有理数的乘方-初中数学知识点
- 格式:docx
- 大小:44.49 KB
- 文档页数:1
初中数学有理数四则运算知识归纳初中数学有理数运算知识归纳初中数学有理数运算知识归纳2020-01-10初中数学有理数四则运算知识归纳有理数的混合运算法则:先乘方,后乘除,最后加减。
接下来的有理数四则运算法则内容请同学们认真记忆了。
有理数四则运算法则 (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的`结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减. 初中数学知识点归纳之有理数的混合运算法则,同学们一定要记得先乘方,后乘除,最后加减,接下来的初中数学知识更加有吸引力,请大家继续关注哦。
初中数学有理数的乘方运算的解题思考和探究有哪些初中数学中,有理数的乘方运算是一个重要的概念,需要学生进行思考和探究。
以下是一些有关有理数乘方运算的解题思考和探究的内容:1. 乘方运算的基本概念和性质-学生可以思考乘方运算的基本概念,即将一个数自乘若干次。
他们可以探究乘方运算的性质,例如乘方运算的交换律、结合律和分配律等。
-学生可以通过自己选择不同的底数和指数,进行乘方运算的实际操作,观察结果的规律和特点。
2. 正指数和负指数的概念和性质-学生可以思考正指数和负指数的概念和含义。
他们可以探究正指数和负指数之间的关系,以及正指数和负指数在乘方运算中的操作规则。
-学生可以通过实际问题,将负指数转化为倒数的形式进行计算,并观察结果之间的关系。
3. 有理数乘方运算的计算方法和技巧-学生可以思考和探究有理数乘方运算的计算方法和技巧。
例如,对于同底数不同指数的乘方运算,学生可以考虑如何合并同底数并保持指数不变,简化计算过程。
-学生可以探究乘方运算的规律和模式,例如指数为奇数时的乘方运算与指数为偶数时的乘方运算之间的关系。
4. 乘方运算的实际应用和问题解决-学生可以思考和探究乘方运算在实际生活中的应用和问题解决能力。
例如,他们可以应用乘方运算来解决面积、体积、金融利息计算等实际问题。
-学生可以通过实际问题的解决过程,进一步理解乘方运算的概念和应用,培养解决实际问题的数学思维和能力。
5. 乘方运算的错误分析和纠正-学生可以思考和探究乘方运算中常见的错误和误解,并探究纠正错误的方法和策略。
例如,他们可以思考为什么乘方运算的结果不能为负数,以及如何避免混淆乘方运算和乘法运算等。
-学生可以通过实际计算和应用问题的解决过程,分析错误的原因,并通过纠正错误来提高对乘方运算的理解和应用能力。
以上是有关有理数乘方运算的一些解题思考和探究的内容。
教师可以通过课堂讲解、讨论、实例分析和探究活动来引导学生思考和探索有理数乘方运算的概念、性质、计算方法和实际应用,培养他们的数学思维和问题解决能力。
初中数学培优:有理数的乘方一、乘方的应用【典例】有人说,将一张纸对折,再对折,重复下去,第43次后纸的厚度便超过地球到月球的距离,已知一张纸厚0.006cm,地球到月球的距离约为3.85×108m,用计算器算一下这种说法是否可信.【解答】解:对折43次后,这张纸的厚度为0.006×243≈5.28×1010(cm)=5.28×108(m),∵5.28×108m>3.85×108m,∴这种说法是可信的.【巩固】1883年,康托尔构造的这个分形,称作康托尔集,从数轴上单位长度线段开始,康托尔取走其中间三分之一而达到第一阶段,然后从每一个余下的三分之一线段中取走其中间三分之一而达到第二阶段,无限地重复这一过程,余下的无穷点集就称做康托尔集,上图是康托尔集的最初几个阶段,当达到第n个阶段时,余下的所有线段的长度之和为()A.23B.23C.(23)D.(23)K1【解答】解:根据题意知:第一阶段时,余下的线段的长度之和为23,第二阶段时,余下的线段的长度之和为23×23=(23)2,第三阶段时,余下的线段的长度之和为23×23×23=(23)3,…以此类推,当达到第n个阶段时(n为正整数),余下的线段的长度之和为(23)n.故选:C.二、等比数列求和【典例】阅读下列材料:小明为了计算1+2+22+…+22020+22021的值,采用以下方法:设S=1+2+22+…+22020+22021①则2S=2+22+…+22021+22022②②﹣①得,2S﹣S=S=22022﹣1.请仿照小明的方法解决以下问题:(1)2+22+…+220=;(2)求1+12+122+⋯+1250=;(3)求1+a+a2+a3+…+a n的和.(a>1,n是正整数,请写出计算过程)【解答】解:(1)设S=2+22+…+220,则:2S=22+23+…+220+221,2S﹣S=(22+23+…+220+221)﹣(2+22+…+220)=221﹣2,∴S=221﹣2,故答案为:221﹣2.(2)设S=1+12+122+⋯+1250,则:2S=2+1+12+122+⋯+1249,2S﹣S=(2+1+12+122+⋯+1249)﹣(1+12+122+⋯+1250)=2−1250,∴S=2−1250,故答案为:2−1250.(3)设S=1+a+a2+a3+…+a n,则:a S=a+a2+a3+…+a n+a n+1,a S﹣S=(a﹣1)S=(a+a2+a3+…+a n+a n+1)﹣(1+a+a2+a3+…+a n)=a n+1﹣1.∴S=r1−1K1.【解答】设,则,巩固练习1.已知(a+1)2=25,且a<0,|a+3|+|b+2|=14,且ab>0,则a+b=()A.﹣19B.﹣9C.13D.3【解答】解;∵(a+1)2=25,∴a+1=±5,∴a=﹣6或4,∵a<0,∴a=﹣6,∵|a+3|+|b+2|=14∴b+2=±11,b=9或﹣13,∵ab>0,a<0,∴b<0,b=﹣13,∴a+b=﹣6﹣13=﹣19.故选:A.2.若a,b,c均为整数且满足(a﹣b)10+(a﹣c)10=1,则|a﹣b|+|b﹣c|+|c﹣a|=()A.1B.2C.3D.4【解答】解:因为a,b,c均为整数,所以a﹣b和a﹣c均为整数,从而由(a﹣b)10+(a﹣c)10=1可得|−U=1|−U=1.|−U=0或|−U=0若|−U=1|−U=0则a=c,从而|a﹣b|+|b﹣c|+|c﹣a|=|a﹣b|+|b﹣a|+|a﹣a|=2|a﹣b|=2.若|−U=0|−U=1则a=b,从而|a﹣b|+|b﹣c|+|c﹣a|=|a﹣a|+|a﹣c|+|c﹣a|=2|a﹣c|=2.因此,|a﹣b|+|b﹣c|+|c﹣a|=2.故选:B.3.如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中值可以等于732的是()A.A1B.B1C.A2D.B3【解答】解:A1=2n﹣2+2n﹣4+2n﹣6=732,整理可得:2n=248,n不为整数;A2=2n﹣8+2n﹣10+2n﹣12=732,整理可得:2n=254,n不为整数;B1=2n﹣2+2n﹣8+2n﹣14=732,整理可得:2n=252,n不为整数;B3=2n﹣6+2n﹣12+2n﹣18=732,整理可得:2n=256,n=8;故选:D.4.若|a+b+1|与(a﹣b+1)2互为相反数,则a与b的大小关系是()A.a>b B.a=b C.a<b D.a≥b【解答】解:∵|a+b+1|与(a﹣b+1)2互为相反数,∴|a+b+1|+(a﹣b+1)2=0,∴|a+b+1|=0,(a﹣b+1)2=0,即a+b+1=0,a﹣b+1=0,∴a=﹣1,b=0,∴﹣1<0,即a<b.故选:C.5.很多整数都可以表示为几个互异的平方数之和,例如30=12+22+32+42=12+22+52,现将2012表示为k(k为正整数)个互异的平方数之和,则k的最小值是()A.2B.3C.4D.5【解答】解:2012=392+212+72+12,∴k的最小值是4.故选:C.6.计算:[−75×(−212)−1]÷9÷1(−0.75)2−|2+(−12)3×52|=.【解答】解:原式=[75×52−1]÷9÷169−98=52×19×916−98=−3132.7.若(x+1)2与|xy+2|互为相反数,则:1(r2)+1(r3)(r1)+⋯+1(r2011)(r2009)的值是【解答】解:∵(x+1)2与|xy+2|互为相反数,∴(x+1)2=0,|xy+2|=0,∴x=﹣1,y=2.代入原式可得11×2+12×3+⋯+12010×2011=1−12+12−13+13⋯+12010−12011=20102011.故答案为20102011.8.试写出所有3个连续正整数立方和的最大公约数,并证明.【解答】解:设三个连续的正整数的立方和为f(n)=(n﹣1)3+n3+(n+1)3=3n3+6n=3n3﹣3n+9n=3n(n﹣1)(n+1)+9n又∵当n≥2时,(n﹣1)n(n+1)是三个连续的整数的积,所以必是3的倍数,所以3n(n﹣1)(n+1)能被9整除.∴f(n)能被9整除∴三个连续的正整数的立方和的最大公约数是9.9.已知a,b为正整数,求M=3a2﹣ab2﹣2b﹣4能取到的最小正整数值.【解答】解:∵a,b为正整数,要使得M=3a2﹣ab2﹣2b﹣4的值为正整数,显然有a≥2,当a=2时,b只能为1,此时M=4,故M=3a2﹣ab2﹣2b﹣4能取到的最小正整数值不超过4;当a=3时,b只能为1或2,若b=1,则M=18,若b=2,则M=7;当a=4时,b只能为1或2或3,若b=1,则M=38,若b=2,则M=24,若b=,3,则M=2;若M=1,即3a2﹣ab2﹣2b﹣4=1,即3a2﹣ab2=2b+5①,注意到2b+5为奇数,∵3a2是偶数,又偶数减奇数才得奇数,∴a是偶数,b是偶数.此时3a2﹣ab2被4整除所得余数为3,2b+5被4整除所得余数为1,故①式不可能成立,即M≠1.故M=3a2﹣ab2﹣2b﹣4能取到的最小正整数值为2.10.日常生活中,我们使用的是十进制数,而计算机使用的数是二进制数(数位的进位方法是“逢二进一”),有时候也会用到三进制数(数位的进位方法是“逢三进一”).如三进位制数201可用十进制数表示为2×32+0×3+1=19;二进位制数1011可用十进制数表示为1×23+0×22+1×2+1=11.(1)现有三进位制数a=221,二进位制数b=10111,试比较a与b的大小关系.(2)填空:将十进制数18用二进制数表示为.(3)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图是一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.求孩子出生的天数.【解答】解:(1)三进位制数a=221用十进制数表示为2×32+2×3+1=25,二进位制数b=10111用十进制数表示为24+22+1×2+1=23,所以a>b.(2)因为18=24+2,所以十进制数18用二进制数表示为10010.故答案为:10010.(3)图中的数为6+2×7+3×72+73=510,即孩子出生510天.11.阅读下列材料:小明为了计算1+2+22+…+22020+22021的值,采用以下方法:设S=1+2+22+…+22020+22021①则2S=2+22+…+22021+22022②②﹣①得,2S﹣S=S=22022﹣1.请仿照小明的方法解决以下问题:(1)2+22+…+220=;(2)求1+12+122+⋯+1250=;(3)求1+a+a2+a3+…+a n的和.(a>1,n是正整数,请写出计算过程)【解答】解:(1)设S=2+22+…+220,则:2S=22+23+…+220+221,2S﹣S=(22+23+…+220+221)﹣(2+22+…+220)=221﹣2,∴S=221﹣2,故答案为:221﹣2.(2)设S=1+12+122+⋯+1250,则:2S=2+1+12+122+⋯+1249,2S﹣S=(2+1+12+122+⋯+1249)﹣(1+12+122+⋯+1250)=2−1250,∴S=2−1250,故答案为:2−1250.(3)设S=1+a+a2+a3+…+a n,则:a S=a+a2+a3+…+a n+a n+1,a S﹣S=(a﹣1)S=(a+a2+a3+…+a n+a n+1)﹣(1+a+a2+a3+…+a n)=a n+1﹣1.∴S=r1−1K1.12.老财主临终前将全部银元分给他的四个儿子.老大分得全部银元4等份中的1份,多出的1枚银元给了丫环;老二分得余下银元4等份中的1份,多出的1枚银元给了丫环;老三分得余下银元4等份中的1份,多出的1枚银元给了丫环;老四分得余下银元4等份中的1份,多出的1枚银元给了丫环;余下的银元又分成4等份,四个儿子各得一份,多出的1枚银元给了丫环.问老财主至少要有多少块银元才够分.【解答】解:从每次分得的银元都多出一枚可知,只要增加3枚银元,则每次分到的都是4的倍数,共分了5次4的倍数,所以至少要有4×4×4×4×4=45=1024枚,由于增加了3枚银元,所以至少要1024﹣3=1021枚银元才够分,具体情况如下:第一次:老大分得(1021﹣1)÷4=255枚,第二次:老二分得(255×3﹣1)÷4=191枚,第三次:老三分得(191×3﹣1)÷4=143枚,第四次:老四分得(143×3﹣1)÷4=107枚,第五次:四个儿子各分得(107×3﹣1)÷4=80枚,所以老财主至少要有1021块银元才够分.。
初中数学有理数的乘方运算的特殊情况有哪些
有理数的乘方运算的特殊情况包括零次幂、负次幂和分数指数。
下面我将详细介绍这些特殊情况。
1. 零次幂:
对于任何非零有理数a,a的零次幂定义为1。
这是因为任何数的零次幂都表示乘以1,而乘以1不改变原数的值。
例如,2的零次幂为1,(-3)的零次幂也为1。
2. 负次幂:
对于任何非零有理数a和整数n,a的负n次幂定义为a的n次幂的倒数。
即,a的负n次幂等于1除以a的n次幂。
例如,2的负3次幂等于1/(2的3次幂),即1/8;(-3)的负2次幂等于1/((-3)的2次幂),即1/9。
3. 分数指数:
有理数的指数可以是分数。
对于任意非零有理数a和正整数m、n,a的m/n次幂定义为a 的m次幂的n次根。
即,a的m/n次幂等于a的m次幂的n次根。
例如,2的1/2次幂等于2的平方根,即√2;(-3)的2/3次幂等于(-3)的立方根的平方,即∛(-3)的平方。
需要注意的是,对于负数的分数指数,其结果可能是无理数。
例如,(-1)的1/3次幂等于(-1)的立方根,即∛(-1),这个结果是一个无理数。
这些特殊情况在有理数的乘方运算中是非常重要的,学生需要理解并熟练运用它们。
通过这些特殊情况的学习,学生可以更好地理解和解决有理数的乘方运算问题,并且在实际应用中能够灵活运用。
有理数的乘方的概念针对小学生的文章《有理数的乘方,其实很有趣!》小朋友们,今天我们来一起认识一个新的数学知识——有理数的乘方。
你们看,如果有 2 个 2 相乘,我们可以写成2×2,结果是 4。
那要是有 3 个 2 相乘呢?这时候就可以写成2×2×2,结果是 8。
但是这样写是不是有点麻烦呀?所以我们就有了一个更简单的写法,那就是2³,这个 3 就表示有 3 个 2 相乘。
比如说,5 个 3 相乘,就可以写成 3⁵。
那 3⁵等于多少呢?就是3×3×3×3×3,算一算,结果是 243。
再给你们讲个小故事。
小兔子种萝卜,第一天种了 2 颗萝卜籽,第二天种的是第一天的 2 倍,第三天种的又是第二天的 2 倍。
那第三天小兔子种了几颗萝卜籽呢?我们就可以用2³来算,结果是 8 颗。
是不是很神奇呀?小朋友们,有理数的乘方是不是很有趣呢?《神奇的有理数乘方世界》小朋友们,你们知道吗?数学里有一个很神奇的东西,叫有理数的乘方。
比如说,我们有 3 个 5 相乘,写起来就是5×5×5,这样是不是有点麻烦?别担心,我们可以写成5³。
就像搭积木一样,乘方就是把相同的数字一块一块地往上堆。
比如 2 的 4 次方,就是2×2×2×2,等于 16。
想象一下,你有一堆糖果,每次都翻倍,翻倍的次数就是乘方的指数。
比如说,一开始你有 1 颗糖,翻 3 次倍,那就是2³ = 8 颗糖啦。
再比如,教室里的灯,一排有 4 盏,一共有 3 排,那灯的总数就是4³ = 64 盏。
小朋友们,有理数的乘方是不是像魔法一样神奇呀?《走进有理数乘方的奇妙之旅》小朋友们,让我们一起踏上有理数乘方的奇妙之旅吧!先想想,如果有一堆苹果,每次都变成原来的 3 倍,那会怎么样呢?这就和有理数的乘方有关系啦。
初中数学知识点大全总结整理一、有理数1.有理数的概念与性质2.有理数的比较与排序3.有理数的运算(加减乘除)4.有理数的乘方与乘方根5.有理数的四则混合运算二、整数1.整数的概念与性质2.整数的比较与排序3.整数的加减法运算4.整数的乘法运算5.整数的除法运算6.整数的乘方与乘方根三、分数1.分数的概念与性质2.分数的化简与比较3.分数的加减法运算4.分数的乘法运算5.分数的除法运算6.分数的乘方与乘方根四、小数1.小数的概念与性质2.小数与分数的相互转换3.小数的加减法运算4.小数的乘法运算5.小数的除法运算6.小数的乘方与乘方根五、代数基础1.代数式的概念与性质2.代数式的加减法运算3.代数式的乘法运算4.代数式的整除运算5.代数式的分离与合并6.代数式的系数与次数六、一元一次方程1.一元一次方程的概念与性质2.一元一次方程的等价变形3.一元一次方程的解与解集4.解一元一次方程的应用问题七、一元一次不等式1.一元一次不等式的概念与性质2.一元一次不等式的解与解集3.一元一次不等式的解集的表示4.解一元一次不等式的应用问题八、平面图形1.平面图形的分类与性质2.三角形的性质与分类3.四边形的性质与分类4.特殊的四边形(平行四边形、矩形、正方形等)5.多边形的性质与分类6.圆的性质与判定九、图形的计算1.从图形中抽象出代数式2.根据已知条件解图形问题3.利用图形计算长度、面积、周长4.解决含图形的复合问题十、几何变换1.平移的概念与性质2.平移的性质与判定3.旋转的概念与性质4.旋转的性质与判定5.对称的概念与性质6.对称的性质与判定十一、统计与概率1.统计调查与统计数据的整理与表示2.抽样调查与统计数据的分析3.概率的基本概念与性质4.事件的相互排斥与相互独立5.概率计算与应用。
专题:有理数的乘方一、知识要点1.乘方的有关概念.(1)求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂.a 叫底数,n 叫指数,a n 读作:a 的n 次幂(a 的n 次方).(2)乘方的意义:a n 表示n 个a 相乘.n a n a a a a a =⨯⨯⨯⨯ 个(3)写法的注意:当底数是负数或分数时,底数一定要打括号,不然意义就全变了.如: 232)(-=(32-)×(32-),表示两个32-相乘. 而322-=322⨯-,表示2个2相乘的积除以3的相反数. 2.a n 与-a n的区别.(1)a n 表示n 个a 相乘,底数是a ,指数是n ,读作:a 的n 次方.(2)-a n 表示n 个a 乘积的相反数,底数是a ,指数是n ,读作:a 的n 次方的相反数. 如:32)(-底数是-2,指数是3,读作(-2)的3次方,表示3个(-2)相乘. 32)(-=(-2)×(-2)×(-2)=-8.32-底数是2,指数是3,读作2的3次方的相反数32-=-(2×2×2)=-8.注: 32)(-与32-的结果虽然都是-8,但表示的含义并不同. 3.乘方运算的符号规律.(1)正数的任何次幂都是正数.(2)负数的奇次幂是负数.(3)负数的偶次幂是正数.(4)0的奇数次幂,偶次幂都是0.所以,任何数的偶次幂都是正数或0.4.乘方如何运算?乘方运算就是根据乘方的意义把它转化为乘法进行计算.如:33=3×3×3=27.5. 把一个大于 10 的数记成 a×10n 的形式,其中 a 是整数数位只有一位的数,这种记数法叫做科学记数法。
注意: 一个数的科学记数法中,10 的指数比原数的整数位数少 1,如原数有 8 位整数,指数就是7。
二、知识运用典型例题一、填空题:(1)423⎛⎫- ⎪⎝⎭的底数是 ;44()3-的底数是 ; 64.2的底数是 ; 8的底数是 。
新人教版初中数学知识点重难点归纳整理分章节知识点归纳七年级上册第一章有理数1正数和负数2有理数3有理数的加减法4有理数的乘除法5有理数的乘方详细内容1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类: ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 a+b=0 a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =a n 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.第二章整式的加减1整式2整式的加减详细内容1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
初中知识点集合初一一、有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方二、整式的加减2.1 整式2.2 整式的加减三、一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)3.3 解一元一次方程(二)3.4 实际问题与一元一次方程四、几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角五、相交线与平行线5.1 相交线5.2 平行线及其判定5.3 平行线的性质5.4 平移六、实数6.1 平方根6.2 立方根6.3 实数七、平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用八、二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组8.3 实际问题与二元一次方程组8.4 三元一次方程组的解法九、不等式与不等式组9.1 不等式9.2 一元一次不等式9.3 一元一次不等式组十、数据的收集、整理与描述10.1 统计调查10.2 直方图10.3 课题学习从数据谈节水八年级十一、三角形11.1 与三角形有关的线段11.2 与三角形有关的角11.3 多边形及其内角和十二、全等三角形12.1 全等三角形12.2 三角形全等的判定12.3 角的平分线的性质十三、轴对称13.1 轴对称13.2 画轴对称图形13.3 等腰三角形十四、十五、十六、二次根式16.1 二次根式16.2 二次根式的乘除16.3 二次根式的加减十七、勾股定理17.1勾股定理17.2 勾股定理的逆定理十八、平行四边形18.1 平行四边形18.2 特殊的平行四边形十九、一次函数19.1 函数19.2 一次函数二十、数据的分析20.1 数据的集中趋势20.2 数据的波动程度九年级二十一、一元一次方程21.1 一元一次方程组21.2 解一元一次方程21.3 实际问题与一元一次方程二十二、二次函数22.1 二次函数的图像和性质22.2 二次函数与一元一次方程22.3 实际问题与二次函数二十三、旋转23.1 图形的旋转23.2 中心对称23.3 课题学习图案设计二十四、圆24.1 圆的有关性质24.2 点和圆、直线和圆的位置关系24.3 正多边形和圆24.4 弧长和扇形面积二十五、概率初步25.1 随机事件与概率25.2 用列举法求概率25.3 用频率估计概率。
学科教师辅导讲义学员编号: 年 级:七年级 课 时 数:3 学员姓名: 辅导科目:数学学科教师:授课主题 第08讲---有理数的乘方及混合运算授课类型 T 同步课堂P 实战演练S 归纳总结教学目标 ① 掌握有理数的乘方;② 掌握有理数的混合运算并能灵活运用。
授课日期及时段T (Textbook-Based )——同步课堂一、知识梳理(一)有理数的乘方1、一般的,任意多个相同的有理数相乘,我们通常记作:读作:a 的n 次方(或a 的n 次幂)其中a 代表相乘的因数,n 代表相乘因数的个数,即:...n ana a a a a =⨯⨯⨯个(n 个a) 2、有理数乘方运算方法:⎩⎨⎧进行运算)利用乘法的运算法则(将乘方转化为乘法)根据乘方的定义,先(方法一21⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧确定幂的绝对值的任何正整数次幂都是负数的偶次幂是正数负数的奇次幂是负数,数正数的任何次幂都是正确定幂的符号方法二)2(00)1((二)有理数的混合运算体系搭建混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。
注意:怎样算简单,怎样算准确,是数学计算最重要的原则。
(三)科学记数法一般地,一个大于10的数可以表示成10n a ⨯的形式,其中110a ≤<,n 是正整数,这种记数方法叫做科学记数法。
注意以下几点:(1)科学记数法的形式是由两个数的乘积组成的。
其中一个因数为a (110a ≤<),另一个因数为10n ,n 的值等于整数部分的位数减1;(2)用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已。
小于1的正数也可以用科学记数法表示。
例如:50.0000110-=;考点一:乘方的意义例1、3x 表示( )A .x 3B .x x x ++ C.x x x ⋅⋅ D .3+x考点二:计算例1、(1) 3211⎪⎭⎫ ⎝⎛ (2)()33131-⨯--(3)()34255414-÷-⎪⎭⎫ ⎝⎛-÷ (4)()()()33220132-⨯+-÷---考点三:定义新运算例1、现规定一种新的运算“※”:a ※ab b =,如3※2=32=8,则3※等于( ) A .B . 8C .D .考点四:偶次幂的非负性典例分析(2)这样的一个细胞经过3小时后可分裂成 个细胞;(3)这样的一个细胞经过n (n 为正整数)小时后可分裂成 个细胞.例2、【2011•黔南州】观察下列算式:21=2,22=4,23=8,24=16,….根据上述算式中 的规律,请你猜想210的末位数字是( ) A . 2 B . 4C . 8D . 6例3、王老师为调动学生参加班级活动的积极性,给每位学生设计了一个如图所示的面积为1的圆形纸片,若在活动中表现优胜者,可依次用色彩纸片覆盖圆面积的,,….请你根据数形结合的思想,依据图形的变化,推断当n 为整数时,=++++n 21...814121_____________.P (Practice-Oriented)——实战演练➢ 课堂狙击1、数学上一般把()a n a a a a a 个.....⋅⋅⋅记为( ) A .naB .a n +C .naD .an2、计算:()=⨯--⨯-223232( )A.0B.-54C.-72D.-18 3、下列式子中正确的是( )A.()()324222-<-<- B.()()243222-<-<-实战演练分会场深圳湾体育中心总建筑面积达256520m 2.数据256520m 2用科学记数法(保留三个有效数字)表示为( ) A 、2.565×105m 2B 、0.257×106m 2C 、2.57×105m 2D 、25.7×104m 24、国家卫生和计划生育委员会公布H7N9禽流感病毒直径约为0.0000001m ,则病毒直径0.0000001m 用科学记数法表示为( )(保留两位有效数字)。
初中数学有理数的乘方运算的实例分析是什么有理数的乘方运算实例分析是指通过具体的例子来说明有理数乘方的运算过程和结果。
下面我将给出一些实例分析,以帮助理解有理数乘方运算。
1. 正整数指数:例子1:计算2^3。
解析:根据乘方的定义,2^3 = 2 × 2 × 2 = 8。
这个例子中底数是2,指数是3,乘方运算的结果是8。
例子2:计算(-3)^4。
解析:根据乘方的定义,(-3)^4 = (-3) × (-3) × (-3) × (-3) = 81。
这个例子中底数是-3,指数是4,乘方运算的结果是81。
2. 零指数:例子3:计算5^0。
解析:根据乘方的定义,5^0 = 1。
这个例子中底数是5,指数是0,乘方运算的结果是1。
例子4:计算(-2)^0。
解析:根据乘方的定义,(-2)^0 = 1。
这个例子中底数是-2,指数是0,乘方运算的结果是1。
3. 负整数指数:例子5:计算3^(-2)。
解析:根据乘方的定义,3^(-2) = 1/(3 × 3) = 1/9。
这个例子中底数是3,指数是-2,乘方运算的结果是1/9。
例子6:计算(-4)^(-3)。
解析:根据乘方的定义,(-4)^(-3) = 1/((-4) × (-4) × (-4)) = -1/64。
这个例子中底数是-4,指数是-3,乘方运算的结果是-1/64。
4. 分数指数:例子7:计算2^(1/2)。
解析:将指数1/2转化为根式形式,2^(1/2) = √2 ≈ 1.414。
这个例子中底数是2,指数是1/2,乘方运算的结果是√2。
例子8:计算(-3)^(2/3)。
解析:将指数2/3转化为根式形式,(-3)^(2/3) = (∛(-3))^2 ≈ 3.301。
这个例子中底数是-3,指数是2/3,乘方运算的结果是∛(-3)的平方。
通过以上实例分析,可以看到有理数乘方运算的结果可以是整数、分数或小数,具体取决于底数和指数的值。
初中数学有理数的乘方运算的解题问题是什么初中数学中,有理数的乘方运算是一个重要的概念和技能。
解题问题可以涵盖以下几个方面:1. 计算有理数的乘方:学生可能遇到需要计算有理数的乘方的问题,例如计算(-3)^4,(2/3)^3,(-5/6)^2 等。
这些问题要求学生根据乘方的定义和性质进行计算,并得出结果。
2. 含有乘方的表达式化简:学生可能遇到需要化简含有乘方的表达式的问题,例如化简2^3 × 2^4,(3/4)^2 × (3/4)^3,(-2/5)^3 ÷ (-2/5)^2 等。
这些问题要求学生根据乘方的性质和规律,将表达式化简为最简形式。
3. 乘方运算的应用:学生可能遇到将乘方运算应用到实际问题中的问题,例如计算面积、体积、利率等。
这些问题要求学生将实际问题转化为乘方运算的形式,并进行计算,得出结果。
4. 分数指数的乘方运算:学生可能遇到需要计算分数指数的乘方的问题,例如计算2^(1/2),(-3)^(2/3) 等。
这些问题要求学生根据乘方的性质和规律,将分数指数的乘方转化为根式的形式,并进行计算。
5. 负指数的乘方运算:学生可能遇到需要计算负指数的乘方的问题,例如计算3^(-2),(-2)^(-3) 等。
这些问题要求学生根据乘方的性质和规律,将负指数的乘方转化为倒数的形式,并进行计算。
6. 复杂的乘方运算:学生可能遇到含有多个乘方运算的复杂问题,例如计算(2^3)^4,((-1/2)^2)^3 等。
这些问题要求学生通过运用乘方的性质和规律,进行乘方运算的嵌套和化简,得出最终结果。
以上问题只是初中数学中有理数的乘方运算的一部分,学生在解决这些问题时需要掌握乘方的基本规律、性质和应用技巧。
教师可以通过讲解、示例演示和练习题来引导学生解决这些问题,并提供适当的指导和反馈,以帮助他们巩固和提高有理数的乘方运算能力。
此外,教师还可以设计一些拓展性的问题,以培养学生的思维能力和创新能力。
有理数的乘方
有理数的乘方
(1)有理数乘方的定义:求n个相同因数积的运算,叫做乘方.
乘方的结果叫做幂,在n a中,a叫做底数,n叫做指数.n a读作a的n次方.(将n a看作是a的n次方的结果时,也可以读作a的n次幂.)
(2)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.
(3)方法指引:
①有理数的乘方运算与有理数的加减乘除运算一样,首先要确定幂的符号,然后再计算幂的绝对值;
②由于乘方运算比乘除运算又高一级,所以有加减乘除和乘方运算,应先算乘方,再做乘除,最后做加减.
1 / 1。