模式特征的提取与选择
- 格式:ppt
- 大小:73.00 KB
- 文档页数:34
模式识别特征选择与提取(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--模式识别特征选择与提取中国矿业大学计算机科学与技术学院电子信息科学系班级:信科11-1班,学号:08113545,姓名:褚钰博联系方法(QQ或手机):8,日期:2014 年 06月 10日摘要实际问题中常常需要维数约简,如人脸识别、图像检索等。
而特征选择和特征提取是两种最常用的维数约简方法。
特征选择是从某些事物中提取出本质性的功能、应用、优势等,而特征提取是对特征空间进行变换,将原始特征空间映射到低维空间中。
本文是对主成分分析和线性判别分析。
关键词:特征选择,特征提取,主成分分析,线性判别分析1.引言模式识别的主要任务是利用从样本中提取的特征,并将样本划分为相应的模式类别,获得好的分类性能。
而分类方法与分类器设计,都是在d(变量统一用斜体)维特征空间已经确定的前提下进行的。
因此讨论的分类器设计问题是一个选择什么准则、使用什么方法,将已确定的d维特征空间划分成决策域的问题。
对分类器设计方法的研究固然重要,但如何确定合适的特征空间是设计模式识别系统另一个十分重要,甚至更为关键的问题。
如果所选用的特征空间能使同类物体分布具有紧致性,即各类样本能分布在该特征空间中彼此分割开的区域内,这就为分类器设计成功提供良好的基础。
反之,如果不同类别的样本在该特征空间中混杂在一起,再好的设计方法也无法提高分类器的准确性。
本文要讨论的问题就是特征空间如何设计的问题。
基于主成分分析的特征选择算法的思想是建立在这样的基础上的:主成分分析方法将原始特征通过线性变换映射到新的低维空间时,获得的主成分是去了新的物理意义,难以理解,并且主成分是所有原始特征的线性组合。
所以将主成分分析与特征选择相结合,设计多种相似性度量准则,通过找到与主成分相关的关键特征或者删除冗余、不相关以及没有意义的特征,将主成分又重新映射到原始空间,来理解成主成分的实际意义。
特征的提取和选择
特征提取和选择是机器学习中非常重要的环节,它既可以减少计算量,又可以提高模型的性能。
选择较好的特征可以让模型更加简单,更加容易
和快速的训练出最佳参数,从而使得模型更加精确、效果更好。
一般来说,特征提取和选择有以下几步:
1.特征提取。
特征提取关注的是利用现有特征生成新的特征。
它可以
是特征融合(如结合多个特征生成更强大的特征),也可以是特征变换
(如离散特征变换成连续特征)。
2.无关特征删除。
把没有帮助的特征删除,有助于减少模型的运行时间,提高模型的效果。
3.有关特征选择。
把与目标值有很强关联的特征选择出来,这些特征
被称为有关特征,它们可以帮助模型训练出更好的结果。
4.特征降维。
为了减少特征之间的相关性,减少计算量,与有关特征
相关性比较低的特征可以被删除。
5.特征加权。
调整特征的权重,使得有关特征拥有更大的影响力,从
而帮助模型更好的进行预测。
通过这种特征提取和选择的过程,可以把训练集中拥有相关性比较高
的有用特征保留下来,把没用的特征抛弃,有效的提高模型的性能。
模式识别中的特征抽取与选择方法研究特征抽取与选择在模式识别中扮演着至关重要的角色。
模式识别是一种分析和解释数据的过程,将数据转化为可理解的形式并用于分类、识别、聚类等任务。
特征抽取是指从原始数据中提取出对于模式识别任务有意义的特征,而特征选择是指从抽取出的特征中选择最相关、最有用的特征。
在模式识别任务中,原始数据可能具有很高的维度,包含大量的冗余信息,这会导致模型的复杂性和计算成本的增加。
同时,选择合适的特征也能够帮助提高模型的准确性和可解释性。
因此,研究特征抽取与选择方法对于优化模式识别系统具有重要意义。
特征抽取方法可以分为两大类:基于信号处理的方法和基于机器学习的方法。
基于信号处理的方法主要用于处理信号和图像数据,常见的方法包括小波变换、傅里叶变换、对数变换等。
这些方法能够提取出数据的频域、时域或空域特征,有助于捕捉到数据的局部和全局性质。
基于机器学习的特征抽取方法主要基于统计学原理和机器学习算法。
其中,主成分分析(PCA)是一种常用的降维方法,通过线性变换将高维数据映射到低维空间。
同时,局部特征提取方法,如局部二值模式(LBP)和尺度不变特征变换(SIFT),能够提取出数据的局部纹理和形状特征。
此外,深度学习方法,如卷积神经网络(CNN)和自编码器(AE),也能够自动学习数据的高层抽象特征。
在特征选择方面,常用的方法包括过滤法、包装法和嵌入法。
过滤法主要基于特征与类别之间的相关性进行特征选择,例如相关系数、互信息等。
这些方法简单高效,能够快速筛选出与目标变量相关性较高的特征,但忽略了特征之间的相互作用。
包装法通过训练模型并根据模型的性能选择特征。
常见的方法包括递归特征消除(RFE)和遗传算法等。
这些方法能够考虑特征之间的相互作用,但计算复杂度较高。
嵌入法将特征选择与模型训练过程结合起来,通过优化模型的性能来选择特征。
常见的方法包括L1正则化(L1 regularization)、决策树改进(Decision Tree Improvement)等。
特征选择与特征提取的比较在机器学习中,特征选择和特征提取是两个非常重要的概念。
它们可以帮助我们从原始数据中提取出最相关的特征,用于训练模型并做出预测。
本文将探讨特征选择和特征提取的比较,并分析它们各自的优缺点。
一、特征选择特征选择是指从原始特征集中选择最有用的特征子集。
这种方法的目的是降低特征维度,从而减少训练时间和提高模型准确性。
特征选择有三种常见的方法:1.过滤式特征选择过滤式特征选择方法通过计算每个特征和目标变量之间的相关性来选择有用的特征。
这些特征可以在训练模型之前进行筛选,并且与特定模型无关。
过滤式特征选择的优点是计算速度快,但也有一些缺点,例如无法处理特征之间的复杂关系。
2.包装式特征选择包装式特征选择方法会使用给定模型来评估每个特征的重要性。
这种方法通过不断调整模型来选择最佳特征子集。
包装式特征选择的优点是可以处理特征之间的复杂关系,但计算时间较长。
3.嵌入式特征选择嵌入式特征选择方法与包装式特征选择非常相似,但是它们会将选定的特征直接嵌入到模型中。
这种方法可以帮助模型更加精确地理解数据,但也需要更长的训练时间。
特征选择的优点是可以减少特征集的大小并提高模型的准确性。
但它也有缺点,例如可能会导致信息损失和对特定模型的依赖性。
二、特征提取特征提取是将原始数据转换为可用于机器学习的特征集的过程。
这些特征通常由更高层次的信息组成,其目的是让模型更容易理解数据并做出准确的预测。
主要有两种特征提取方法:1.基于深度学习的特征提取深度学习是一种可用于特征提取的强大工具。
它可以自动发现数据中的模式和规律,并在此基础上提取出相关的特征。
这些特征通常被用于训练分类器和预测模型。
2.基于统计学的特征提取基于统计学的特征提取方法通常用于处理分类或聚类问题。
这种方法通过计算数据中的各种统计值来提取有用的特征,例如平均值、标准差、偏度和峰度等。
特征提取的优点是可以帮助模型更好地理解数据,并提高模型的准确性。