第6章 简单的超静定问题
- 格式:ppt
- 大小:1.89 MB
- 文档页数:28
第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
简单超静定问题17内容Chap.6 简单超静定问题 1. 超静定问题及其解法2.拉压超静定问题3.扭转超静定问题 4.简单超静定梁要求了解超静定问题及其解法§6.1 超静定问题及其解法一. 静定超静定概念 1. 静定问题――仅用静力平衡方程就能求出全部未知力,这类问题称为静定问题. statically determinate problem 特点:未知力的数目等于静力学平衡方程的数目。
2. 超静定问题――仅用静力平衡方程不能求出全部未知力。
又称静不定问题。
statically indeterminate problem 特点:未知力的数目多于静力平衡方程的数目。
BC1 ααA2F y FN1 α αA未知力数目:2 ( FN1 , FN2 ) 静力平衡方程数目:2 ( ∑Fx = 0, ∑Fy = 0 ) 静定结构,--------静定问题仅用静力平衡方程便能求解全部未知量。
FN2 xFN1FN2 FN3FN4FF未知力:4个平衡方程:2个超静定结构,超静定问题。
需要补充 2 个方程。
3. 超静定次数degree of statical indeterminancy 未知力数目与平衡方程数目之差。
也是需要补充的方程数目。
FN1FN2 F N3FN4FF未知力:4个平衡方程:2个超静定次数= 4-2 = 2 此结构可称为2次超静定结构4. 多余约束redundant restraint ------结构保持静定所需约束之外的约束。
即没有这部分约束结构也能保持一定的几何形状(静定)。
BC D B DBAAAFFF5. 多余未知力forceredundant unknown多余约束提供的约束力。
超静定次数= 多余未知力数目判断超静定次数:方法1: 多余未知力数目方法2:未知力数目-平衡方程数目二. 超静定问题的解法:1. 判断超静定次数:未知力数目-平衡方程数目2. 列平衡方程:静力平衡关系 3. 列几何方程:反映各杆变形之间的关系,需要具体问题具体分析。