__________.FAQDEPR(2014丰台)22. 在学习三角形中线的知识时,小明了解到:三角形的任意一条中线所在的直线可以把该三角形分为面积相等的两部分。
2014年北京市中考数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个.是符合题意的.1.(4分)(2014•北京)2的相反数是()A.2 B.-2 C.-D.答案:B解析:根据相反数的定义可知:2的相反数是-2.故选:B.2.(4分)(2014•北京)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106B.3×105C.3×106D.30×104答案:B解析:300 000=3×105,故选:B.3.(4分)(2014•北京)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是()A.B.C.D.答案:D解析:∵有6张扑克牌,从中随机抽取一张,点数为偶数的有3种情况,∴从中随机抽取一张,点数为偶数的概率是:=.故选D.4.(4分)(2014•北京)如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥答案:C解析:该几何体的左视图为矩形,俯视图亦为矩形,主视图是一个三角形,则可得出该几何体为三棱柱.故选C.解析:年龄为18岁的队员人数最多,众数是18;平均数=12221120419518⨯⨯⨯⨯+++=19.故选A.6.(4分)(2014•北京)园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图,则休息后园林队每小时绿化面积为()A.40平方米B.50平方米C.80平方米D.100平方米答案:B解析:根据图象可得,休息后园林队2小时绿化面积为160-60=100平方米,每小时绿化面积为100÷2=50(平方米).故选:B.7.(4分)(2014•北京)如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,CD 的长为( )A . 22B . 4C . 42D .8答案:C解析:∵∠A =22.5°,∴∠BOC =2∠A =45°,∵圆O 的直径AB 垂直于弦CD ,∴CE =DE ,△OCE 为等腰直角三角形,∴CE =22OC =22, ∴CD =2CE =42.故选C .8.(4分)(2014•北京)已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图,则该封闭图形可能是( )A .B .C .D .答案:A解析:A 、等边三角形,点P 在开始与结束的两边上直线变化,在点A 的对边上时,设等边三角形的边长为a ,则y =22)23()23(x a a -+ (a <x <2a),符合题干图象; B 、菱形,点P 在开始与结束的两边上直线变化,在另两边上时,都是先变速减小,再变速增加,题干图象不符合;C 、正方形,点P 在开始与结束的两边上直线变化,在另两边上,先变速增加至∠A 的对角顶点,再变速减小至另一顶点,题干图象不符合;D 、圆,AP 的长度,先变速增加至AP 为直径,然后再变速减小至点P 回到点A ,题干图象不符合.故选A .二、填空题(本题共16分,每小题4分)9.(4分)(2014•北京)分解因式:ax 4-9ay 2= .答案:a(x 2-3y)(x 2+3y).解析:ax 4-9ay 2=a(x 4-9y 2)=a(x 2-3y)(x 2+3y).故答案为:a(x 2-3y)(x 2+3y).10.(4分)(2014•北京)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 m .答案:15解析:设旗杆高度为x 米, 由题意得,2538.1x =,解得x =15. 故答案为:15.11.(4分)(2014•北京)如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数y =xk (k ≠0),使它的图象与正方形OABC 有公共点,这个函数的表达式为 .解析:∵正方形OABC 的边长为2,∴B 点坐标为(2,2),当函数y =xk (k ≠0)过B 点时,k =2×2=4,∴满足条件的一个反比例函数解析式为y =x 1. 故答案为:y =x 1,y =xk (0<k ≤4)(答案不唯一).12.(4分)(2014•北京)在平面直角坐标系xOy 中,对于点P(x ,y),我们把点P(-y +1,x +1)叫做点P ′伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 ,点A 2014的坐标为 ;若点A 1的坐标为(a ,b),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为 .答案:(-3,1),(0,4);-1<a <1且0<b <2.解析:∵A 1的坐标为(3,1),∴A 2(0,4),A 3(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2014÷4=503余2,∴点A 2014的坐标与A 2的坐标相同,为(0,4);∵点A 1的坐标为(a ,b),∴A 2(-b +1,a +1),A 3(-a ,-b +2),A 4(b -1,-a +1),A 5(a ,b),…,依此类推,每4个点为一个循环组依次循环,∵对于任意的正整数n ,点A n 均在x 轴上方, ∴,,解得-1<a <1,0<b <2.故答案为:(-3,1),(0,4);-1<a <1且0<b <2.三、解答题(本题共30分,每小题5分)13.(5分)(2014•北京)如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,BC =DB .求证:∠A =∠E .答案: 见解析。
2014年北京市高级中等学校招生考试数学试卷(附参考答案)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.2的相反数是( B ).A .2B .2-C .12 D .12- 2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨,将300 000用科学记数法表示应为( B ).A .60.310⨯B .5310⨯C .6310⨯D .43010⨯ 3.如图,有6张扑克如下,从中随机抽取一张,点数为偶数的概率是( D ).A .16 B .14 C .13D .12 4.右图是几何体的三视图,该几何体是( C ). A .圆锥 B .圆柱 C .正三棱柱 D .正三棱锥5.某篮球队12名队员的年龄如下表所示.则这12名队员年龄的众数和平均数分别是( A ). A .18,19 B .19,19 C .18,19.5 D .19,19.56.园林队在某公园进行绿化,是间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( B ).A .40平方米B .50平方米C .80平方米D .100平方米7.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,∠A =22.5°,OC =4,CD 的长为( C ).A .22B .4C .42D .88.已知点A 为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周,设点P 运动的时间为x ,线段AP 的长为y .表示y 与x 的函数关系的图象大致如图所示,则该封闭图形可能是( A ).A B C D二、填空题(本题共16分,每小题4分) 9. 分解因式:429ax ay -=()()2233a x y x y +-.10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为 15 m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2,写出一个函数()0ky k x=≠,使它的图象与正方形有公共点,这个函数的表达式为4y x=. 12.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ’(1y -+,1x +)叫做点P 的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,An ,….若点A1的坐标为(3,1),则点A3的坐标为 (-3,1) ,点A2014的坐标为 (0,4) ;若点A1的坐标为(a ,b ),对于任意的正整数n ,点An 均在x 轴上方,则a 、b 应满足的条件为1102a b -<<⎧⎨<<⎩.三、解答题(本题共30分,每小题5分)13.如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,BC =DB . 求证:∠A =∠E .证明:∵BC ∥DE ,∴∠ABC =∠EDB 又∵AB =ED ,BC =BD ∴△ABC ≌△EDB (SAS ) ∴∠A =∠E . 14.计算:()1163tan 3035π-⎛⎫-+--+- ⎪⎝⎭.解:原式=315333--⨯+ =433- =-415.解不等式:1211232x x -≤-,并把它的解集在数轴上表示出来. 解:1211232x x -≤-3643x x -≤- 3463x x -≤- 3x -≤ 3x ≥-16.已知3x y -=,求代数式()()2122x x y y x +-+-的值.解:原式222122x x x y xy =++-+- 当3x y -=时 2221x xy y =-++ ()21x y -+231=+31=+4=()21x y =-+17.已知关于x 的方程()()22200mx m x m -++=≠.(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.解:(1)∵0m ≠ (2)∵()()22200mx m x m -++=≠ ∴△()2242m m =⎡-+⎤-⨯⎣⎦ ∴()()210mx x --= 2448m m m =++- ∴12x m=,21x = 244m m =-+ ∵方程的两个实数根都是整数,且m 是正整数 ()22m =- ∴1m =或2m =. ∵△≥0∴方程总有两个实数根. 18.列方程或方程组解应用题:小马自驾私家车从A 地到B 地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.解:设新购买的纯电动汽车每行驶1千米所需的电费为x 元,则原燃油汽车每行驶1千米所需的油费为()0.54x +元,依题意列方程得:108270.54x x=+ 经检验,0.18x =是原分式方程的解. 解得:0.18x = 答:新购买的纯电动汽车每行驶1千米所需的电费为0.18元. 四、解答题(本题共20分,每小题5分)19.如图,在□ABCD 中,AE 平分∠BAD ,交BC 于点E ,BF 平分∠ABC ,交AD 于点F ,AE 与BF 交于点P ,连接EF 、PD .(1)求证:四边形ABEF 是菱形;(2)若AB =4,AD =6,∠ABC =60°,求tan ∠ADP 的值. (1)证明:∵AE 平分∠BAD ,BF 平分∠ABC ,∴∠BAE =∠FAE ,∠ABF =∠EBF (2)在菱形ABEF 中,∠ABC =60° 在□ABCD 中,AD ∥BC ∴∠AFE =60°.又AF =EF ∴∠BEA =∠FAE ,∠AFB =∠EBF ∴△AEF 是正三角形 ∴∠BAE =∠BEA ,∠ABF =∠AFB ∴∠EAF =60°,AE =AB =4 ∴AB =EB ,AB =AF ∴AP =12AE =2 即:AB =EB =AF 作PM ⊥AD 于点M ,则∠APM =30° 又AE 平分∠BAD ,BF 平分∠ABC ∴AM =12AP =1,PM 3 ∴AE 垂直平分BF ,BF 垂直平分AE ∴DM =AD -AM =5 ∴四边形ABEF 是菱形. ∴tan ∠ADP =PM 3DM (说明:①本题有多种证明方法,这里不一一列举;②考虑到排版的问题,(2)未插入添加辅助线的图.) 20.根据某研究院公布的2009~2013年我国成年国民阅读调查报告的部分相关数据,绘制统计图表如下:2009~2013年成年国民 年人均阅读图书数量统计表 年份 年人均阅读图书数量(本)2009 3.88 2010 4.12 20114.352013年成年国民倾向的阅读方式人数分布统计图2012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;解:m=66.(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为5本.(3)2013年某小区倾向图书阅读的成年国民有900人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为7500本.21.如图,AB是⊙O的直径,C是AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.(1)证明:连接BC.∵AB是⊙O的直径∴∠ACB=90°,即BC⊥AD.∵C是AB的中点,∴AC=BC.∴AC=BC,∴△ACB是等腰Rt△.∴∠BAC=45°.∵BD是⊙O的切线,∴∠ABD=90°.∴△ABD是等腰Rt△,又BC⊥AD∴AC=CD.(2)解:如图,连接OC.∵AC=BC,AO=BO∴OC⊥AB,又BD是⊙O的切线∴∠COE=∠FBE=90°∵E是OB的中点,∴OE=BE又∠CEO=∠FEB∴△COE≌△FBE(ASA)∴BF=OC=OB=2∵AB是⊙O的直径∴∠AHB=∠BHF=90°,AB=2OB=4∴∠HAB+∠ABH=∠HAB+∠BFH=90°∴∠ABH=∠BFH∴△ABH∽△BFH∴BH∶HF=AB∶BF=4∶2=2,即BH=2HF 在Rt△BHF中,BF=2,由勾股定理可得:BH2+HF2=BF2,即:5HF2=4∴HF 25 5∴BH 455.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.图1 图2小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算,能够使问题得到解决(如图2).请回答:∠ACE的度数为75°,AC的长为3.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC =75°,AC 与BD 交于点E ,AE =2,BE =2DE ,求BC 的长. 图3 解:如图,作DM ⊥AC 于点M .则∠DME =∠BAE =90°. ∴DM ∥AB ∴△DME ∽△BAE∴ME ∶AE =DE ∶BE =MD ∶AB =1∶2 ∴ME =12AE =1 ∴AM =3 ∵∠CAD =30°∴DM =AM ·tan30°=3,AD =2DM=23 ∴AB =2DM =23∵∠CAD =30°,∠ADC =75°∴∠ACD =180°-∠CAD -∠ADC =75° ∴∠ACD =∠ADC ° ∴AC =AD =23 ∵∠BAC =90° ∴BC 2=AB 2+AC 2=24 ∴BC =26.23.在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (0,-2),B (3,4).(1)求抛物线的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A 、B 之间的部分为图象G (包含A 、B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.解:(1)∵抛物线22y x mx n =++经过点A (0,-2),B (3,4)∴222334n m n =-⎧⎨⨯++=⎩,解得:42m n =-⎧⎨=-⎩ ∴抛物线的表达式是2242y x x =-- ∴该抛物线的对称轴为直线4122x -=-=⨯(2)如右图:∵点B (3,4)关于原点与点C 对称 ∴C 点坐标为(-3,-4) ∴直线BC 的解析式为43y x =. 由题意可知,当直线CD 经过点B 时,D 点纵坐标t 有最大值. 此时1x =,∴4t 3=. 又抛物线的顶点坐标为(1,-4)∴当直线CD 经过顶点即D 点与顶点重合时,D 点纵坐标t 有最小值. 此时t =-4.∴符合条件的点D 的纵坐标t 的取值范围是: -4≤t ≤43.24.在正方形ABCD 的外侧作直线AP ,点B 关于直线AP 的对称点为E ,连接BE 、DE ,其中DE 交直线AP 于点F .(1)依题意补全图1;(2)若∠PAB =20°,求∠ADF 的度数;(3)如图2,若45°<∠PAB <90°,用等式表示线段AB 、FE 、FD 之间的数量关系,并证明.图1 图2解:(1)补全图1如下所示:第(1)题图 第(2)题图 (2)连接AE .点B 、点E 关于直线AP 对称 ∴∠EAP =∠BAP =20°,AE =AB . ∵四边形ABCD 是正方形 ∴AE =AB =AD ,∠BAD =90° ∴∠EAD =130° ∴∠ADE =12(180°-∠EAD )=25°.(3)EF 、DF 、AB 之间的数量关系是:EF 2+DF 2=2AB 2.证明如下: 第(3)题图 如图:连接AE 、BF 、BD ,设BF 交AD 于点G . ∴∠AEF =∠ADE ,∴∠ABF =∠ADE 由轴对称可知:EF =BF ,AE =AB ,又AF =AF 又∠AGB =∠DGF ,∴∠BAF =∠DFE =90° ∴△AEF ≌△ABF (SSS ) ∴BF 2+DF 2=BD 2 ∴∠AEF =∠ABF 而BD 2=AB 2+AD 2=2AB 2 又AE =AD =AB ∴EF 2+DF 2=2AB 2. 25.对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数,在所 有满足条件的M 中,其最小值称为这个函数的边界值.例如, 右图中的函数是有界函数,其边界值是1. (1)分别判断函数()10y x x=>和()142y x x =+-<≤是不是 有界函数?若是有界函数,求其边界值;(2)若函数()1y x a x b b a =-+≤≤>,的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3)将函数()210y x x m m =-≤≤≥,的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足3t 14≤≤? 解:(1)函数()10y x x=>不是有界函数,()142y x x =+-<≤是有界函数,其边界值是3.(2)∵()1y x a x b b a =-+≤≤>,,∴y 随x 增大而减小 当x a =时,12y a =-+=,则1a =-; 当x b =时,1y b =-+; ∴{212b b a ⎧-≤-+<⎪⎨>⎪⎩解不等式组得:13b -<≤-.(3)若1m >,函数向下平移m 个单位后,2y x m =-. 当0x =,则1y m =-<-.而此时函数边界值t>1,与题意不符. ∴1m ≤.若1m =,函数向下平移m 个单位后,21y x =-. 当1x =±时,=y 最大值0; 当0x =时,=y 最小值-1; 此时函数边界值t =1;若01m <<,函数向下平移m 个单位后,2y x m =-. 此时1y m =-最大值,y m =-最小值. 当1m m ->时,t 1m =-, ∵3t 14≤≤,∴3114m ≤-≤,∴104m ≤≤; 当1m m -<时,t m =,∵3t 14≤≤,∴314m ≤≤ 综上所述:104m ≤≤或314m ≤≤.。
2014年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分) 1、(2014北京中考,1,4分) 2的相反数是 A 、2 B 、-2 C 、21- D 、21【答案】B2、(2014北京中考,2,4分)据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨,将300 000用科学计数法表示应为A 、6103.0⨯B 、5103⨯C 、6103⨯D 、41030⨯ 【答案】B3、(2014北京中考,3,4分)如图,有6张扑克牌,从中随机抽取一张,点数为偶数的概率是A 、61B 、41C 、31D 、21 【答案】D4、(2014北京中考,4,4分)右图是几何体的三视图,该几何体是 A 、圆锥 B 、圆柱 C 、正三棱柱 D 、正三棱锥【答案】C5、(2014北京中考,5,4分)某篮球队12名队员的年龄如下表所示:年龄(岁)18 19 20 21人数 5 4 1 2则这12 名队员年龄的众数和平均数分别是A、18,19B、19,19C、18,19.5D、19,19.5 【答案】A6、(2014北京中考,6,4分)园林队在某公园进行绿化,中间休息了一段时间,已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时的绿化面积为A、40平方米B、50平方米C、80平方米D、100平方米【答案】B7、(2014北京中考,7,4分)如图,○O的直径AB⊥弦CD垂足是E,∠A=22.5°,OC=4,CD的长为A、24D、8 2B、4 C、2【答案】C8、(2014北京中考,8,4分)已知点A为某封闭图形边界上一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周,设点P 运动的时间为x ,线段AP 的长为y ,表示y 与x 的函数关系大致如右图所示,则该封闭图形可能是【答案】A二、填空题(本题共16分,每小题4分)9、(2014北京中考,9,4分)分解因式:_____________________924=-ay ax 【答案】)3)(3(22y x y x a +-10、(2014北京中考,10,4分)在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25米,那么这根旗杆的高度为_____________m 【答案】1511、(2014北京中考,11,4分)如图,在平面直角坐标系xoy 中,正方形OABC 的边长为2,写出一个函数)0(≠=k xky 使它的图象与正方形OABC 有公共点,这个函数的表达式为 __________________【答案】xy 1=,)40(≤=k x k y ,(答案不唯一)12、(2014北京中考,12,4分)在平面直角坐标系xoy 中,对于点P (x ,y )我们把点P ’(-y+1,x+1)叫做点P 的伴随点,已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,这样依次得到A 1 ,A 2,A 3,……A n ……,若点A 1的坐标为(3,1),则点A 3的坐标为___________,点A 2014的坐标为___________;若点A 1的坐标为(a,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为___________。
2014年北京中考题数学题一、选择题(本题共32分,每题4分)下面各题均有四个选项,其中只有一个是符合题意的1.2的相反数是().A.2B.2-C.12-D.122.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨,将300000用科学计数法表示应为().A.60.310⨯B.5310⨯C.6310⨯D.43010⨯3.如图,有6张扑克牌,从中随机抽取1张,点数为偶数的概率().A.16B.14C.13D.124.右图是某几何体的三视图,该几何体是().A.圆锥B.圆柱C.正三棱柱D.正三棱锥5.某篮球队12名队员的年龄如下表所示:年龄(岁)18 19 20 21人数 5 4 1 2则这12名队员年龄的众数和平均数分别是().A.18,19B.19,19C.18,19.5D.19,19.56.园林队公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)和工作时间t(单位:小时)的函数关系的图像如图所示,则休息后园林队每小时绿化面积为().A.40平方米B.50平方米C.80平方米D.100平方米7.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD的长为( ).A .2B .4C .42D .88.已知点A 为某封闭图形边界的一定点,动点P 从点A 出发,沿其边界顺时针匀速运动一周,设点P 的时间为x ,线段AP 的长为y ,表示y 和x 的函数关系的图象大致如图所示,则该封闭图形可能是( ).二.填空题(本体共16分,每题4分)9.分解因式:24ay 9x a -=___________________.10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为25m ,那么这根旗杆的高度为_________________m .11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)ky k x=≠使它的图象和正方形OABC 有公共点,这个函数的表达式为______________.12.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 伴随点,一直点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到点1A ,2A ,3A …,n A …,若点1A 的坐标为(3,1),则点3A 的坐标为__________,点2014A 的坐标为__________;若点1A 的坐标为(,)a b ,对于任意正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为_____________.三.解答题(本题共30分,每小题5分)13.如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.14.计算:()3-3tan30----+⎪⎭⎫⎝⎛+ 15160π.15.解不等式2132121-≤-x x ,并把它的解集在数轴上表示出来.(添加图)16、已知x-y=3,求代数式(x+1 )2 - 2x + y(y-2x) 的值.17、已知关于x的方程mx2-(m+2)x+2=0(m≠0).(1) 求证:方程总有两个实数根;(2) 若方程的两个实数根都是整数,求正整数m的值.18.列方程或方程组解使用题小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.19.如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE和BF 交于点P,连接EF.PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.20.根据某研究院公布的2009-2013年我国成年国民阅读调查报告的部分数据,绘制的统计图表如下:2013年成年国民2009~2013年成年国民倾向的阅读方式人数分布统计图年人均阅读图书数量统计表年份年人均阅读图书数量(本)2009 3.882010 4.122011 4.352012 4.562013 4.78根据以上信息解答下列问题:(1)直接写出扇形统计图中m的值;(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为_______本;(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年和2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为_____本.21.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连结BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.22.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.E图1 图2小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为___________,AC的长为_____________.参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC和BD交于点E,AE=2,BE=2ED,求BC的长.五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的表达式及对称轴;(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD和图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图1;(2)若∠PAB=20°,求∠ADF的度数;(3)如图2,若45°<∠PAB < 90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.25. 对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y ,都满足-M≤y≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(1) 分别判断函数y=x1(x > 0)和y= x + 1(-4 < x ≤ 2)是不是有界函数?若是有界函数,求边界值;(2) 若函数y=-x+1(a ≤ x ≤ b ,b > a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3) 将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足 143≤≤t ?2014年北京高级中等学校招生测试数学答案一.选择题(本题共32分,每小题4分):题号12345678选项B B D C A B C A二.填空题(本题共16分,每小题4分):题号9101112答案15(-3,1);(0,4);-1<a<1且0<b<2三.解答题(本题共30分,每小题5分):13.(本小题满分5分)证明:∵ BC∥DE∴∠ABC = ∠EDB;在△ABC和△EDB中:AB = ED;∠ABC = ∠ EDB;BC = DB;∴△ABC ≌△EDB;∴∠A = ∠E14.(本小题满分5分)解:原式===15.(本小题满分5分)解:移项得:;合并同类项得:系数化为1:x ≥在数轴上表示出来:16.(本小题满分5分)解:化简代数可得:原式===∵∴原式= = 417.(本小题满分5分)(1)证明:可知△ ===== ≥0∴方程总有两个实数根。
2014年北京中考题数学题一、选择题(本题共32分,每题4分)
下面各题均有四个选项,其中只有一个是符合题意的
1.2的相反数是().
A.2B.2-C.
1
2
-D.
1
2
2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300000吨,将300000用科学计数法表示应为().
A.6
0.310
⨯B.5
310
⨯C.6
310
⨯D.4
3010
⨯
3.如图,有6张扑克牌,从中随机抽取1张,点数为偶数的概率().
A.1
6
B.
1
4
C.
1
3
D.
1
2
4.右图是某几何体的三视图,该几何体是().
A.圆锥B.圆柱
C.正三棱柱D.正三棱锥
5.某篮球队12名队员的年龄如下表所示:
年龄(岁)18 19 20 21
人数 5 4 1 2
则这12
A.18,19B.19,19C.18,19.5D.19,19.5
6.园林队公园进行绿化,中间休息了一段时间.已知绿化面积S(单位:平方米)与工作时间t(单位:小时)的函数关系的图像如图所示,则休息后园林队每小时绿化面积为
().
A.40平方米B.50平方米
C.80平方米D.100平方米
7.如图,⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD
的长为( ).
A .22
B .4
C .42
D .8
8.已知点A 为某封闭图形边界的一定点,动点P 从点A 出发,沿其边界顺时
针匀速运动一周,设点P 的时间为x ,线段AP 的长为y ,表示y 与x 的
函数关系的图象大致如图所示,则该封闭图形可能是( ).
二.填空题(本体共16分,每题4分)
9.分解因式:24ay 9x a -=___________________.
10.在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一根旗杆的影长为
25m ,那么这根旗杆的高度为_________________m .
11.如图,在平面直角坐标系xOy 中,正方形OABC 的边长为2.写出一个函数(0)
k
y k x
=≠使它的图象与正方形OABC 有公共点,这个函数的表达式为______________.
12.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x '-++叫做点P 伴随点,一直点1A 的伴
随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到点1A ,2A ,3A …,n A …,若点1A 的坐标为(3,1),则点3A 的坐标为__________,点2014A 的坐标为__________;若点1A 的坐标为(,)a b ,对于任意正整数n ,点n A 均在x 轴上方,则a ,b 应满足的条件为_____________.
三.解答题(本题共30分,每小题5分)
13.如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =. 求证:A E ∠=∠.
14.计算:()3-3tan30----+⎪⎭
⎫
⎝⎛+ο1
5160
π.
15.解不等式2
1
32121-≤-x x ,并把它的解集在数轴上表示出来.(添加图)
● 已知x-y=3,求代数式(x+1 )2 - 2x + y(y-2x) 的值.
● 已知关于x 的方程mx 2-(m+2)x+2=0(m≠0). (1) 求证:方程总有两个实数根;
(2) 若方程的两个实数根都是整数,求正整数m 的值.
18.列方程或方程组解应用题
小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动汽车所需电费27.已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.
19.如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF 交于点P,连接EF.PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
20.根据某研究院公布的2009-2013年我国成年国民阅读调查报告的部分数据,绘制的统计图表如下:
2013年成年国民2009~2013年成年国民
倾向的阅读方式人数分布统计图年人均阅读图书数量统计表
年份年人均阅读图书数量(本)
2009 3.88
2010 4.12
2011 4.35
2012 4.56
2013 4.78
根据以上信息解答下列问题:
(1)直接写出扇形统计图中m的值;
(2)从2009到2013年,成年国民年人均阅读图书的数量每年增长的幅度近似相等,估算2014年成年国民年人均阅读图书的数量约为_______本;
(3)2013年某小区倾向图书阅读的成年国民有990人,若该小区2014年与2013年成年国民的人数基本持平,估算2014年该小区成年国民阅读图书的总数量约为_____本.
21.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连结BH.
(1)求证:AC=CD;
(2)若OB=2,求BH的长.
22.阅读下面材料:
小腾遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.
E
图1 图2
小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).
请回答:∠ACE的度数为___________,AC的长为_____________.
参考小腾思考问题的方法,解决问题:
如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,
AE=2,BE=2ED,求BC的长.
五.解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23.在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).
(1)求抛物线的表达式及对称轴;
(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.
24.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.
(1)依题意补全图1;
(2)若∠PAB=20°,求∠ADF的度数;
(3)如图2,若45°<∠PAB < 90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.
25. 对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y ,都满足-M≤y≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.
(1) 分别判断函数y=x
1(x > 0)和y= x + 1(-4 < x ≤ 2)是不是有界函数?若是有界函数,求边界值;
(2) 若函数y=-x+1(a ≤ x ≤ b ,b > a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围; (3) 将函数2(1,0)y x x m m =-≤≤≥的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么
范围时,满足 14
3
≤≤t ?。