初中数学人教版七年级上册多项式
- 格式:ppt
- 大小:831.50 KB
- 文档页数:17
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二、知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
2019年12月01日初中数学组卷一.选择题(共30小题)1.下列说法错误的是()A.的系数是B.是多项式C.﹣25m 的次数是1 D.﹣x2y﹣35xy3是四次二项式2.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣22xab2的次数是6 D.﹣的系数是3.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣14.若关于x,y的多项式0.4x2y﹣7mxy+0.75y3+6xy化简后不含二次项,则m=()A.B.C.﹣ D.05.式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中()A.有5个单项式,2个多项式B.有4个单项式,2个多项式C.有3个单项式,3个多项式D.有5个整式6.按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A.abc﹣1 B.x2﹣2 C.3x2+2xy4 D.m2+2mn+n27.多项式是关于x的四次三项式,则m的值是()A.4 B.﹣2 C.﹣4 D.4或﹣48.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3和x2,则()A.m=﹣5,n=﹣1 B.m=5,n=1 C.m=﹣5,n=1 D.m=5,n=﹣19.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+110.组成多项式2x2﹣x﹣3的单项式是下列几组中的()A.2x2,x,3 B.2x2,﹣x,﹣3 C.2x2,x,﹣3 D.2x2,﹣x,311.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,,都是整式;④x2﹣xy+y2是按字母y的升幂排列的多项式,其中判断正确的是()A.①②B.②③C.③④D.①④12.代数式3x2y﹣4x3y2﹣5xy3﹣1按x的升幂排列,正确的是()A.﹣4x3y2+3x2y﹣5xy3﹣1 B.﹣5xy3+3x2y﹣4x3y2﹣1C.﹣1+3x2y﹣4x3y2﹣5xy3D.﹣1﹣5xy3+3x2y﹣4x3y213.代数式:,﹣4x,﹣,π,,x+,0,,a2﹣b2中,单项式和多项式分别有()A.5个,1个B.5个,2个C.4个,1个D.4个,2个14.下列结论中正确的是()A.单项式的系数是,次数是4B.单项式﹣xy2z的系数是﹣1,次数是4C.单项式m的次数是1,没有系数D.多项式2x2+xy2+3二次三项式15.下列结论正确的是()A.xyz的系数为0 B.3x2﹣x+1 中一次项系数为﹣1C.a2b3c的次数为5 D.a2﹣33是一个三次二项式16.下面的说法正确的是()A.﹣2不是单项式B.﹣a表示负数C.的系数是3 D.x2+2x+1是多项式17.下列说法中,正确的是()A.0是单项式B.单项式x2y的次数是2C.多项式ab+3是一次二项式D.单项式﹣πx2y的系数是﹣18.下列说法错误的是()A.数字0也是单项式B.﹣的系数是﹣C.1﹣a﹣ab是二次三项式D.多项式2x2+3x﹣5中,常数项为519.下列结论中,正确的是()A.单项式的系数是,次数是4B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是四次三项式20.下列关于整式的说法中,正确的个数是()①﹣3ab2的系数是﹣3;②4a3b的次数是3;③x2﹣1是二次二项式;④2a+b﹣1的各项分别为2a,b,﹣1.A.1个 B.2个 C.3个 D.4个21.下列说法中正确的是()A.多项式ax2+bx+c是二次多项式B.﹣是6次单项式,它的系数是C.﹣ab2,﹣x都是单项式,也都是整式D.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5中的项22.下列说法正确的是()A.单项式xy的系数是,次数是1B.单项式﹣πa2b3的系数是﹣,次数是6C.单项式x2的系数是1,次数是2D.多项式2x3﹣3x2y2+x﹣1叫三次四项式23.多项式5x2﹣8x+1+x2+7x﹣6x2是()A.一次二项式B.二次六项式C.二次二项式D.二次三项式24.代数式﹣4xy2+xy+1是()A.二次二项式B.二次三项式C.三次二项式D.三次三项式25.给出下列判断:①单项式5×103x2的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()A.1个 B.2个 C.3个 D.4个26.多项式3x|m|y2+(m+2)x2y﹣1是四次三项式,则m的值为()A.2 B.﹣2 C.±2 D.±127.下列概念表述正确的是()A.单项式ab的系数是0,次数是2B.单项式﹣23a2b3的系数是﹣2,次数是5C.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项D.是二次二项式28.下列判断:(1)不是单项式;(2)是多项式;(3)0不是单项式;(4)是整式,其中正确的有()A.1个 B.2个 C.3个 D.4个29.下列说法中正确的是()A.﹣x+3x2﹣2x3是六次三项式B.是二次三项式C.x2﹣2x+25是五次三项式D.﹣5x5+2x4y2﹣1是六次三项式30.多项式﹣x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值是()A.2或﹣2 B.2 C.﹣2 D.﹣4二.填空题(共20小题)31.把多项式4x3y3﹣xy﹣2x4﹣8按字母x的降幂排列:.32.多项式3x2+πxy2+9是次项式.33.代数式3x4﹣x2﹣的二次项系数是.34.按a的降幂排列多项式a4﹣7a+6﹣4a3为.35.任意写一个含有字母a、b的三次二项式,常数项为﹣9,.36.如果代数式2x n+1+(m﹣2)x+1是关于x的三次二项式,则m=,n=.37.把多项式﹣2x+1﹣x3+x2按字母x升幂排列为:.38.多项式5a3b2﹣3ab2﹣6a﹣1的次数是.39.多项式3x2+πxy2+9中,次数最高的项的系数是.40.已知关于x、y的多项式2mx3+3nxy2+2x3﹣3xy2+y﹣2不含三次项,则2m+3n=.41.若5x n﹣(m﹣1)x+3为关于x的三次二项式,则m﹣n的值为.42.一个关于字母x的二次三项式,它的二次项系数为4,一次项系数为2,常数项为﹣7,这个二次三项式为.43.将多项式3+5x2y﹣5x3y2﹣7x4y按字母x的降幂排列是.44.多项式x3﹣xy3+2xy﹣5的最高次项是,常数项是.45.代数式a﹣b,m,m2﹣,x3﹣,﹣a4b3c,a2﹣2ab+b2﹣1,中多项式有个.46.多项式3x﹣+1是次项式,二次项系数是.47.单项式﹣a2b3c的系数是,次数是;多项式2b4+ab2﹣5ab ﹣1的次数是,二次项的系数是.48.多项式3x2y﹣7x4y2﹣xy3+27是次项式,最高次项的系数是.49.多项式3x|m|﹣(m+2)x+7是关于x的二次三项式,则m的值为.50.当k=时,关于x、y的多项式x2﹣kxy+2xy﹣6中不含xy项.2019年12月01日初中数学组卷参考答案与试题解析一.选择题(共30小题)1.下列说法错误的是()A.的系数是B.是多项式C.﹣25m 的次数是1 D.﹣x2y﹣35xy3是四次二项式【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,几个单项式的和叫做多项式;多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式进行分析即可.【解答】解:A、的系数是π,故原题说法错误;B、是多项式,故原题说法正确;C、﹣25m 的次数是1;故原题说法正确;D、﹣x2y﹣35xy3是四次二项式,故原题说法正确;故选:A.【点评】此题主要考查了单项式和多项式,关键是掌握单项式和多项式的相关定义.2.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣22xab2的次数是6 D.﹣的系数是【分析】根据单项式的定义、单项式的次数,多项式的項,可得答案.【解答】解:A、0是单项式,故A不符合题意;B、﹣x+1不是单项式故B不符合题意;C、﹣22xab2的次数是4,故C符合题意;D、﹣πxy2的系数是﹣π,故D不符合题意;故选:C.【点评】本题考查了单项式、多项式,注意多项式的项包括项的符号.3.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1【分析】根据单项式的定义、单项式的次数,多项式的項,可得答案.【解答】解:A、0是单项式,故A不符合题意;B、﹣单项式﹣a的系数与次数都是1,故B符合题意;C、2x2﹣3xy﹣1是二次三项式,故C不符合题意;D、把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1,故D不符合题意;故选:B.【点评】本题考查了单项式、多项式,注意多项式的项包括项的符号.4.若关于x,y的多项式0.4x2y﹣7mxy+0.75y3+6xy化简后不含二次项,则m=()A.B.C.﹣ D.0【分析】首先合并同类项,不含二次项,说明xy项的系数是0,由此进一步计算得出结果即可.【解答】解:原式=0.4x2y+0.75y3+(﹣7m+6)xy,因为化简后不含二次项,所以﹣7m+6=0,解得m=.故选B.【点评】此题考查并同类项的方法,关键是明确没有某一项的含义,就是这一项的系数为0.5.式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中()A.有5个单项式,2个多项式B.有4个单项式,2个多项式C.有3个单项式,3个多项式D.有5个整式【分析】根据整式、单项式和多项式的定义求解.【解答】解:式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中,单项式有﹣2x,0,,﹣a,有4个;多项式有x+y,ax2+bx﹣c,有2个;整式x+y,﹣2x,ax2+bx﹣c,0,,﹣a,有6个.故选:B.【点评】本题考查了多项式:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.也考查了单项式.6.按某种标准把多项式进行分类时,3x3﹣4和a2b+ab2+1属于同一类,则下列哪一个多项式也属于此类()A.abc﹣1 B.x2﹣2 C.3x2+2xy4 D.m2+2mn+n2【分析】从多项式的次数考虑求解.【解答】解:3x3﹣4和a2b+ab2+1属于同一类,都是3次多项式,A、abc﹣1是3次多项式,故本选项正确;B、x2﹣2是2次多项式,故本选项错误;C、3x2+2xy4是5次多项式,故本选项错误;D、m2+2mn+n2是2次多项式,故本选项错误.故选A.【点评】本题考查了多项式,熟练掌握多项式次数的概念已经确定方法是解题的关键.7.多项式是关于x的四次三项式,则m的值是()A.4 B.﹣2 C.﹣4 D.4或﹣4【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【解答】解:∵多项式是关于x的四次三项式,∴|m|=4,﹣(m﹣4)≠0,∴m=﹣4.故选:C.【点评】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.8.已知关于x的多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3和x2,则()A.m=﹣5,n=﹣1 B.m=5,n=1 C.m=﹣5,n=1 D.m=5,n=﹣1【分析】根据多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3和x2,可令其系数为0.【解答】解:因为多项式3x4﹣(m+5)x3+(n﹣1)x2﹣5x+3不含x3和x2.所以含x3和x2的单项式的系数应为0,即m+5=0,n﹣1=0,求得m=﹣5,n=1.故选C.【点评】在多项式中不含哪项,即哪项的系数为0.9.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+1【分析】根据多项式的概念即可求出答案.【解答】解:该多项式四次项是﹣7xy3,其系数为﹣7,故选(B)【点评】本题考查多项式的性质,属于基础题型.10.组成多项式2x2﹣x﹣3的单项式是下列几组中的()A.2x2,x,3 B.2x2,﹣x,﹣3 C.2x2,x,﹣3 D.2x2,﹣x,3【分析】根据多项式的项的概念:几个单项式的和叫做多项式,每个单项式就叫作多项式的项,即可解答.【解答】解:多项式是由多个单项式组成的,在多项式2x2﹣x﹣3中,单项式分别是2x2,﹣x,﹣3,故选B.【点评】要注意,确定多项式中的项时不要漏掉符号.11.给出下列判断:①在数轴上,原点两旁的两个点所表示的数都是互为相反数;②任何正数必定大于它的倒数;③5ab,,都是整式;④x2﹣xy+y2是按字母y的升幂排列的多项式,其中判断正确的是()A.①②B.②③C.③④D.①④【分析】①根据数轴上数的特点解答;②当一个正数大于0小于或等于1时,此解困不成立;③根据整式的概念即可解答;④根据升幂排列的定义解答即可.【解答】解:①在数轴上,原点两旁的两个点所表示的数都是互为相反数,应说成“在数轴上,原点两旁的两个点如果到原点的距离相等,则所表示的数是互为相反数”;②任何正数必定大于它的倒数,1的倒数还是1,所以说法不对;③5ab,,符合整式的定义都是整式,正确;④x2﹣xy+y2是按字母y的升幂排列的多项式,正确.故选C.【点评】本题考查了相反数的概念,倒数的概念,整式的概念、多项式的排列,注意1的倒数还是1.12.代数式3x2y﹣4x3y2﹣5xy3﹣1按x的升幂排列,正确的是()A.﹣4x3y2+3x2y﹣5xy3﹣1 B.﹣5xy3+3x2y﹣4x3y2﹣1C.﹣1+3x2y﹣4x3y2﹣5xy3D.﹣1﹣5xy3+3x2y﹣4x3y2【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:3x2y﹣4x3y2﹣5xy3﹣1的项是3x2y、﹣4x3y2、﹣5xy3、﹣1,按x的升幂排列为﹣1﹣5xy3+3x2y﹣4x3y2,故D正确;故选:D.【点评】考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.13.代数式:,﹣4x,﹣,π,,x+,0,,a2﹣b2中,单项式和多项式分别有()A.5个,1个B.5个,2个C.4个,1个D.4个,2个【分析】根据单项式与多项式的概念即可求出答案.【解答】解:单项式:﹣4x,π,0,,多项式:,a2﹣b2,故选(D)【点评】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式之间的联系,本题属于基础题型.14.下列结论中正确的是()A.单项式的系数是,次数是4B.单项式﹣xy2z的系数是﹣1,次数是4C.单项式m的次数是1,没有系数D.多项式2x2+xy2+3二次三项式【分析】根据多项式的次数和项数和单项式的次数和项数的定义即可求出答案.【解答】解:A、单项式的系数是,次数是3,故A错误;B、单项式﹣xy2z的系数是﹣1,次数是4,正确.C、单项式m的次数是1,系数为1,故C错误;D、多项式2x2+xy2+3三次三项式,故错误.故选B.【点评】本题考查多项式、单项式的次数和项数的定义,解题的关键是搞清楚多项式与单项式的次数和项数的定义,属于基础题,中考常考题型.15.下列结论正确的是()A.xyz的系数为0 B.3x2﹣x+1 中一次项系数为﹣1C.a2b3c的次数为5 D.a2﹣33是一个三次二项式【分析】根据多项式与单项式的概念即可求出答案.【解答】解:(A)xyz的系数为1,故A错误;(C)a2b3c的次数为6,故C错误;(D)a2﹣33是一个二次二项式,故D错误故选(B)【点评】本题考查单项式与多项式的概念,解题的关键是正确理解单项式与多项式的次数与系数的概念,本题属于基础题型.16.下面的说法正确的是()A.﹣2不是单项式B.﹣a表示负数C.的系数是3 D.x2+2x+1是多项式【分析】根据单项式与多项式的概念判断.【解答】解:(A)常数是单项式,故A不正确(B)﹣a不一定表示负数,故B不正确(C)的系数是,故C不正确故选(D)【点评】本题考查单项式与多项式,解题的关键是正确理解单项式与多项式的概念,本题属于基础题型.17.下列说法中,正确的是()A.0是单项式B.单项式x2y的次数是2C.多项式ab+3是一次二项式D.单项式﹣πx2y的系数是﹣【分析】直接利用单项式的定义以及单项式的次数以及系数的定义和多项式的次数与项数确定方法分析得出答案.【解答】解:A、0是单项式,正确,符合题意;B、单项式x2y的次数是3,故原式错误,不合题意;C、多项式ab+3是二次二项式,故原式错误,不合题意;D、单项式﹣πx2y的系数是﹣π,故原式错误,不合题意;故选:A.【点评】此题主要考查了单项式与多项式,正确把握相关定义是解题关键.18.下列说法错误的是()A.数字0也是单项式B.﹣的系数是﹣C.1﹣a﹣ab是二次三项式D.多项式2x2+3x﹣5中,常数项为5【分析】根据单项式的定义、单项式的次数,多项式的項,可得答案.【解答】解:A、0是单项式,故A不符合题意;B、﹣的系数是﹣,故B不符合题意;C、1﹣a﹣ab是二次三项式,故C不符合题意;D、多项式2x2+3x﹣5中,常数项为﹣5,故D符合题意;故选:D.【点评】本题考查了单项式、多项式,注意多项式的项包括项的符号.19.下列结论中,正确的是()A.单项式的系数是,次数是4B.单项式m的次数是1,没有系数C.单项式﹣xy2z的系数是﹣1,次数是4D.多项式2x2+xy+3是四次三项式【分析】根据单项式的系数及次数的定义,以及多项式的次数、系数的定义解答.【解答】解:解:A、单项式的系数是π,次数是3,故选项错误;B、单项式m的次数是1,系数是1,故选项错误;C、单项式﹣xy2z的系数是﹣1,次数是正确的;D、多项式2x2+xy+3是二次三项式,故选项错误.故选C.【点评】本题考查的是多项式的系数,次数,项,熟练掌握多项式的系数,次数,项是解题的关键.同时考查了单项式.20.下列关于整式的说法中,正确的个数是()①﹣3ab2的系数是﹣3;②4a3b的次数是3;③x2﹣1是二次二项式;④2a+b﹣1的各项分别为2a,b,﹣1.A.1个 B.2个 C.3个 D.4个【分析】根据单项式和多项式的有关概念解答即可,单项式的系数是单项式中的数字因数,单项式的次数是单项式所有字母的指数和.【解答】解:①﹣3ab2的系数是﹣3;故本选项正确;②4a3b的次数是4;故本选项错误;③x2﹣1是二次二项式;故本选项正确;④2a+b﹣1的各项分别为2,1,﹣1.故本选项错误;故选B.【点评】此题考查了单项式和整式的定义.注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.21.下列说法中正确的是()A.多项式ax2+bx+c是二次多项式B.﹣是6次单项式,它的系数是C.﹣ab2,﹣x都是单项式,也都是整式D.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5中的项【分析】直接利用单项式的次数与系数以及多项式的定义、次数与系数分别分析得出答案.【解答】解:A、多项式ax2+bx+c,当a≠0时是二次多项式,故此选项不合题意;B、﹣是6次单项式,它的系数是﹣,故此选项不合题意;C、﹣ab2,﹣x都是单项式,也都是整式,正确,符合题意;D、﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5中的项,故此选项不合题意.故选:C.【点评】此题主要考查了多项式以及单项式有关定义,正确把握相关定义是解题关键.22.下列说法正确的是()A.单项式xy的系数是,次数是1B.单项式﹣πa2b3的系数是﹣,次数是6C.单项式x2的系数是1,次数是2D.多项式2x3﹣3x2y2+x﹣1叫三次四项式【分析】根据多项式与单项式的概念即可判断.【解答】解:(A)单项式xy的系数是,次数是2,故A不正确,(B)单项式﹣πa2b3的系数是﹣π,次数是5,故B不正确,(D)多项式2x3﹣3x2y2+x﹣1叫4次四项式,故D不正确,故选(C)【点评】本题考查多项式与单项式的概念,解题的关键是正确理解单项式与多项式的概念,本题属于基础题型.23.多项式5x2﹣8x+1+x2+7x﹣6x2是()A.一次二项式B.二次六项式C.二次二项式D.二次三项式【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【解答】解:多项式5x2﹣8x+1+x2+7x﹣6x2=﹣8x+1是一次二项式.故选A.【点评】本题考查的是合并同类项以及多项式的定义,几个单项式的和叫做多项式,每个单项式叫做多项式的项,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.24.代数式﹣4xy2+xy+1是()A.二次二项式B.二次三项式C.三次二项式D.三次三项式【分析】先确定出多项式次数,再确定出多项式的项数,即可得出结论.【解答】解:代数式﹣4xy2+xy+1是三次三项式.故选:D.【点评】此题是多项式,主要考查了多项式的次数和项数,解本题的关键确定出多项式的次数和系数.25.给出下列判断:①单项式5×103x2的系数是5;②x﹣2xy+y是二次三项式;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是9;④几个有理数相乘,当负因数有奇数个时,积为负.其中判断正确的是()A.1个 B.2个 C.3个 D.4个【分析】根据多项式和单项式的概念求解.【解答】解:①单项式5×103x2的系数是5×103,故本项错误;②x﹣2xy+y是二次三项式,本项正确;③多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故本项错误;④几个有理数相乘,当负因数有奇数个时,积不一定为负,也可以为0,故本项错误.正确的只有一个.故选A.【点评】本题考查了多项式和单项式,掌握多项式和单项式的概念是解答本题的关键.26.多项式3x|m|y2+(m+2)x2y﹣1是四次三项式,则m的值为()A.2 B.﹣2 C.±2 D.±1【分析】最高次项的次数为4,保证第二项的系数不为0即可.【解答】解:由题意得:|m|+2=4,m=2或﹣2;m+2≠0,解得m≠﹣2,∴m=2.故选A.【点评】应从项数和次数两方面考虑.27.下列概念表述正确的是()A.单项式ab的系数是0,次数是2B.单项式﹣23a2b3的系数是﹣2,次数是5C.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项D.是二次二项式【分析】根据单项式系数、次数的定义及多项式次数与项数的定义,结合选项进行判断即可.【解答】解:A、单项式ab的系数是1,次数是2,原说法错误,故本选项错误;B、单项式﹣23a2b3的系数是﹣23,次数是5,原说法错误,故本选项错误;C、﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5的项,原说法错误,故本选项错误;D、是二次二项式,说法正确,故本选项正确;故选D.【点评】本题考查了多项式与单项式的知识,属于基础题,掌握基本定义是关键.28.下列判断:(1)不是单项式;(2)是多项式;(3)0不是单项式;(4)是整式,其中正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据单项式、多项式及整式的定义,结合所给式子即可得出答案.【解答】解:(1)是单项式,故(1)错误;(2)是多项式,故(2)正确;(3)0是单项式,故(3)错误;(4)不是整式,故(4)错误;综上可得只有(2)正确.故选A.【点评】此题考查了单项式、多项式及整式的定义,注意单独的一个数字也是单项式,另外要区别整式及分式.29.下列说法中正确的是()A.﹣x+3x2﹣2x3是六次三项式B.是二次三项式C.x2﹣2x+25是五次三项式D.﹣5x5+2x4y2﹣1是六次三项式【分析】根据几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣x+3x2﹣2x3是六次三项式,说法错误,应是三次三项式;B、x﹣﹣是二次三项式,说法错误,不是整式;C、x2﹣2x+25是五次三项式,说法错误,应是二次三项式;D、﹣5x5+2x4y2﹣1是六次三项式,说法正确;故选:D.【点评】此题主要考查了多项式定义,关键是掌握多项式的定义.30.多项式﹣x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值是()A.2或﹣2 B.2 C.﹣2 D.﹣4【分析】根据题意可得当|m|=2且m﹣2≠0时,多项式﹣x|m|+(m﹣2)x+1是关于x的二次三项式,再解即可.【解答】解:∵多项式﹣x|m|+(m﹣2)x+1是关于x的二次三项式,∴|m|=2且m﹣2≠0,解得:m=﹣2.故选:C.【点评】此题主要考查了多项式,关键是掌握多项式中次数最高的项的次数叫做多项式的次数.二.填空题(共20小题)31.把多项式4x3y3﹣xy﹣2x4﹣8按字母x的降幂排列:﹣2x4+4x3y3﹣xy﹣8.【分析】根据降幂排列的定义,我们把多项式的各项按照x的指数从大到小的顺序排列起来即可.【解答】解:把多项式4x3y3﹣xy﹣2x4﹣8按字母x的降幂排列:﹣2x4+4x3y3﹣xy ﹣8.故答案为:﹣2x4+4x3y3﹣xy﹣8.【点评】此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.32.多项式3x2+πxy2+9是三次三项式.【分析】根据多项式的概念即可求出答案.【解答】解:故答案为:三;三;【点评】本题考查多项式的概念,属于基础题型.33.代数式3x4﹣x2﹣的二次项系数是﹣.【分析】先找出代数式的二次项,再确定出它的系数.【解答】解:∵代数式3x4﹣x2﹣的二次项是﹣,∴二次项的系数为﹣,故答案为:﹣.【点评】此题是多项式,主要考查了多项式的项的确定和项的系数的确定,特别注意:多项式的项的系数要连同前面的符号.34.按a的降幂排列多项式a4﹣7a+6﹣4a3为a4﹣4a3﹣7a+6.【分析】根据降幂的定义解答即可.【解答】解:按a的降幂排列为:a4﹣4a3﹣7a+6.故答案为:a4﹣4a3﹣7a+6.【点评】本题考查了多项式的降幂排列,要注意移动项时要带着符号.35.任意写一个含有字母a、b的三次二项式,常数项为﹣9,2a2b﹣9(答案不唯一).【分析】根据题意,结合三次二项式、常数项为﹣9可写出所求多项式,答案不唯一,只要符合题意即可.【解答】解:根据题意,得此多项式是:2a2b﹣9(答案不唯一).故答案是:2a2b﹣9(答案不唯一).【点评】本题考查了多项式,解题的关键是熟练掌握多项式中系数、最高次项、常数项的概念,并注意项与项之间是相加的关系.36.如果代数式2x n+1+(m﹣2)x+1是关于x的三次二项式,则m=2,n=2.【分析】根据一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式可得n+1=3,m﹣2=0,再解即可.【解答】解:由题意得:n+1=3,m﹣2=0,解得:n=2,m=2,故答案为:2,2.【点评】此题主要考查了多项式,关键是掌握多项式定义.37.把多项式﹣2x+1﹣x3+x2按字母x升幂排列为:1﹣2x+x2﹣x3.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:把多项式﹣2x+1﹣x3+x2按字母x升幂排列为:1﹣2x+x2﹣x3.故答案为:1﹣2x+x2﹣x3.【点评】考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.38.多项式5a3b2﹣3ab2﹣6a﹣1的次数是5.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得答案.【解答】解:多项式5a3b2﹣3ab2﹣6a﹣1的次数为单项式5a3b2的次数为5,故答案为:5.【点评】本题考查了多项式,多项式的次数是多项式中次数最高的单项式的次数.39.多项式3x2+πxy2+9中,次数最高的项的系数是π.【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,找出次数最高的项的次数即可.【解答】解:多项式3x2+πxy2+9中,最高次项是πxy2,其系数是π.故答案为:π.【点评】此题考查的是多项式,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.40.已知关于x、y的多项式2mx3+3nxy2+2x3﹣3xy2+y﹣2不含三次项,则2m+3n= 1.【分析】该多项式中三次项的有x3,xy2,将其进行合并,然后令其系数为0即可.【解答】解:原式=2mx3+2x3+3nxy2﹣3xy2+y﹣2=(2m+2)x3+(3n﹣3)xy2﹣2+y 令2m+2=0,3n﹣3=0,∴m=﹣1,n=1,∴原式=﹣2+3=1,故答案为:1【点评】本题考查多项式的概念,涉及合并同类项.41.若5x n﹣(m﹣1)x+3为关于x的三次二项式,则m﹣n的值为﹣2.【分析】根据多项式的概念可知求出该多项式最高次数项为3,项数为2,从而求出m与n的值.【解答】解:由题意可知:n=3,m﹣1=0,∴m=1,n=3,∴m﹣n=1﹣3=﹣2,故答案为:﹣2【点评】本题考查多项式的概念,解题的关键是根据三次二项式确定m与n的值,本题属于基础题型.42.一个关于字母x的二次三项式,它的二次项系数为4,一次项系数为2,常数项为﹣7,这个二次三项式为4x2+2x﹣7,.【分析】根据多项式的概念即可求出答案.【解答】解:根据题意可知:4x2+2x﹣7,故答案为:4x2+2x﹣7,【点评】本题考查多项式的概念,解题的关键是正确理解多项式的概念,本题属于基础题型.。
课堂教学设计
例3、用多项式填空,并指出它们的项和次数.
(1)一个长方形相邻两条边的长分别为a,6,则这个长方形的周长为________
(2)m为一个有理数,m的立方与2的差为________
(3)某公司向某地投放共享单车,前两年每年投放a辆,为环保和安全起见,从第三年年初起不再投放,且每个月回收b辆.第三年年底,该地区共有这家公司的共享单车的辆数为________
(4)现存于陕西历史博物馆的我国南北朝时期的
官员独孤信的印章如图4.1-2所示,它由18个
相同的正方形和8个相同的等边三角形围成.如
果其中正方形和等边三角形的边长都为a,等边
三角形的高为6,那么这个印章的表面积为
___________
多项式的排列
运用加法交换律,任意交换多项式x+x2+1中各项的位置,可以做到__种不同的排列方式。
你认为哪几种比较整齐?
1)降幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。
x2+x+1
(2)升幂排列:把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。
1+x+x2出多项式的概念,发展学生数学抽象能力核心素养
与学习的热情,
比较、
力
步巩固多项式的概念
展学生数学抽象能力核心素养
2。
《2.1整式(第三课时)——多项式》我说课的题目是多项式。
下面我将从教材、学情、教法、学法、教学程序、板书设计六个方面进行说明。
恳请在座的各位评委、同仁批评指正。
一.教材分析1、地位和作用本节内容选自人教版数学七年级上册第二章第一节第三课时,是初中代数的重要内容之一。
一方面本节课是建立在学生已经学习了单项式的基础上,对整式知识的进一步深入和拓展;另一方面又为学习整式加减等知识奠定了基础,是进一步研究整式的工具性内容。
鉴于这种认识,我认为本节课起着承前启后的作用。
2.教学目标知识与技能:1.掌握多项式及其项、次数、常数项的概念.2.准确地确定一个多项式的项数和次数.3.知道整式的概念.过程与方法:1.通过小组讨论、合作交流,让学生经历新知识的形成过程.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生对知识的迁移和知识结构体系的更新.情感态度与价值观:1.让学生经历数学活动,体验主动探究问题的乐趣与成功的快乐,感受数学活动充满探索与创新的机遇.3.教学重点.多项式的定义、多项式的项和次数以及常数项等概念.4.教学难点.多项式的次数.二.学情分析七年级二班学生基础不是很扎实,整体学习能力处于中等水平,学习新的知识需要较长的理解过程,再加上学生的好动性,注意力易分散,爱发表见解这一特点,容易将单项式与多项式的相关概念混淆,所以教学中教师应予以简单明白、深入浅出的分析,同时要创造条件和机会,让学生发表见解,发挥学生学习的主动性,提高学生学习的积极性。
三.教学方法鉴于以上对教材和学情的分析,本节课我将采用启发式、讨论式以及讲练结合的教学方法,带着学生去发现和探究新知识,以问题的提出、问题的解决为主线,同时在教学过程中,我将以列表格等多种形式加深学生对知识点的理解,激发学生的学习兴趣,提高教学效率并注意学生的观察能力和语言表达能力的培养。
四.学法分析1、学生采用对比学习的方法,即通过与单项式的比较学习多项式。
第二章第3课多项式-七年级上册初一数学(人教版)引言多项式是初中数学中的重要内容之一。
它在代数学中起着重要的作用,并且在实际应用中也有广泛的应用。
本文将介绍多项式的定义、运算以及常见的一些性质和应用。
1. 多项式的定义多项式是由若干项经过有限次的加、减、乘运算得到的代数表达式。
每一项都由一个常数与一个或多个变量的乘积组成。
常数称为系数,变量称为未知数或变量,乘积称为项。
多项式可以用字母表示,如:P(x)=a n x n+a n−1x n−1+...+a1x1+a0,其中n为非负整数,a n,a n−1,...,a1,a0为常数。
例如,3x2+2x−1就是一个多项式,其中3是x2的系数,2是x的系数,-1是常数项。
2. 多项式的运算多项式可以进行加、减、乘运算。
下面分别介绍这些运算:加法多项式的加法就是将同类项相加。
同类项是指具有相同幂次的项。
例如,将多项式2x3+3x2+4x+1和5x3−2x2+x−2相加,得到7x3+x2+5x−1。
减法多项式的减法就是将减数中的每一项取相反数,然后再进行加法运算。
例如,将多项式2x3+3x2+4x+1和5x3−2x2+x−2相减,得到−3x3+5x2+3x+3。
乘法多项式的乘法是将每一个项相乘并进行合并。
例如,将多项式2x3+3x2+ 4x+1和5x−2相乘,得到10x4+15x3−4x2+8x−2。
3. 多项式的性质多项式有许多重要的性质,下面介绍其中几个常见的性质:次数多项式的次数是指最高幂次。
例如,多项式2x3+3x2+4x+1的次数是3。
系数多项式中每一项的系数是指变量的乘幂前面的数。
例如,多项式2x3+3x2+ 4x+1中,2是x3的系数,3是x2的系数,4是x的系数,1是常数项。
零多项式全为零的多项式称为零多项式。
零多项式的次数没有定义。
单项式只有一项的多项式称为单项式。
例如,3x2就是一个单项式。
多项式相等两个多项式相等是指它们具有相同的系数和相同的幂次。
第3课时 多项式1.理解多项式的概念;(重点)2.能准确迅速地确定一个多项式的项数和次数;3.能正确区分单项式和多项式.(重点)一、情境导入列代数式:(1)长方形的长与宽分别为a 、b ,则长方形的周长是________;(2)图中阴影部分的面积为________;(3)某班有男生x 人,女生21人,则这个班的学生一共有________人.观察我们所列出的代数式,是我们所学过的单项式吗?若不是,它又是什么代数式?二、合作探究探究点一:多项式的相关概念 【类型一】 单项式、多项式与整式的识别指出下列各式中哪些是单项式?哪些是多项式?哪些是整式?x 2+y 2,-x ,a +b 3,10,6xy +1,1x ,17m 2n ,2x 2-x -5,2x 2+x,a 7. 解析:根据整式、单项式、多项式的概念和区别来进行判断. 解:2x 2+x ,1x 的分母中含有字母,既不是单项式,也不是多项式,更不是整式. 单项式有:-x ,10,17m 2n ,a 7; 多项式有:x 2+y 2,a +b 3,6xy +1,2x 2-x -5; 整式有:x 2+y 2,-x ,a +b3,10,6xy +1,17m 2n ,2x 2-x -5,a 7. 方法总结:(1)分母中含有字母(π除外)的式子不是整式;(2)单项式和多项式都是整式;(3)单项式不含加、减运算,多项式必含加、减运算. 【类型二】 确定多项式的项数和次数写出下列各多项式的项数和次数,并指出是几次几项式.(1)23x 2-3x +5; (2)a +b +c -d ;(3)-a 2+a 2b +2a 2b 2.解析:根据多项式的项数是多项式中单项式的个数,多项式的次数是多项式中次数最高的单项式的次数,可得答案.解:(1)23x 2-3x +5的项数为3,次数为2,二次三项式; (2)a +b +c -d 的项数为4,次数为1,一次四项式;(3)-a 2+a 2b +2a 2b 2的项数为3,次数为4,四次三项式.方法总结:(1)多项式的项一定包括它的符号;(2)多项式的次数是多项式里次数最高项的次数,而不是各项次数的和;(3)几次项是指多项式中次数是几的项.【类型三】 根据多项式的概念求字母的取值已知-5x m +104x m -4x m y 2是关于x 、y 的六次多项式,求m 的值,并写出该多项式.解析:根据多项式中次数最高的项的次数叫做多项式的次数可得m +2=6,解得m =4,进而可得此多项式.解:由题意得m +2=6,解得m =4,此多项式是-5x 4+104x 4-4x 4y 2.方法总结:此题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.【类型四】 与多项式有关的探究性问题若关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项,求m 、n 的值.解析:多项式不含二次项和一次项,则二次项和一次项系数为0.解:∵关于x 的多项式-5x 3-mx 2+(n -1)x -1不含二次项和一次项,∴m =0,n -1=0,则m =0,n =1.方法总结:多项式不含哪一项,则哪一项的系数为0.探究点二:多项式的应用如图,某居民小区有一块宽为2a 米,长为b 米的长方形空地,为了美化环境,准备在此空地的四个顶点处各修建一个半径为a 米的扇形花台,在花台内种花,其余种草.如果建造花台及种花费用每平方米为100元,种草费用每平方米为50元.那么美化这块空地共需多少元?解析:四个角围成一个半径为a米的圆,阴影部分面积是长方形面积减去一个圆面积.解:花台面积和为πa2平方米,草地面积为(2ab-πa2)平方米.所以需资金为[100πa2+50(2ab -πa2)]元.方法总结:用式子表示实际问题的数量关系时,首先要分清语言叙述中关键词的含义,理清它们之间的数量关系和运算顺序.三、板书设计多项式:几个单项式的和叫做多项式.多项式的项:多项式中的每个单项式叫做多项式的项.常数项:不含字母的项叫做常数项.多项式的次数:多项式里次数最高项的次数叫做多项式的次数.整式:单项式与多项式统称整式.这节课的教学内容并不难,如果采用讲授的方式,很快90%以上的学生都可以理解、掌握.虽然单纯地从学生接受知识的角度,讲授法应该效果更好,但同时学生的自主学习的习惯和能力也不知不觉地被忽略了.事实证明,学生没有养成一个良好的自主学习的习惯,不会自己阅读、分析题意,他们今后的学习会受到很大的制约.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
第二章整式的加减知识点总结:一、单项式、多项式、整式的概念单项式:由数与字母的乘积组成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
多项式:几个单项式的和叫做多项式。
整式:单项式与多项式统称整式。
二、单项式的系数和次数1、单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1。
2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3、单项式的表示形式:(1)数与字母的乘积这样的代数式叫做单项式(2)单个字母也是单项式。
(3)单个的数是单项式(4)字母与字母相乘成为单项式(5)数与数相乘称为单项式三、多项式的项、常数项、次数在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。
一个多项式有几项就叫做几项式。
多项式中的符号,看作各项的性质符号。
一元N次多项式最多N+1项。
四、多项式的排列:1、把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2、把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。
为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。
※在做多项式的排列的题时注意:(1) 由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2) 有两个或两个以上字母的多项式,排列时,要注意:a、先确认按照哪个字母的指数来排列。
b、确定按这个字母向里排列,还是向外排列。
五、同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。
※掌握同类项的概念时注意:1.判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。
7年级上册数学单项式多项式数学单项式和多项式是初中数学中的重要概念,也是代数运算的基础。
下面将分别介绍单项式和多项式的概念、运算及其在实际应用中的应用场景。
一、单项式单项式是代数学中的一个基本概念,它是指只含有一个乘法项的代数式。
也就是说,一个单项式由一个常数系数与若干个乘法因子相乘组成,而这里的乘法因子可以是含有字母的变量、常数或二者的积。
一个例子:单项式2x。
这个单项式由常数2和变量x相乘形成,它没有加法操作符,所以称为单项式。
在单项式中,常数系数可以为正数、负数或零。
乘法因子可以是正整数、负整数、自然数、真分数、整数、小数等各种数。
例如:单项式2x、-3y、4ab等。
考虑单项式的次数。
单项式的次数是用字母的个数表示的。
如果一个单项式的字母个数是0,那么它的次数为0,即0次单项式。
如果一个单项式只含有一个字母,那么它的次数为1,即一次单项式。
如果一个单项式含有两个字母,那么它的次数为2,即二次单项式。
依次类推,如:单项式2x的次数为1,单项式-3x²的次数为2。
单项式的运算:单项式之间可以进行加法和减法运算。
如果两个单项式的乘法因子完全相同,那么它们的系数可以相加。
例如:单项式3x和2x具有相同的乘法因子x,所以它们可以合并为5x。
二、多项式多项式是由若干个单项式相加(或相减)而成的代数式。
一个多项式也可以包含常数项。
多项式是二项式、三项式等的统称,可以是一个单项式或者多个单项式的和。
一个例子:多项式2x + 3y。
这个多项式由两个单项式2x和3y相加形成。
多项式中的每个单项式称为多项式的项。
多项式中的各项之间用加号或减号连接。
多项式的最高次数是指多项式中各个单项式的次数中最大的那一个。
例如:多项式3x² + 2x + 1,其中的3x²、2x和1分别是二次项、一次项和常数项。
这个多项式的最高次数是2,因为它的二次项3x²的次数为2。
多项式的运算:多项式之间可以进行加法和减法运算。
人教版七年级上册第3课时多项式及整式(150) 1.先阅读下列材料,然后解答问题:材料一:将多项式按某个字母(如x)的指数从大到小(或从小到大)依次排列,我们称这种排列叫做关于x的降幂(或升幂)排列.如:把多项式3x2y−4xy2+x3−5y3按字母x的降幂排列为x3+3x2y−4xy2−5y3.材料二:多项式−1x3+x+8中含有x3项,x项,常数项,按x的降幂排列缺x2项,2我们可以补入0·x2作为x的二次项,使原式成为−1x3+0·x2+x+8的形式,这样2的做法叫做补入多项式的缺项.解答下列问题:(1)请将多项式3x2y−4xy2+x3−5y3按字母y进行升幂排列;(2)请补入多项式−x+x4+1的缺项,按x进行降幂排列.2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元3.某公园的门票价格如下:成人票每张20元,学生票每张10元.一个旅游团有成人a个,学生b个.(1)该旅游团应付门票多少元?(2)若该旅游团有30个成人,10个学生,那么他们应付门票多少元?4.如果一个多项式是五次多项式,那么这个多项式的每一项的次数()A.都小于5B.都大于5C.都不小于5D.都不大于55.关于x的多项式(m−1)x3−2x n+3x的次数是2,那么m=,n=.6.一架飞机的无风飞行航速为a千米/时,风速为20千米/时,则这架飞机顺风飞行4小时的行程是千米,逆风飞行3小时的行程是千米.7.有一组多项式:a+b2,a2−b4,a3+b6,a4−b8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为.8.多项式1x+3x2−5的各项为,次数最高的项是,它的次2数是 ,一次项系数是 ,常数项是 ,它是 次 项式.9.下列式子:a 2,2a ,−2xy 2,−2x +y 2,a 3,1x+y ,3a,4+π中,多项式的个数是()A.1B.2C.3D.4 10.对于下列四个式子:①0.1; ②x+y 2;③2m ;④3π.其中不是整式的是() A.① B.② C.③ D.④11.已知一个多项式是三次二项式,则这个多项式可以是()A.x 2−2x +1B.2x 3+1C.x 2−2xD.x 3−2x 2+1 12.已知①4xy ,②x 2+x −23,③m 2n 2,④y 2+y +2y ,⑤2x 3−3,⑥0,⑦−3ab +a ,⑧m ,⑨m−n m+n ,⑩x−12,⑪3x .其中单项式有 ,多项式有 ,整式有.(只填序号)参考答案1(1)【答案】x3+3x2y−4xy2−5y3(2)【答案】x4+0·x3+0·x2−x+12.【答案】:A3(1)【答案】(20a+10b)元(2)【答案】700元4.【答案】:D5.【答案】:1;2【解析】:由题意知,含有x3的项不存在,所以其系数为0,即m−1=0,所以m=1;−2x n为次数最高的项,所以n=26.【答案】:4(a+20);3(a−20)7.【答案】:a10−b20【解析】:因为对比发现a的指数依次增大1,b的指数依次增大2且第奇数个式子相加,第偶数个式子相减,所以第10个多项式是a10−b208.【答案】:12x,3x2,−5;3x2;2;12;−5;二;三9.【答案】:A10.【答案】:C11.【答案】:B【解析】:A项,x2−2x+1是二次三项式,故A项错误.B项,2x3+1是三次二项式,故B项正确.C项,x2−2x是二次二项式,故C项错误.D项,x3−2x2+1是三次三项式,故D项错误.故选B12.【答案】:①③⑥⑧;②⑤⑩;①②③⑤⑥⑧⑩。