模式识别 第七章 特征提取与选择
- 格式:ppt
- 大小:1.29 MB
- 文档页数:49
特征提取与特征选择的区别与联系特征提取和特征选择是机器学习和模式识别领域中常用的两种特征处理方法。
它们都是在原始特征空间中对特征进行加工和处理,以便更好地应用于后续的分类、聚类或回归任务。
虽然它们都是对特征进行处理,但是它们的目的和方法却有很大的不同。
下面我们将详细探讨特征提取与特征选择的区别与联系。
特征提取是指从原始特征中抽取出新的特征表示。
在实际应用中,原始特征往往具有冗余和噪声,通过特征提取可以将原始特征进行变换,得到更具有辨识度和可分性的特征表示。
常见的特征提取方法包括主成分分析(PCA)、线性判别分析(LDA)、独立成分分析(ICA)等。
这些方法通过线性或非线性的变换,将原始特征映射到一个新的特征空间中,以便更好地进行后续的分类或聚类任务。
特征选择则是从原始特征中选择出子集,以降低维度、提高模型的泛化能力和减少计算复杂度。
特征选择方法包括过滤式、包裹式和嵌入式三种。
过滤式方法通过对特征进行打分或排序,然后选择得分高的特征作为子集;包裹式方法则是将特征选择看作一个搜索问题,针对具体的学习算法进行搜索;嵌入式方法则是将特征选择融入到学习器的训练过程中。
这些方法都是通过评估特征子集的质量,选择对模型性能影响最大的特征子集。
特征提取和特征选择在目的和方法上存在着很大的不同。
特征提取的目的是通过变换原始特征,得到更具有可分性和辨识度的新特征表示,从而提高模型的性能;而特征选择的目的则是通过选择出对模型性能影响最大的特征子集,降低维度、提高泛化能力和减少计算复杂度。
从方法上看,特征提取是通过线性或非线性的变换,将原始特征映射到一个新的特征空间中;而特征选择则是在原始特征空间中进行子集选择,保留对模型性能影响最大的特征子集。
特征提取和特征选择虽然在目的和方法上有很大的不同,但是它们之间也存在着联系。
首先,特征提取可以看作是一种特殊的特征选择,它通过对原始特征进行变换和映射,得到一个新的特征表示,实质上也是在选择对模型性能影响最大的特征子集。
特征选择、特征提取MATLAB算法实现(模式识别)6特征选择6.1问题对“threethreelarge.m”数据,采⽤任意⼀种特征选择算法,选择2个特征6.2思路采⽤简单特征选择法(simple feature selection approach),⾸先计算每⼀个特征的分类能⼒值,再选择出其中最⼤分类能⼒的l个特征。
6.3结果eigs=8.92340.00000.0767SelectedFeature=13也就是说,选取x和z坐标作为特征。
6.4代码%特征选择代码,见FSthrthrlrg.m⽂件m1=[0,0,0];m2=[0,0,0];m3=[0,0,0];m=[0,0,0];for i=1:200m1(1)=m1(1)+(x1(i,1)-m1(1))/i;m1(2)=m1(2)+(x1(i,2)-m1(2))/i;m1(3)=m1(3)+(x1(i,3)-m1(3))/i;end;for i=1:190m2(1)=m2(1)+(x2(i,1)-m2(1))/i;m2(2)=m2(2)+(x2(i,2)-m2(2))/i;m2(3)=m2(3)+(x2(i,3)-m2(3))/i;end;for i=1:210m3(1)=m3(1)+(x3(i,1)-m3(1))/i;m3(2)=m3(2)+(x3(i,2)-m3(2))/i;m3(3)=m3(3)+(x3(i,3)-m3(3))/i;end;m(1)=(m1(1)+m2(1)+m3(1))/3;m(2)=(m1(2)+m2(2)+m3(2))/3;m(3)=(m1(3)+m2(3)+m3(3))/3;sw1=zeros(3,3);sw2=zeros(3,3);sw3=zeros(3,3);sw=zeros(3,3);sb=zeros(3,3);for i=1:200sw1=sw1+([x1(i,1),x1(i,2),x1(i,3)]-m1)'*([x1(i,1),x1(i,2),x1(i,3)]-m1);end;for i=1:190sw2=sw2+([x2(i,1),x2(i,2),x2(i,3)]-m2)'*([x2(i,1),x2(i,2),x2(i,3)]-m2);end;for i=1:210sw3=sw3+([x3(i,1),x3(i,2),x3(i,3)]-m3)'*([x3(i,1),x3(i,2),x3(i,3)]-m3);end;N1=200;N2=190;N3=210;N=N1+N2+N3;p1=N1/N;p2=N2/N;p3=N3/N;sw1=sw1/N1;sw2=sw2/N2;sw3=sw3/N3;sw=p1*sw1+p2*sw2+p3*sw3;sb=p1*(m1-m)'*(m1-m)+p2*(m2-m)'*(m2-m)+p3*(m3-m)'*(m3-m);s=inv(sw)*sb;j1=trace(s)eigs=eig(s)';eigsIndex=[1,2,3];%冒泡法排序,注意的是特征值顺序变化的同时要与相对应的下标同步for i=1:3for j=i:3if(eigs(i)eigstemp=eigs(i);eigs(i)=eigs(j);eigs(j)=eigstemp;eigsIndextemp=eigsIndex(i);eigsIndex(i)=eigsIndex(j);eigsIndex(j)=eigsIndextemp;end;end;end;%降序排列后的特征值,直接选取前L个特征SelectedFeature=[eigsIndex(1),eigsIndex(2)]%FSthrthrlrg.m程序结束6.5讨论从实验结果中我们可以看到y特征的分类能⼒最⼩,这⼀点可以从实验数据中得到验证——三类数据在y⽅向的分布⼏乎是相同的(见下图)。
第五章 特征选择与特征提取5.1 问题的提出前面主要介绍的是各种分类器的设计方法,实际上我们已经完全可以解决模式识别的问题了。
然而在实际应用中,在分类器设计之前,往往需要对抽取出的特征进行一下处理,争取尽量减小特征的维数。
在实践中我们发现,特征的维数越大,分类器设计的难度也越大,一维特征的识别问题最容易解决,我们只要找到一个阈值t ,大于t 的为一类,小于t 的为一类。
同时特征维数越大,要求的训练样本数量越多,例如在一维的情况下,10个训练样本就可以比较好的代表一个类别了,而在10维空间中,10个训练样本则是远远不够的。
这一章中我们就来介绍一下减小特征维数的方法。
一般来说模式识别系统的输入是传感器对实物或过程进行测量所得到的一些数据,其中有一些数据直接可以作为特征,有一些数据经过处理之后可以作为特征,这样的一组特征一般称为原始特征。
在原始特征中并不一定每个特征都是有用的,比如在识别苹果和橙子的系统中,我们可以抽取出的特征很多,(体积,重量,颜色,高度,宽度,最宽处高度),同样还有可能抽取出其它更多的特征。
在这些特征中对分类有用的是(颜色,高度,最宽处高度),其它特征对识别意义不大,应该去除掉。
这样的过程称为是特征选择,也可以称为是特征压缩。
特征选择可以描述成这样一个过程,原始特征为N 维特征()12,,,TN x x x =X ,从中选择出M 个特征构成新的特征矢量()11,,,MTi i i Y x x x =,M N <。
同时,特征矢量的每一个分量并不一定是独立的,它们之间可能具有一定的相关性,比如说高度和最宽处的高度,高度值越大,最宽处的高度值也越大,它们之间具有相关性,我们可以通过一定的变换消除掉这种相关性,比如取一个比值:最宽处的高度/高度。
这样的过程称为特征提取。
特征提取可以描述为这样一个过程,对特征矢量()12,,,TN x x x =X 施行变换:()i i y h =X ,1,2,,i M =,M N <,产生出降维的特征矢量()12,,,TM Y y y y =。
模式识别基本工作流程模式识别基本工作流程主要包含以下步骤:1.信息获取:这是模式识别的第一步,将对象转化为计算机可以运算的符号,也就是将事物所包含的各种信息通过采集转换成计算机能接受和处理的数据。
对于各种物理量,可以通过传感器将其转换成电信号,再由信号变换部件对信号的形式、量程等进行变换,最后经A/D采样转换成对应的数据值。
2.预处理:预处理环节通过各种滤波降噪措施,降低干扰的影响,增强有用的信息。
在此基础上,生成在分类上具有意义的各种特征。
预处理生成的特征可以仍然用数值来表示,也可以用拓扑关系、逻辑结构等其他形式来表示,分别用于不同的模式识别方法。
3.特征提取与选择:特征提取是将识别样本构造成便于比较、分析的描述量即特征向量。
特征选择是从已提取的特征中选择一部分特征作为建模的数据,以免特征的维数太大。
有时可采用某种变换技术,得到数目上比原来少的综合性特征用于分类,称为特征维数压缩,也成为特征提取。
4.分类器设计:分类器设计是通过训练过程将训练样本提供的信息变为判别事物的判别函数。
5.分类决策:分类决策是对样本特征分量按判别函数的计算结果进行分类,是模式识别的核心和难点。
其主要方法是计算待识别事物的属性,分析它是否满足是某类事物的条件。
满足这种数学式子与否就成为分类决策的依据。
此外,模式识别的方法主要有四类:数据聚类(用于非监督学习)、统计分类(用于监督学习)、结构模式识别(通过对基本单元判断是否符合某种规则)和神经网络(可同时用于监督或者非监督学习,通过模拟人脑,调节权重来实现)。
综上所述,模式识别的工作流程涵盖了从数据获取到分类决策的多个环节,每个环节都有其特定的任务和方法,共同构成了完整的模式识别过程。
特征选择与提取特征的选取是模式识别的基础、关键。
特征选择的好坏将直接影响到分类器设计的好坏。
故从原特征的形成,到特征提取和特征选择,每一步骤都显得尤为重要。
同时特征的选取它也是模式识别的难点,如何获取如何获得在追求最优解的同时代价(计算量或时间)却最小的方法。
一、原特征选择的依据在运用模式识别进行分类器设计之前,毫无疑问,首先要进行广泛采集能够反映研究对象的状态、本质及性质等特征。
比如,就如大家平时的讲话当中,充斥着许多描述性情节,就需从怎样描述其对象才能让大家认知,找出一大堆的描述词来对能反映的特征进行修饰。
就像两个同学在分开多年以后再次遇到,其中的一个人想向另一个人打听一个不在场的同学现况,但是可能由于心奋突然一时之间想不起他的名字,这是他就会向对方提供一堆信息,比如曾用过的绰号、相貌、体型、走路的体态及说话的方式等等。
这些就是泛泛的原特征,可能描述者稍加思索就可以从中找出几个甚至一个关键特征能够让对方明白他讲的是谁。
比如当听者收到“当时班里男生里面个子最高的(班里最高的比其他人高都的很明显,)”或“班里最漂亮的女生(班里其他女生都惨不忍睹)”这样的话时,他就知道说的是谁了。
而其它的许多特征也在描述中起到了一定的作用,一定数量的特征也可能是对方判定。
故原特征选定的好坏对于整个分类器的设计过程起到了第一个瓶颈。
原特征的选定应分两种情况:一种是特征之间主次很明显。
向上面例子中讲的那样设计(描述)对象的特征对于设计者来说,已经比较清楚,哪个特征是最主要特征,最能反映事物的,哪个次之,哪个再次之,排序很明显,没有犯难的。
这时原特征选定就比较简单,只需根据“专家知识”就能定特征。
一种是特征之间的主次不明显,哪个重要哪个不重要让人犹豫不决,这时的原特征不能依赖于“专家知识”来定特征,而应该对犹豫不决的特征都收集起来,交给下个环节运用数学方法进行海选。
同样,上例当中的听者收到“当时班里男生里面个子最高的(但是那时班里个子高的有好几个,而且都差不多)”或“班里最漂亮的女生(班里其他女生都个个漂亮)”的话时却因满足条件的太多了,难以产生联想。
第七章特征选择1.基于类内类间距离的可分性判据Fisher线性判别采用了使样本投影到一维后类内离散度尽可能小,类间离散度尽可能大的准则来确定最佳的投影方向,这就是一个直观的类别可分性判别。
这一思想可以可用来定义一系列基于类内类间距离的判别。
2.基于熵的可分性判据,熵J E越小,可分性越好3.特征选择的最优算法一种不需要进行穷举法但仍能取得最优解的方法是分支定界法,基本思想是:设法将所有可能特征选择组合构建成一个树状的结构,按照特定的规律对树进行搜索,使得搜索过程尽可能早地可以达到最优解而不必遍历整个树。
4.特征选择的次优算法单独最优特征的组合;顺序前进法;顺序后退法;增l减r法。
5.把分类器与特征选择集成来一起、利用分类器进行特征选择的方法通常被称作包裹法;于此对应,利用单独的可分性准则来选择特征在进行分类的方法为过滤法。
第八章特征提取1.主成分分析方法主成分分析其出发点是从一组特征中计算出一组按重要性从大到小的排列的新特征,它们是原有特征的线性组合,并且相互之间是不相关的。
在模式识别中应用主成分分析的方法,通常的做法是首先用样本估算协方差矩阵或自相关矩阵,求解其特征方程,得到各个主成分方向,选择适当数目的主成分作为样本的新特征,将样本投影到这些主成分方向上进行分类或聚类。
2.K-L变换a.定义:K-L变换是模式识别中常用的一种特征提取方法,其最基本的形式原理上与主成分分析是相同的,但K-L变换能够考虑到不同的分类信息,实现监督的特征提取。
b. K-L变换的重要性质:K-L变换是信号的最佳压缩表示;K-L变换的新特征是互不相关的;用K-L坐标系表示原数据,表示熵最小。
3.特征提取与特征选择特征选择的含义是从D个特征选出d(<D)个特征,另一种把特征空间降维的方法是特征提取,即通过适当的变换把D个特征转换成d(<D)个新特征第九章非监督模式识别1.非监督模式识别非监督模式识别分为两大类,一是基于样本的概率分布模型进行聚类划分,另一类是直接根据样本间的距离或相似性度量进行聚类。