高二下学期第一次月考数学(文)试题
- 格式:pdf
- 大小:262.54 KB
- 文档页数:9
高二下学期第一次月考数学试卷(文)命题人:曹泽纪一、选择题,本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个项是符合题目要求的。
1.cos 300°的值是( )A.12 B .-12 C.32 D .-322.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ).A .π2B .2π3C .3π2D .5π33.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( ).A .x =π4B .x =π2C .x =-π4D .x =-π24.要得到y =cos ⎝⎛⎭⎪⎫2x +π3的图象,只需将y =sin 2x 的图象( ).A .向左平移5π12个单位长度B .向右平移5π12个单位长度C .向左平移5π6个单位长度D .向右平移5π6个单位长度5.设函数f (x )=⎩⎨⎧log 2x , x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.如图:函数y =xsin x 在[-π,π上的图像是( )7.设41)4tan(,52)tan(=-=+πββα ,则)4tan(πα+的值是( )A.183B. 223C. 1813D. 2213 8.已知|log |)(3x x f =,则下列不等式成立的是 ( )A .)2()21(f f >B .)3()31(f f >C .)31()41(f f > D .)3()2(f f >9、已知()f x 在R 上是奇函数,且)()2(x f x f -=+.2(4)(),(0,2)()2,(7)f x f x x f x x f +=∈==当时,则( )A.-2B.2C.-98D.9810.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )A .[1,2]B .10,2⎛⎤⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]11.给出下列命题:①在区间(0,)+∞上,函数1y x -=,12y x =,2(1)y x =-,3y x =中有三个是增函数;②若log 3log 30m n <<,则01n m <<<;③若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;④已知函数233,2,()log (1),2,x x f x x x -⎧≤=⎨->⎩则方程 1()2f x =有2个实数根,其中正确命题的个数为 ( ) (A )1 (B )2 (C )3 (D )412.在△ABC 中,内角A ,B ,C 的对边边长分别是a ,b ,c.若a 2-b 2=3bc , sin C =23sin B ,则A =( ).A .30°B .60°C .120°D .150°二、填空题,本大题共4小题,每小题5分.把答案填在答题卡相应位置。
高二下学期第一次月考数学试题一、单选题1.某物体的运动路程s (单位:m )与时间t (单位:s )的关系可用函数表示,则该()21s t t t =++物体在s 时的瞬时速度为( ) 1t =A .0m/s B .1m/s C .2m/s D .3m/s【答案】D【分析】根据瞬时速度的概念即可利用平均速度取极限求解. 【详解】该物体在时间段上的平均速度为[]1,1t +∆,当无限趋近于0时,无限趋()()()()()22111111113t t s t s s t t t t+∆++∆+-+++∆-∆===+∆∆∆∆Δt 3t +∆近于3,即该物体在s 时的瞬时速度为3m/s . 1t =故选:D2.曲线在点(1,-2)处的切线的倾斜角为( ) 43y x x =-A .B .C .D .6π4π3π23π【答案】B【分析】根据导数的几何意义求解.【详解】因为,所以,故所求切线的倾斜角为.343y x '=-11x y ='=4π故选:B .3.函数的单调递增区间为( )21=ln 22y x x -+A . B .C .D .()1,1-()0,1[)1,+∞()0,∞+【答案】C【分析】先对函数求导,然后令导函数大于0解出不等式,并结合函数的定义域,即可得到本题答案.【详解】因为,所以,21=ln 22y x x -+211x y x x x -'=-=令,得或,0y >'A A A A 1x <-1x >又函数的定义域为,所以函数的单调递增区间为, {}0x x >[1,)+∞故选:C4.若函数在区间上单调递增,则实数k 的取值范围是( )()331f x x kx =-+()1,+∞A . B . C . D .(),1-∞(],1-∞[)1,-+∞[)1,+∞【答案】B【分析】利用函数在区间上的导函数为非负数,列不等式,解不等式即可求得的取值()f x (1,)+∞k 范围.【详解】由题意得,在区间上恒成立, 22()333()0f x x k x k '=-=-≥(1,)+∞即在区间上恒成立,2k x ≤(1,)+∞又函数在上单调递增,得, 2y x =(1,)+∞21x >所以,即实数的取值范围是. 1k ≤k (,1]-∞故选:B5.已知函数的导函数图象如下图所示,则原函数的图象是( )()y f x =()y f x '=()y f x =A .B .C .D .【答案】B【分析】根据函数的单调性与导数的关系以及导数的变化可得结果.【详解】由图可知,当时,,则函数在上为增函数, 11x -<<()0f x ¢>()f x ()1,1-当时,单调递增,故函数在上的增长速度越来越快,10x -<<()f x '()f x ()1,0-当时,单调递减,故函数在上的增长速度越来越慢. 01x <<()f x '()f x ()0,1B 选项中的图象满足题意. 故选:B.6.函数在区间上的最大值为( ) ()cos sin f x x x x =-[]π,0-A .1 B .C .D .π323π2【答案】B【分析】求出函数的导数,判断函数的单调性,即可求得答案. 【详解】由题意得, ()cos sin cos sin f x x x x x x x '=--=-当时,,,[]π,0x ∈-sin 0x ≤()0f x '≤所以在区间单调递减,故函数最大值为, ()f x []π,0-()ππf -=故选:B7.“一笔画”游戏是指要求经过所有路线且节点可以多次经过,但连接节点间的路线不能重复画的游戏,下图是某一局“一笔画”游戏的图形,其中为节点,若研究发现本局游戏只能以为起,,A B C A 点为终点或者以为起点为终点完成,那么完成该图“一笔画”的方法数为( )C C AA .种B .种C .种D .种6122430【答案】C【分析】采用分步乘法可计算得到以为起点,为终点的方法数,再利用分类加法计数原理求得A C 结果.【详解】以为起点时,三条路线依次连接即可到达点,共有种选择;自连接到A B 326⨯=B C 时,在右侧可顺时针连接或逆时针连接,共有种选择,C 2以为起点,为终点时,共有种方法;∴A C 6212⨯=同理可知:以为起点,为终点时,共有种方法;C A 12完成该图“一笔画”的方法数为种.∴121224+=故选:C.8.过去的一年,我国载人航天事业突飞猛进,其中航天员选拔是载人航天事业发展中的重要一环.已知航天员选拔时要接受特殊环境的耐受性测试,主要包括前庭功能、超重耐力、失重飞行、飞行跳伞、着陆冲击五项.若这五项测试每天进行一项,连续5天完成.且前庭功能和失重飞行须安排在相邻两天测试,超重耐力和失重飞行不能安排在相邻两天测试,则选拔测试的安排方案有( ) A .24种 B .36种C .48种D .60种【答案】B【分析】根据特殊元素“失重飞行”进行位置分类方法计算,结合排列组合等计数方法,即可求得总的测试的安排方案种数.【详解】①若失重飞行安排在第一天则前庭功能安排第二天,则后面三天安排其他三项测试有种安排方法,33A 6=此情况跟失重飞行安排在第五天则前庭功能安排第四天安排方案种数相同;②若失重飞行安排在第二天,则前庭功能有种选择,超重耐力在第四、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法,22A 112222C C A 8=此情况与失重飞行安排在第四天方安排方案种数相同;③若失重飞行安排在第三天,则前庭功能有种选择,超重耐力在第一、第五天有种选择,剩12C 12C 下两种测试全排列,则有种安排方法;22A 112222C C A 8=故选拔测试的安排方案有种. 6282836⨯+⨯+=故选:B.二、多选题9.某高一学生想在物理、化学、生物、政治、历史、地理这六门课程中选三门作为选科科目,则下列说法正确的有( )A .若不选择政治,选法总数为种25C B .若物理和化学至少选一门,选法总数为1225C C C .若物理和历史不能同时选,选法总数为种3164C C -D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为种 121244(C C C )-【答案】AC【分析】根据组合数性质判断A ;若物理和化学至少选一门,分物理和化学选一门和物理和化学都选,求出选法数,判断B ;物理和历史不能同时选,即六门课程中任意选3门减去物理和历史同时选的选法数,判断C ;物理和化学至少选一门,且物理和历史不同时选,分三种情况考虑,求得选法数,判断D.【详解】对于A, 若不选择政治,选法总数为种,正确;3255C C =对于B ,若物理和化学选一门,选法总数为, 1224C C 若物理和化学都选,则选法数有种,2124C C 故物理和化学至少选一门,选法总数为种,而,B 错误;12212424C C C C 16+=1225C C 20=对于C, 若物理和历史不能同时选,即六门课程中任意选3门有种选法,36C 减去物理和历史同时选的选法数,故选法总数为种,C 正确;14C 3164C C -对于D,当物理和化学中只选物理时,有种选法; 23C 当物理和化学中只选化学时,有种选法; 24C 当物理和化学中都选时,有种选法,13C 故物理和化学至少选一门,且物理和历史不同时选,选法总数为种,而,D 错误,221343C +C +C =12121244C C C 8-=故选:AC 10.下列等式正确的是( )A .B .()111A A m m n n n +++=()()!2!1n n n n =--C .D .A C !mm n nn =11A A m m n n n m+=-【答案】ABD【分析】利用排列数公式、组合数公式,逐项计算判断作答.【详解】对于A ,,A 正确;()11!(1)!(1)()![(1)(1)]!1A A mm n n n n n n n m n m +++=+⋅=-+-++=对于B ,,B 正确; ()()!(1)!(1)(2)!2!1(1)1n n n n n n n n n n n ⋅--⋅-===----对于C ,,而与不一定相等,则与不一定相等,C 不正确;A C !m m nnm =!m !n A !m n m A !m n n 对于D ,,D 正确. 111!!A A (1)!()!m m n n n n n m n m n m n m +⋅==-----=故选:ABD11.如图是函数的导函数的图像,则下列判断正确的是( )()y f x =()f x 'A .在区间上,单调递增 ()2,1-()f xB .在区间上,单调递增 ()1,2()f xC .在区间上,单调递增 ()4,5()f xD .在区间上,单调递增 ()3,2--()f x 【答案】BC【分析】当,则单调递增,当,则单调递减,据此可得答案. ()0f x ¢>()f x ()0f x '<()f x 【详解】由题图知当时,,()()1245,,,x x ∈∈()0f x ¢>所以在区间上,单调递增,BC 正确; ()()1245,,,()f x 当时,,当时,,所以在区间上,单调递减.()2,1x ∈--()0f x '<()1,1x ∈-()0f x ¢>()2,1--()f x 在上递增,A 错误;()1,1-当时,,所以在区间上,单调递减,D 错误; ()3,2x ∈--()0f x '<()3,2--()f x 故选:BC12.已知函数,则( ) 321()()3f x x ax x a =+-∈R A .当时,函数的极大值为0a =()f x 23-B .若函数图象的对称中心为,则 ()f x (1,(1))f 1a =-C .若函数在上单调递增,则或 ()f x R 1a ≥1a ≤-D .函数必有3个零点 ()f x 【答案】BD【分析】根据函数极大值的定义,结合函数的导数的性质、函数零点的定义逐一判断即可.【详解】A 项:当时,,则,所以在单调递增,在0a =31()3f x x x =-2()1f x x '=-()f x (,1)-∞-单调递减,在单调递增,所以极大值为,故错误; (1,1)-(1,)+∞()f x 12(1)133f -=-+=B 项:因为函数图象的对称中心为,()f x (1,(1))f所以有,故正确;()()()()21121101f x f x f a x a ++-=⇒+=⇒=-C 项:恒成立,显然必有两根,则2()210f x x ax =+-≥'()0f x '=()121212,,10x x x x x x <⋅=-<()f x 在递减,故错误;()12,x x D 项:必有2相异根,且非零,()2221111001010333f x x ax x x x ax x ax ⎛⎫=+-=⇒=+-=+-= ⎪⎝⎭或,故必有3个零点,故正确. ()f x 故选择:BD三、填空题13.已知函数,则在处的切线方程为___________.()e sin 2xf x x =-()f x ()()0,0f 【答案】10x y +-=【分析】由导数的几何意义求切线的斜率,利用点斜式求切线方程.【详解】因为,()e sin 2xf x x =-所以,,()00e sin 01f =-=()e 2cos 2xf x x =-'所以,()00e 2cos 01f =-=-'切线方程为, 即. ()10y x -=--10x y +-=故答案为:.10x y +-=14.函数有极值,则实数的取值范围是______.()322f x x x ax a =-++a 【答案】1(,3-∞【分析】求出函数的导数,再利用存在变号零点求出a 的范围作答.()f x '()f x '【详解】函数定义域为R ,求导得:,()322f x x x ax a =-++2()32f x x x a '=-+因为函数有极值,则函数在R 上存在变号零点,即有两个不等实根, ()f x ()f x '()0f x '=即有方程有两个不等实根,于是得,解得,2320x x a -+=4120a ∆=->13a <所以实数的取值范围是.a 1(,)3-∞故答案为:1(,)3-∞15.某公司新开发了4件不同的新产品,需放到三个不同的机构A ,B ,C 进行测试,每件产品只能放到一个机构里,则所有测试的情况有________种(结果用具体数字表示). 【答案】81【分析】利用分步乘法原理求解即可【详解】由题意可知,每一个新产品都有3种放法,所以由分步乘法原理可得 4件不同的新产品共有种放法, 333381⨯⨯⨯=故答案为:8116.已知,则_________.233A C 0!4m -+=m =【答案】2或3【分析】利用排列数公式,组合数公式进行计算即得.【详解】,233A C 0!4m -+= ,又,3A 6m∴=323216⨯=⨯⨯=所以或. 2m =3m =故答案为:2或3.四、解答题17.求下列函数的导数. (1); ln(21)y x =+(2); sin cos xy x=(3). 1()23()()y x x x =+++【答案】(1) 221y x '=+(2) 21cos y x'=(3) 231211y x x =++'【分析】利用导数的运算法则求解. 【详解】(1)解:因为, ln(21)y x =+所以; 221y x '=+(2)因为, sin cos xy x=所以; ()2222cos sin 1cos cos x xy xx +'==(3)因为, 1()23()()y x x x =+++,326116x x x =+++所以.231211y x x =++'18.已知函数.()322f x x ax b =-+(1)若函数在处取得极小值-4,求实数a ,b 的值; ()f x 1x =(2)讨论的单调性.()f x 【答案】(1) 33a b =⎧⎨=-⎩(2)答案不唯一,具体见解析【分析】(1)根据求导和极值点处导数值为0即可求解;(2)求导,分类讨论的取值即可求解. a 【详解】(1),则 ()262f x x ax '=-()()1014f f ⎧=⎪⎨=-'⎪⎩即解得,经验证满足题意,62024a a b -=⎧⎨-+=-⎩33a b =⎧⎨=-⎩(2)()()26223f x x ax x x a '=-=-令解得或 ()0f x '=0x =3a x =1°当时,在上单调递增0a =()f x ()∞∞-,+2°当时,在,上单调递增,上单调递减a<0()f x ,3a ⎛⎫-∞ ⎪⎝⎭()0∞,+,03a ⎛⎫ ⎪⎝⎭3°当时,在,(上单调递增,上单调递减0a >()f x ()0∞-,,3a ⎛⎫+∞ ⎪⎝⎭0,3a ⎛⎫ ⎪⎝⎭19.已知函数.()e 2x f x ax a =++(1)若为的一个极值点,求实数a 的值并此函数的极值; 0x =()f x (2)若恰有两个零点,求实数a 的取值范围. ()f x 【答案】(1),极小值为,无极大值12a =-12(2) ,⎛-∞ ⎝【分析】(1)由求得,结合函数的单调性求得的极值. ()00f '=a ()f x (2)由分离常数,利用构造函数法,结合导数求得的取值范围. ()0f x =a a 【详解】(1),依题意,()e 2x f x a '=+()10120,2f a a =+==-'此时,所以在区间递减;()e 1xf x '=-()f x ()()(),0,0,f x f x '-∞<在区间递增. ()()()0,,0,f x f x '+∞>所以的极小值为,无极大值. ()f x ()110122f =-=(2)依题意①有两个解,()e 20x f x ax a =++=,所以不是①的解,121e 02f -⎛⎫-=> ⎪⎝⎭12x =-当时,由①得,12x ≠-e 21xa x =-+构造函数,()e 1212x g x x x ⎛⎫=-≠- ⎪+⎝⎭,()()()()22e 212e 21e 2121x xx x x g x x x +--'=-=-⋅++所以在区间递增;()()111,,,,0,222g x g x ⎛⎫⎛⎫'-∞--> ⎪ ⎪⎝⎭⎝⎭在区间递减.()()1,,0,2g x g x ⎛⎫'+∞< ⎪⎝⎭当时,;当时,,12x <-()0g x >12x >-()0g x <与的图象有两个交点, 121e 22g ⎛⎫=-= ⎪⎝⎭y a =()y g x =则需a <综上所述,的取值范围是. a ,⎛-∞ ⎝【点睛】根据极值点求参数,要注意的是由求得参数后,要根据函数的单调区间进行验()00f x '=证,因为导数为零的点,不一定是极值点.利用导数研究函数的零点,可以考虑分离常数法,通过分离常数,然后利用构造函数法,结合导数来求得参数的取值范围.20.已知一条铁路有8个车站,假设列车往返运行且每个车站均停靠上下客,记从车站上车到A B 车站下车为1种车票().A B ≠(1)该铁路的客运车票有多少种?(2)为满足客运需要,在该铁路上新增了个车站,客运车票增加了54种,求的值.n n 【答案】(1)56(2)3【分析】根据条件利用排列公示建立方程就可以解决.【详解】(1)铁路的客运车票有.288756A =⨯=(2)在新增了个车站后,共有个车站,因为客运车票增加了54种,则, n 8n +285654n A +-=所以,解得.28(8)(7)110n A n n +=++=3n =21.现有如下定义:除最高数位上的数字外,其余每一个数字均比其左边的数字大的正整数叫“幸福数”(如346和157都是三位“幸福数”).(1)求三位“幸福数”的个数;(2)如果把所有的三位“幸福数”按照从小到大的顺序排列,求第80个三位“幸福数”.【答案】(1)个84(2)589【分析】(1)由幸福数的定义结合组合公式求解即可;(2)分类讨论最高位数字,由组合公式结合分类加法计数原理得出第80个三位“幸福数”.【详解】(1)根据题意,可知三位“幸福数”中不能有0,故只需在数字1,2,3,…,9中任取3个,将其从小到大排列,即可得到一个三位“幸福数”,每种取法对应1个“幸福数”,则三位“幸福数”共有个.39C 84=(2)对于所有的三位“幸福数”,1在最高数位上的有个, 28C 28=2在最高数位上的有个,27C 21=3在最高数位上的有个,2615C =4在最高数位上的有个,25C 10=5在最高数位上的有个.24C 6=因为,28211510680++++=所以第80个三位“幸福数”是最高数位为5的最大的三位“幸福数”,为589.22.为响应国家提出的“大众创业万众创新”的号召,小王大学毕业后决定利用所学专业进行自主创业,生产某小型电子产品.经过市场调研,生产该小型电子产品需投入年固定成本2万元,每生产x 万件,需另投入流动成本万元.已知在年产量不足4万件时,,在年产量不小()W x ()3123W x x x =+于4万件时,.每件产品售价6元.通过市场分析,小王生产的产品当年能全部售()64727W x x x=+-完.(1)写出年利润(万元)关于年产量(万件)的函数解析式.(年利润=年销售收入-年固定成()P x x 本-流动成本.)(2)年产量为多少万件时,小王在这一产品的生产中所获年利润最大?最大年利润是多少? 【答案】(1); ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当年产量为8万件时,所获年利润最大,为9万元.【分析】(1)分以及,分别求解得出表达式,写成分段函数即可;04x <<4x ≥()P x (2)当时,求导得出.然后根据基本不等式求出时,的最值,04x <<()max 10()23P x P ==4x ≥()P x 比较即可得出答案.【详解】(1)由题意,当时,;当时,04x <<()33116224233x x x x x P x ⎛⎫=--+=-+- ⎪⎝⎭4x ≥. ()64646272725P x x x x x x ⎛⎫=--+-=-- ⎪⎝⎭所以. ()3142,0436425,4x x x P x x x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩(2)当时,,令,解得.04x <<()24P x x '=-+()0P x '=2x =易得在上单调递增,在上单调递减,所以当时,()P x ()0,2()2,404x <<. ()max 10()23P x P ==当时,, 4x ≥()6425259P x x x ⎛⎫=-+≤-= ⎪⎝⎭当且仅当,即时取等号. 64x x=8x =综上,当年产量为8万件时,所获年利润最大,为9万元.。
2022-2023学年四川省内江市高二下学期第一次月考数学(文)试题一、单选题1.命题“”的否定是( )20,10x x ∃>->A .B .20,10x x ∃≤->20,10x x ∃>-≤C .D .20,10x x ∀>-≤20,10x x ∀≤->【答案】C【分析】由特称命题的否定是全称命题即可得出答案.【详解】命题“”的否定是:.20,10x x ∃>->20,10x x ∀>-≤故选:C.2.椭圆的离心率是( )22124x y +=A B C D 【答案】A【分析】根据题意求,再求离心率即可.,,a b c【详解】由题意可得:y 轴上,则2,a b ==c ==故椭圆的离心率是22124x y +=c e a =故选:A.3.下列说法正确的是( )A .若为假命题,则p ,q 都是假命题p q ∨B .“这棵树真高”是命题C .命题“使得”的否定是:“,”R x ∃∈2230x x ++<R x ∀∈2230x x ++>D .在中,“”是“”的充分不必要条件ABC A B >sin sin A B >【答案】A【分析】若为假命题,则p ,q 都是假命题,A 正确,“这棵树真高”不是命题,B 错误,否定是:p q ∨“,”,C 错误,充分必要条件,D 错误,得到答案.R x ∀∈2230x x ++≥【详解】对选项A :若为假命题,则p ,q 都是假命题,正确;p q ∨对选项B :“这棵树真高”不是命题,错误;对选项C :命题“使得”的否定是:“,”,错误;R x ∃∈2230x x ++<R x ∀∈2230x x ++≥对选项D :,则,,故,充分性;若,则A B >a b >22a b R R >sin sin A B >sin sin A B >,,则,必要性,故是充分必要条件,错误.2sin 2sin R A R B ⋅>⋅a b >A B >故选:A4.在如图所示的正方体中,异面直线与所成角的大小为( )1111ABCD A B C D -1A B 1B CA .30°B .45°C .60°D .90°【答案】C【分析】根据异面直线所成角的定义及正方体的特征求解【详解】连接,,如图,1A D DB因为正方体中,11//A D B C 所以就是与所成的角,1BA D ∠1A B 1B C 在中,.1BA D 11A D A B BD ==∴.160BA D ∠=︒故选:C5.已知双曲线的两条渐近线相互垂直,焦距为,则该双曲线的虚轴长为()222210,0x y a b a b -=>>12( )A .B .C .D .6【答案】B【分析】分析可得,求出的值,即可得出双曲线的虚轴长.b a =b 【详解】双曲线的渐近线方程为,()222210,0x y a b a b -=>>b y x a =±由题意可知,可得,所以,,则1b ba a -⋅=-b a =6c ===b =因此,该双曲线的虚轴长为2b =故选:B.6.若直线与焦点在x 轴上的椭圆总有公共点,则n 的取值范围是( )2y mx =+2219x y n +=A .B .C .D .(]0,4()4,9[)4,9[)()4,99,∞⋃+【答案】C【分析】由题得直线所过定点在椭圆上或椭圆内,代入椭圆得到不等式,再结合椭圆焦点在()0,2轴上即可.x 【详解】直线恒过定点,若直线与椭圆总有公共点,2y mx =+()0,2则定点在椭圆上或椭圆内,,解得或,()0,241n ∴≤4n ≥0n <又表示焦点在轴上的椭圆,故,,2219x y n += x 09n <<[)4,9n ∴∈故选:C.7.已知,分别为双曲线的左、右焦点,为双曲线右支上一点,满足,1F 2F 22145x y -=M 12MF MF ⊥则的面积为( )12F MF △A .B .CD .510【答案】A 【分析】由可以求得M 在以原点为圆心,焦距为直径的圆周上,写出圆的方程,与双曲12MF MF ⊥线的方程联立求得M 的坐标,进而得到所求面积.【详解】设双曲线的焦距为,则.2c 2459c =+=因为,所以为圆与双曲线的交点.12MF MF ⊥M 229x y +=联立,解得,22229145x y x y ⎧+=⎪⎨-=⎪⎩53y =±所以的面积为.12F MF △156523⨯⨯=故选:A.【点睛】本题考查与双曲线有关的三角形面积最值问题,利用轨迹方程法是十分有效和简洁的解法.8.已知椭圆的左、右焦点分别为,过坐标原点的直线交于两点,2222:1(0)x y E a b a b +=>>12,F F E ,P Q 且,且,则椭圆的标准方程为( )22PF F Q⊥2224,6PF Q S PF F Q =+= E A .B .22143x y +=22154x y +=C .D .22194x y +=22195x y +=【答案】C【分析】根据椭圆的定义可求,结合三角形的面积可求,进而可得答案.3a =c 【详解】如图,连接,由椭圆的对称性得四边形为平行四边形,11,PF QF 12PFQF 所以,得.222126PF F Q PF PF a +=+==3a =又因为,所以四边形为矩形,设,22PF F Q ⊥12PFQF 22,==PF m QF n 则,所以得或;2142PF QS mn == 6,8,m n mn +=⎧⎨=⎩ 42m n =⎧⎨=⎩24m n =⎧⎨=⎩则,12F F =2224c b ac ==-=椭圆的标准方程为.E 22194x y +=故选:C.9.当双曲线的焦距取得最小值时,双曲线M 的渐近线方程为222:1(20)26x y M m m m -=-≤<+( )A .y =B .y =xC .y =±2xD .y =±x12【答案】C【解析】求得关于的函数表达式,并利用配方法和二次函数的性质得到取得最小值时的值,2c m m 进而得到双曲线的标准方程,根据标准方程即可得出渐近线方程【详解】由题意可得c 2=m 2+2m +6=(m +1)2+5,当m =-1时,c 2取得最小值,即焦距2c 取得最小值,此时双曲线M 的方程为,所以渐近线方程为y =±2x .2214y x -=故选:C .【点睛】本题考查双曲线的标准方程与几何性质,属基础题,掌握双曲线的基本量的关系是,,a b c 关键.由双曲线的方程:的渐近线可以统一由得出.22(0,0)Ax By AB λλ+=<≠220Ax By +=10.已知,是椭圆C 的两个焦点,P 为C 上一点,,若C ,则1F 2F 122PF PF =( )12F PF ∠=A .B .C .D .150︒120︒90︒60︒【答案】B【分析】根据椭圆的定义,结合余弦定理、椭圆离心率的公式进行求解即可.【详解】解:记,,由,及,得,,又由余弦定11r PF =22r PF =122r r =122r r a +=143r a =223r a=理知,得.2221212122cos 4r r r r F PF c +-⋅∠=222122016cos 499a a F PF c -⋅∠=由,从而,∴.c e a ==2279c a =2212168cos 99a a F PF ⋅∠=-121cos 2F PF ∠=-∵,∴.120180F PF ︒<∠<︒12120F PF ∠=︒故选:B11.吹奏乐器“埙”(如图1)在古代通常是用陶土烧制的,一种埙的外轮廓的上部是半椭圆,下部是半圆.半椭圆(,且为常数)和半圆组成的曲线22221y x a b +=0y ≥0a b >>()2220x y b y +=<如图2所示,曲线交轴的负半轴于点,交轴的正半轴于点,点是半圆上任意一点,C C x A y G M 当点的坐标为时,的面积最大,则半椭圆的方程是()M 12⎫-⎪⎪⎭AGM A .B .()2241032x y y +=≥()22161093x y y +=≥C .D .()22241033x y y +=≥()22421033x y y +=≥【答案】D【分析】由点在半圆上,可求,然后求出G ,A ,根据已知的面积最大的条12M ⎫-⎪⎪⎭b AGM 件可知,,即,代入可求,进而可求椭圆方程OM AG ⊥1OM AGk k ⋅=-a 【详解】由点在半圆上,所以,12M ⎫-⎪⎪⎭b=(0,),(,0)G a A b -要使的面积最大,可平行移动AG ,当AG 与半圆相切于时,M 到直线AG 的AGM 12M ⎫-⎪⎪⎭距离最大, 此时,即,OM AG ⊥1OM AGk k ⋅=-又,OM AG ak k b ===1,a a b =-∴==所以半椭圆的方程为()22421033x y y +=≥故选:D12.已知,为椭圆与双曲线的公共焦点,1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>是它们的一个公共点,且,,分别为曲线,的离心率,则的最小值为M 12π3F MF ∠=1e 2e 1C 2C 12e e ( )ABC .1D .12【答案】A【分析】由题可得,在中,由余弦定理得112212MF a a MF a a =+⎧⎨=-⎩12MF F △,结合基本不等式得,即可解决.2221212122cos3F F MF MF MF MF π=+-⋅⋅222121243c a a a =+≥【详解】由题知,,为椭圆与双曲线的1F 2F ()221112211:10x y C a b a b +=>>()222222222:10,0x y C a b a b -=>>公共焦点,是它们的一个公共点,且,,分别为曲线,的离心率,M 123F MF π∠=1e 2e 1C 2C 假设,12MF MF >所以由椭圆,双曲线定义得,解得,12112222MF MF a MF MF a +=⎧⎨-=⎩112212MF a a MF a a =+⎧⎨=-⎩所以在中,,由余弦定理得12MF F △122F F c =,即222121212π2cos3F F MF MF MF MF =+-⋅⋅,()()()()22212121212π42cos3c a a a a a a a a =++--+⋅-化简得,2221243=+c a a 因为,222121243c a a a =+≥所以,212c a a ≥=12≥e e 当且仅当时,取等号,12a =故选:A二、填空题13.过椭圆的一个焦点的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点2241x y +=1F 构成的的周长为__________2F 【答案】4【分析】先将椭圆的方程化为标准形式,求得半长轴的值,然后利用椭圆的定义进行转化即可求a 得.【详解】解:椭圆方程可化为,显然焦点在y 轴上,,22114x y +=1a =根据椭圆定义,121222AF AF a BF BF a+=+=,所以的周长为.2ABF 121244AF AF BF BF a +++==故答案为4.14.若命题“,”为假命题,则a 的取值范围是______.x ∀∈R 210ax ax ++≥【答案】(,0)(4,)-∞+∞ 【分析】先求得命题为真时的等价条件,取补集即可得到为假命题时的参数取值范围.【详解】当时,命题为“,”,该命题为真命题,不满足题意;0a =x ∀∈R 10≥当时,命题,可得到,解得,0a ≠R x ∀∈210ax ax ++≥2Δ400a a a ⎧=-≤⎨>⎩04a <≤故若命题“,”是假命题,则R x ∀∈210ax ax ++≥(,0)(4,)a ∈-∞+∞ 故答案为:(,0)(4,)-∞+∞ 15.已知椭圆C :,,为椭圆的左右焦点.若点P 是椭圆上的一个动点,点A 的坐2212516x y +=1F 2F 标为(2,1),则的范围为_____.1PA PF +【答案】[10【分析】利用椭圆定义可得,再根据三角形三边长的关系可知,当共线时即1210PF PF =-2,,A P F 可取得最值.1PA PF +【详解】由椭圆标准方程可知,5,3a c ==12(3,0),(3,0)F F -又点P 在椭圆上,根据椭圆定义可得,所以12210PF PF a +==1210PF PF =-所以1210PA PF PA PF +=+-易知,当且仅当三点共线时等号成立;222AF PA PF AF -≤-≤2,,A P F=10+即的范围为.1PA PF +[10+故答案为:[1016.己知,是双曲线C 的两个焦点,P为C 上一点,且,,若1F 2F 1260F PF ∠=︒()121PF PF λλ=>C ,则的值为______.λ【答案】3【分析】根据双曲线的定义及条件,表示出,结合余弦定理求解即可.12,PF PF 【详解】由及双曲线的定义可得,12(1)PF PF λλ=>122(1)2PF PF PF aλ-=-=所以,,因为,在中,221aPF λ=-121a PF λλ=-1260F PF ∠=︒12F PF △由余弦定理可得,222222442242cos 60(1)(1)11a a a ac λλλλλλ=+-⨯⋅⋅︒----即,所以,2222(1)(1)c a λλλ-=-+2222217(1)4c e a λλλ-+===-即,解得或(舍去).231030λλ-+=3λ=13λ=故答案为:3三、解答题17.已知,,其中m >0.2:7100p x x -+<22430q :x mx m -+<(1)若m =4且为真,求x 的取值范围;p q ∧(2)若是的充分不必要条件,求实数m 的取值范围.q ⌝p ⌝【答案】(1)()4,5(2)5,23⎡⎤⎢⎥⎣⎦【分析】(1)解不等式得到,,由为真得到两命题均为真,从而求出:25p x <<q :412x <<p q ∧的取值范围;x (2)由是的充分不必要条件,得到是的充分不必要条件,从而得到不等式组,求出实q ⌝p ⌝p q数m 的取值范围.【详解】(1),解得:,故,27100x x -+<25x <<:25p x <<当时,,解得:,故,4m =216480x x +<-412x <<q :412x <<因为为真,所以均为真,p q ∧,p q 所以与同时成立,:25p x <<q :412x <<故与求交集得:,25x <<412x <<45x <<故的取值范围时;x ()4,5(2)因为,,解得:,0m >22430x mx m -+<3m x m <<故,:3q m x m <<因为是的充分不必要条件,所以是的充分不必要条件,q ⌝p ⌝p q即,但,:25:3p x q m x m <<⇒<<:3q m x m <<⇒:25p x <<故或,0235m m <≤⎧⎨>⎩0235m m <<⎧⎨≥⎩解得:,523m ≤≤故实数m 的取值范围是5,23⎡⎤⎢⎥⎣⎦18.求适合下列条件的圆锥曲线的标准方程;(1)短轴长为的椭圆;23e =(2)与双曲线具有相同的渐近线,且过点的双曲线.22143y x -=()3,2M -【答案】(1)或22195x y+=22195y x +=(2)22168x y -=【分析】(1)根据题意求出、、的值,对椭圆焦点的位置进行分类讨论,可得出椭圆的标准a b c 方程;(2)设所求双曲线方程为,将点的坐标代入所求双曲线的方程,求出的值,()22043y x λλ-=≠M λ即可得出所求双曲线的标准方程.【详解】(1)解:由题意可知.23b c a b ⎧=⎪⎪=⎨⎪⎪=⎩32a b c =⎧⎪=⎨⎪=⎩若椭圆的焦点在轴上,椭圆的标准方程为,x 22195x y +=若椭圆的焦点在轴上,椭圆的标准方程为.y 22195y x +=综上所述,所求椭圆的标准方程为或.22195x y +=22195y x +=(2)解:设所求双曲线方程为,()22043y x λλ-=≠将点代入所求双曲线方程得,()3,2-()2223243λ-=-=-所以双曲线方程为,即.22243y x -=-22168x y -=19.已知直棱柱的底面ABCD 为菱形,且,为1111ABCD A B C D-2AB AD BD ===1AA =E 的中点.11B D (1)证明:平面;//AE 1BDC (2)求三棱锥的体积.1E BDC -【答案】(1)证明见解析(2)1【分析】(1)根据平行四边形的判定定理和性质,结合菱形的性质、线面平行的判定定理进行证明即可;(2)根据菱形的性质、直棱柱的性质,结合线面垂直的判定定理、三棱锥的体积公式进行求解即可.【详解】(1)连接AC 交BD 于点,连接,F 1C F 在直四棱柱中,,1111ABCD A B C D -11//AA CC 11=AA CC 所以四边形为平行四边形,即,,11AA C C 11//AC A C 11=AC A C 又因为底面ABCD 为菱形,所以点为AC 的中点,F 点为的中点,即点为的中点,所以,,E 11B D E 11A C 1//C E AF 1C E AF =即四边形为平行四边形,所以,1AFC E 1//AE C F 因为平面,平面,,所以平面;1C F ⊂1BDC AE ⊄1BDC //AE 1BDC (2)在直棱柱中平面,平面,1111ABCD A B C D -1BB ⊥1111D C B A 11A C ⊂1111D C B A 所以,111BB A C ⊥又因为上底面为菱形,所以,1111D C B A 1111B D A C ⊥因为平面,1111111,,B D BB B B D BB =⊂ 11BB D D 所以平面,11A C ⊥11BB D D 因为在中,,ABD △2AB AD BD ===且点为BD 的中点,所以,即FAF ==1C E =所以.11111121332E BDC C BDE BDE V V S C E --==⋅=⨯⨯=△20.已知椭圆E :.()222210x y a b a b +=>>(P (1)求椭圆E 的方程;(2)若直线m 过椭圆E 的右焦点和上顶点,直线l 过点且与直线m 平行.设直线l 与椭圆E 交()2,1M 于A ,B 两点,求AB 的长度.【答案】(1)221168x y +=【分析】(1)由待定系数法求椭圆方程.(2)运用韦达定理及弦长公式可求得结果.【详解】(1)由题意知,,,设椭圆E 的方程为.e =a=b c =222212x y b b +=将点的坐标代入得:,,所以椭圆E 的方程为.P 28b =216a=221168x y +=(2)由(1)知,椭圆E 的右焦点为,上顶点为,所以直线m 斜率为(0,,1k ==-由因为直线l 与直线m 平行,所以直线l 的斜率为,1-所以直线l 的方程为,即,()12y x -=--30x y +-=联立,可得,2211683x y y x ⎧+=⎪⎨⎪=-+⎩231220x x -+=,,,1200∆=>124x x +=1223x x =.==21.已知双曲线.221416x y -=(1)试问过点能否作一条直线与双曲线交于,两点,使为线段的中点,如果存在,()1,1N S T N ST 求出其方程;如果不存在,说明理由;(2)直线:与双曲线有唯一的公共点,过点且与垂直的直线分别交轴、l ()2y kx m k =+≠±M M l x 轴于,两点.当点运动时,求点的轨迹方程.y ()0,0A x ()00,B y M 00(,)P x y 【答案】(1)不能,理由见解析;(2),.22100125x y -=0y ≠【分析】(1)设出直线的方程,与双曲线方程联立,由判别式及给定中点坐标计算判断作答.ST (2)联立直线与双曲线的方程,由给定条件得到,求出的坐标及过点与直线l ()2244m k =-M M 垂直的直线方程,即可求解作答.l 【详解】(1)点不能是线段的中点,N ST 假定过点能作一条直线与双曲线交于,两点,使为线段的中点,()1,1N S T N ST 显然,直线的斜率存在,设直线的方程为,即,ST ST ()11y n x -=-1y nx n =-+而双曲线渐近线的斜率为,即,221416x y -=2±2n ≠±由得,则有,解得,2211416y nx n x y =-+⎧⎪⎨-=⎪⎩()22242(1)(1)160n x n n x n -+----=2(1)14n n n --=-4n =此时,即方程组无解,22224(1)4(4)[(1)16]4169412250n n n n '∆=----+=⨯⨯-⨯⨯<所以过点不能作一条直线与双曲线交于,两点,使为线段的中点.()1,1N S T N ST (2)依题意,由消去y 整理得,221416x y y kx m ⎧-=⎪⎨⎪=+⎩()()22242160k x kmx m ---+=因为,且是双曲线与直线唯一的公共点,2k ≠±M l 则有,即,点M 的横坐标为,()()222Δ(2)44160km k m =-+-+=()2244m k =-244km kkm =--点,,过点与直线垂直的直线为,416(,)k M m m --0km ≠M l 1614()k y x m k m +=-+因此,,,,020k x m =-020y m =-2222002224164(4)110025x y k k m m m --=-==00y ≠所以点的轨迹方程为,.00(,)P x y 22100125x y -=0y ≠22.已知椭圆:上的点到左、右焦点,的距离之和为4.C ()222210x y a b a b +=>>31,2A ⎛⎫ ⎪⎝⎭1F 2F (1)求椭圆的方程.C (2)若在椭圆上存在两点,,使得直线与均与圆相切,问:C P Q AP AQ ()222322x y r ⎛⎫-+-= ⎪⎝⎭()0r >直线的斜率是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.PQ 【答案】(1)22143x y +=(2)是定值,定值为12【分析】(1)由椭圆的定义结合性质得出椭圆的方程.C (2)根据直线与圆的位置关系得出,将直线的方程代入椭圆的方程,由韦达定理得21k k =-AP C 出坐标,进而由斜率公式得出直线的斜率为定值.,P Q PQ 【详解】(1)由题可知,所以.24a =2a =将点的坐标代入方程,得A 31,2⎛⎫⎪⎝⎭22214x y b +=23b =所以椭圆的方程为.C 22143x y +=(2)由题易知点在圆外,且直线与的斜率均存在.A ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭AP AQ 设直线的方程为,直线的方程是AP ()1312y k x -=-AQ ()2312y k x -=-由直线与圆相切,AP ()()2223202x y r r ⎛⎫-+-=> ⎪⎝⎭r=r=.=21k k =-将直线的方程代入椭圆的方程,AP C 可得.()()222111113443241230k x k k x k k ++-+--=设,.因为点也是直线与椭圆的交点,(),P P P x y (),Q Q Q x y 31,2A ⎛⎫ ⎪⎝⎭AP 所以,21121412334P k k x k --=+1132P P y k x k =+-因为,所以,21k k =-21121412334Q k k x k +-=+1132Q Q y k x k =-++所以直线的斜率PQ Q P PQ Q Py y k x x -=-()112Q P Q Pk x x k x x -++=-22111111221122111122114123412323434412341233434k k k k k k k k k k k k k k ⎛⎫+----++ ⎪++⎝⎭=+----++()()22111118623424k k k k k --++=12=。
高二数学下学期第一次月考试题 文第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z=2(1)1i i-+,则|z|=2.已知x 与y 之间的一组数据:( )A .(2,2) B.(1,2) C.(1.5,0) D (1.5,4)3.设x∈R,则“|x﹣2|<1”是“x 2+x ﹣2>0”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.复数31i i --在复平面上所对应的点在第( )象限 。
A .一 B. 二 C. 三 D. 四5.已知复数z 满足(3+i )z=4﹣2i ,则复数z=( )A .1﹣iB .1+iC .2+iD .2﹣i 6.曲线y=x 3﹣2x+1在点(1,0)处的切线方程为( )A .y=x ﹣1B .y=﹣x+1C .y=2x ﹣2D .y=﹣2x+27.x xe x f -=)(的一个单调递增区间是( ) A .[-1,0] B .[2,8]C .[1,2]D .[0,2]8.下列函数中,在),0(+∞上为增函数的是( )A.x y cos =B.x xe y =C.x x y -=3D.x x y -=ln 9.函数f (x )=x 3+ax 2+3x ﹣9已知f (x )在x=﹣3时取得极值,则a=( )A .2B .3C .4D .5 10.函数2||2e x y x =-在[2,2]-的图象大致为( )11.若32()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值范围是 ( )A .12a -<<B .2a >或1a <-C .2a ≥或1a ≤-D .12a a ><-或 []12.若函数f (x )=x 2+2x+alnx 在(0,1)上单调递减,则实数a 的取值范围是( )A .a≥0B .a≤0C .a≥﹣4D .a≤﹣4第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.复数1i i -的共轭复数是___________ 14.甲、乙两人各进行一次射击,如果两人击中目标的概率是0.8.计算,至少有1人击中目标的概率15.i 表示虚数单位,则2014211i i i ++++Λ=16.如图是函数y=f (x )的导函数图象,给出下面四个判断:①f(x )在区间[﹣2,1]上是增函数;②x=﹣1是f (x )的极小值点;③f(x )在区间[﹣1,2]上是增函数,在区间[2,4]上是减函数;④x=1是f (x )的极大值点.其中,判断正确的是 .(写出所有正确的编号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)通过市场调查,得到某产品的资金投入x (万元)与获得的利润y (万元)的数据,如下表所示:(Ⅰ)画出数据对应的散点图;(Ⅱ)根据上表提供的数据,用最小二乘法求线性回归直线方程a bx y +=^;(Ⅲ)现投入资金10(万元),求估计获得的利润为多少万元.1122211()()ˆ()ˆˆn n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑18.(本小题满分12分)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:喜爱打篮球 不喜爱打篮球 合计 男生5 女生10 合计 50已知在全班50人中随机抽取1人,抽到喜爱打篮球的学生的概率为35. (1)请将上表补充完整(不用写计算过程);(2)能否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:2()p K k ≥ 0.15[. 0.10 0.05 0.025 0.010 0.005 0.001k 2.0722.7063.841[] 5.024 6.635 7.879 10.828 (参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++) 19.(本小题满分12分)(1)实数m 取什么数值时,复数221(2)z m m m i =-+--分别是:(1)实数? (2)虚数? (3)纯虚数?(2)已知11m ni i=-+,(m 、n∈R,i 是虚数单位),求m 、n 的值. 20.(本小题满分12分)已知函数f (x )=x 3﹣12x(1)求函数f (x )的极值;(2)当x∈[﹣3,3]时,求f (x )的最值.21.已知函数d cx bx x x f +++=2331)(的图象过点(0,3),且在)1,(--∞和),3(+∞上为增函数,在)3,1(-上为减函数.(1)求)(x f 的解析式; (2)求)(x f 在R 上的极值.22.已知函数f (x )=lnx+.(Ⅰ)求证:f (x )≥1;(Ⅱ)若x ﹣1>alnx 对任意x >1恒成立,求实数a 的最大值23.(7、9班做)设函数 f(x)=|3x+1|-|x-4|.(1)解不等式f(x)<0(2)若f(x)+4|x-4|>m对一切实数x均成立,求实数m的取值范围。
高二文科数学下学期第一次月考试题(考试时间:120分钟 总分:150分)命题人:漳平一中 范思南 审题人:漳平一中 苏新妙一、选择题(每小题5分,共60分)1、已知集合{}R x x x P ∈≤≤=,20|,{}N x x Q ∈=|则Q P ( )A、PB、QC、{}2,1D、{}2,1,02、设有一个回归方程为,43x y -=变量x 增加一个单位,则( )A、y 平均增加3个单位 B、y 平均减少4个单位 C、y 平均减少3个单位D、y 平均增加4个单位3、下面四个平面图形中,顶点数V,边数E和区域数F的关系式是( )A、V+F-E=2 B、V+F-E=1 C、V+F-E=0D、V+F-E=3 4、如果方程03lg 2lg lg )3lg 2(lg lg 2=+++x x 的两根为21,x x 那么21x x ⋅的值为( )A、3lg 2lg B、3lg 2lg + C、61D、-65、二次函数c bx ax y ++=2中,0<⋅c a 则函数的零点个数是( )A、1个B、2个C、0个D、无法确定6、观察下图规律,在其最下面一行的空格内画上合适的图形是( )A、△★○■B、○■△★C、○★△■ D、□●☆▲7、设函数5)(35+++=xcbx ax x f ,3)3(=-f 则=)3(f ( ) A、3B、-3C、2D、78、已知数列{}n a 前n 项和)2(2≥⋅=n a n S n n 且11=a 通过计算432,,a a a ,猜想n a 等于( )A、2)1(2+n B、)1(2+n nC、122-nD、122-n 9、已知复数i m Z 21+= i Z 432-=若21Z Z 为实数 则=m ( ) A、38B、23-C、38- D、2310、下列哪个程序框图能实现交换b a ,两个变量的值( )A B C D11、已知函数)0(42)(2>++=a ax ax x f 若21x x <,021=+x x 则( )A、)()(21x f x f < B、)()(21x f x f =C、)()(21x f x f >D、)(1x f 与)(2x f 的大小不能确定12、函数)2(log 2+-=ax x y a 在),2[+∞恒为正,则实数a 的范围是( )A、10<<aB、21<<aC、251<<a D、32<<a二、填空题(每小题4分,共16分)13、设集合{}m x x M -≤=2| {}),0[3|+∞∈==-x y y N x若φ≠N M ,则实数m 的取值范围为 。
2021-2022学年河南省灵宝市高二下学期第一次月考数学(文)试题一、单选题1.复数)z A .-1B .1C .D .i -i【答案】A【分析】利用复数模长与四则运算进行计算即可.【详解】,所以虚部为-1.()()()21i 1i 1i 1i z -==-+-故选:A2.如图5个数据,去掉后,下列说法错误的是( )(,)x y (3,10)D A .相关系数r 变大B .相关指数变大2R C .残差平方和变大D .解释变量x 与预报变量y 的相关性变强【答案】C【分析】去掉离群点D 后,结合散点图对各个选项进行判断得解.【详解】解:由散点图知,去掉离群点D 后,x 与y 的相关性变强,且为正相关,所以相关系数r 的值变大,故选项A 正确;相关指数的值变大,残差平方和变小,故选项B 正确,选项C 错误;2R 解释变量x 与预报变量y 的相关性变强,故选项D 正确.故选:C .3.用反证法证明命题①:“已知,求证:”时,可假设“”;命题332p q +=2p q +≤2p q +>②:“若,则或”时,可假设“或”.以下结论正确的是24x =2x =-2x =2x ≠-2x ≠A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确【答案】C【详解】分析:利用命题的否定的定义判断即可.详解:①的命题否定为,故①的假设正确.2p q +≤2p q +>或”的否定应是“且”② 的假设错误,2x =-2x =2x ≠-2x ≠所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.4.关于下面几种推理,说法错误的是( )A .“由金、银、铜、铁可导电,猜想:金属都可以导电.”这是归纳推理B .演绎推理在大前提、小前提和推理形式都正确时,得到的结论不一定正确C .由平面三角形的性质推测空间四面体的性质是类比推理D .“椭圆的面积,则长轴为4,短轴为2的椭圆的面积.”这是演22221(0)x y a b a b +=>>S ab π=2S π=绎推理【答案】B【分析】根据归纳推理和演绎推理以及类比推理的概念逐个判断可得结果.【详解】对于,“由金、银、铜、铁可导电,猜想:金属都可以导电.”这是归纳推理,说法正确;A 对于,演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确,所以说法错误;B 对于,由平面三角形的性质推测空间四面体的性质是类比推理,说法正确;C 对于,“椭圆的面积,则长轴为4,短轴为2的椭圆的面积.”D 22221(0)x y a b a b +=>>S ab π=2S π=这是演绎推理,说法正确.故选:B.【点睛】本题考查了归纳推理和演绎推理以及类比推理的概念,属于基础题.5.在平面内,点到直线的距离公式为()00,x y 0Ax By C ++=d 可求得在空间中,点到平面的距离为( )()2,1,2210x y z ++-=A .BCD .3【答案】B【分析】类比得到在空间,点到直线的距离公式,再求解.()000,x y z ,0Ax By Cz D +++=【详解】类比得到在空间,点到直线的距离公式为()000,x y z ,0Ax By Cz D +++=d所以点到平面的距离为.()2,1,2210x y z ++-=d 故选B【点睛】本题主要考查类比推理,意在考查学生对该知识的理解掌握水平,属于基础题.6.下列使用类比推理正确的是A .“平面内平行于同一直线的两直线平行”类比推出“空间中平行于同一平面的两直线平行”B .“若,则”类比推出“若,则”12x x+=2212x x +=2212x x -=C .“实数,,满足运算”类比推出“平面向量满足运算”a ()()abc a bc =,,a b c ()()a b c a b c ⋅=⋅ D .“正方形的内切圆切于各边的中点”类比推出“正方体的内切球切于各面的中心”【答案】D【分析】根据类比结果进行判断选择.【详解】因为空间中平行于同一平面的两直线位置关系不定,所以A 错;因为“若,则”,所以B 错;12x x -=22112x x x =-≠因为,所以C 错;()()a b c a b c ⋅≠⋅ 因为正方体的内切球切于各面的中心,所以正确.选D.D 【点睛】本题考查线面位置关系判断、向量运算律以及正方体性质,考查基本分析判断能力,属基础题.7.在数学课堂上,张老师给出一个定义在上的函数,甲、乙、丙、丁四位同学各说出了这R ()f x 个函数的一条性质:甲:在上函数单调递减;(],0-∞()f x 乙:在上函数单调递增;[)0,∞+()f x 丙:函数的图像关于直线对称;()f x 1x =丁:不是函数的最小值.()0f ()f x 张老师说:你们四位同学中恰好有三个人说的正确,那么,你认为说法错误的同学是( )A .甲B .乙C .丙D .丁【答案】B【解析】采用反证法判断.【详解】假设甲,乙正确,则丙,丁错误,与题意矛盾所以甲,乙中必有一个错误假设甲错误乙正确,则在上函数单调递增;[)0,∞+()f x 而函数的图像不可能关于直线对称,则丙错误,与题意矛盾;()f x 1x =所以甲正确乙错误;故选:B8.已知下列命题:①回归直线恒过样本点的中心,且至少过一个样本点;ˆˆˆybx a =+(),x y ②两个变量相关性越强,则相关系数r 就越接近于1;③将一组数据的每个数据都加一个相同的常数后,方差不变;④在回归直线方程 中,当解释变量x 增加一个单位时,预报变量平均减少0.5;20.5ˆyx =-ˆy ⑤在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于1,表2R x y 2R 示回归效果越好;⑥对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度X Y 2K k k X Y 越大.⑦两个模型中残差平方和越小的模型拟合的效果越好. 则正确命题的个数是( )A .3B .4C .5D .6【答案】B【分析】由回归直线恒过样本中心点,不一定经过每一个点,可判断①;由相关系数的绝对值趋近于1,相关性越强,可判断②;由方差的性质可判断③;由线性回归直线方程的特点可判断④;相关指数R 2的大小,可判断⑤;由的随机变量K 2的观测值k 的大小可判断⑥;残差平方和越小,模型的拟合效果越好,可判断⑦.【详解】对于①,回归直线恒过样本点的中心(),可以不过任一个样本点,故①y b x a ∧∧∧=+x y ,错误;对于②,两个变量相关性越强,则相关系数r 的绝对值就越接近于1,故②错误;对于③,将一组数据的每个数据都加一个相同的常数后,由方差的性质可得方差不变,故③正确;对于④,在回归直线方程2﹣0.5x 中,当解释变量x 每增加一个单位时,y ∧=预报变量平均减少0.5个单位,故④正确;y ∧对于⑤,在线性回归模型中,相关指数R 2表示解释变量x 对于预报变量y 的贡献率,R 2越接近于1,表示回归效果越好,故⑤正确;对于⑥,对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大,故⑥错误;对于⑦,可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故⑦正确.其中正确个数为4.故选B .【点睛】本题考查命题的真假判断,主要是线性回归直线的特点和线性相关性的强弱、样本数据的特征值和模型的拟合度,考查判断能力,属于基础题.9.在研究某高中高三年级学生的性别与是否喜欢某学科的关系时,总共调查了N 个学生(),其中男女学生各半,男生中60%表示喜欢该学科,其余表示不喜欢;女生中100m,N m *=∈N 40%表示喜欢该学科,其余表示不喜欢.若有99.9%把握认为性别与是否喜欢该学科有关,则可以推测N 的最小值为( )附,22()()()()()n ad bc K a b c d a c b d -=++++()2P K k 0.0500.0100.001k3.8416.63510.828A .400B .300C .200D .100【答案】B【分析】根据题目列出列联表,再根据列联表的数据计算值,进而得到关于的关系式,22⨯2K m 求解即可.【详解】由题可知,男女各人,列联表如下:50m 喜欢不喜欢总计男30m 20m 50m 女20m 30m 50m 总计50m50m100m,()22224100900400=450505050m m m K mm -=⨯⨯⨯有99.9%把握认为性别与是否喜欢该学科有关,,解得,410.828m ∴> 2.707m >,m *∈N ,3m ∴≥.min 300N ∴=故选:B10.已知,且为虚数单位,则的最大值是 ( )C z ∈1,z i i -=35z i--A .B .C .D .5678【答案】B【分析】根据复数的几何意义,可知中对应点的轨迹是以为圆心,为半径1z i -=z Z (0,1)C 1r =的圆,而表示圆上的点到的距离,由圆的图形可得的的最大值.35z i--(3,5)A 35z i--【详解】根据复数的几何意义,可知中对应点的轨迹是以为圆心,为半径1z i -=z Z (0,1)C 1r =的圆.表示圆C 上的点到的距离,|35|z i -- (3,5)A 的最大值是,|35|z i ∴--||516CA r +=+=故选B【点睛】本题主要考查了复数的几何意义,圆的性质,属于中档题.11.如图是瑞典数学家科赫在1904年构造的能够描述雪花形状的图案.图形的作法是:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边.反复进行这一过程,就得到一条“雪花”状的曲线.设原正三角形(图①)的边长为1,把图①,图②,图③,图④中图形的周长依次记为,,,,则=( )1C 2C 3C 4C 4C A .B .C .D .1289649642712827【答案】B【分析】观察图形可得出为首项为,公比为的等比数列,即可求出.{}n C 13C =43【详解】观察图形发现,从第二个图形开始,每一个图形的周长都在前一个的周长的基础上多了其周长的,即,131111433n n n n C C C C ---=+=所以为首项为,公比为的等比数列,{}n C 13C =43.34464339C ⎛⎫∴=⨯=⎪⎝⎭故选:B.12.如图,“大衍数列”:、、、、来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,024812主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.如图是求大衍数列前项和的程序框图.执行该程序框图,输入,则输出的( )n 8m =S =A .B .C .D .4468100140【答案】C【分析】写出程序运行的每一步,即可得出输出结果.【详解】第1次运行, ,不符合 ,继续运行;211,0,0002n n a S -====+=n m ≥第2次运行,,不符合 ,继续运行;22,2,0222n n a S ====+=n m ≥第3次运行,,不符合 ,继续运行;213,4,4262n n a S -====+=n m ≥第4次运行,,不符合,继续运行;24,8,86142n n a S ====+=n m ≥第5次运行,,不符合 ,继续运行;215,12,1412262n n a S -====+=n m ≥第6次运行,,不符合 ,继续运行;26,18,2618442n n a S ====+=n m ≥第7次运行,,不符合 ,继续运行;217,24,2444682n n a S -====+=n m ≥第8次运行,,符合 ,退出运行,输出.28,32,68321002n n a S ====+=n m ≥100S =故选:C.二、填空题13.已知复数的对应点在复平面的第二象限,则||的取值范围是(2)(1)i()z a a a R =-++∈1i a +________.【答案】【分析】根据的几何意义,得的复平面内对应的点,列出不等式组求得,再(2,1)a a -+1a 2-<<结合复数模的计算公式,即可求解.【详解】由题意,复数在复平面内对应的点,(2)(1)i()z a a a R =-++∈(2,1)a a -+因为该点位于第二象限,所以,解得,2010a a -<⎧⎨+>⎩1a 2-<<所以.|1i|a ⎡+=⎣故答案为:.14.甲、乙、丙、丁四位同学中仅有一人申请了北京大学的自主招生考试,当他们被问到谁申请了北京大学的自主招生考试时,甲说:“丙或丁申请了”;乙说:“丙申请了”;丙说:“甲和丁都没有申请”;丁说:“乙申请了”,如果这四位同学中只有两人说的是对的,那么申请了北京大学的自主招生考试的同学是______.【答案】乙【分析】先假设甲乙丙丁中一个人说的是对的然后再逐个去判断其他三个人的说法最后看是否满..足题意,不满足排除.【详解】解:先假设甲说的对,即甲或乙申请了但申请人只有一个,.如果是甲,则乙说“丙申请了”就是错的,丙说“甲和丁都没申请”就是错的,丁说“乙申请了”也是()1错的,这样三个错的,不能满足题意,故甲没申请如果是乙,则乙说“丙申请了”就是错的,丙().2说“甲和丁都没申请”可以理解为申请人有可能是乙,丙,戊,但是不一定是乙,故说法不对,丁说“乙申请了”也是对的,这样说的对的就是两个是甲和丁满足题意..故答案为乙.【点睛】本题考查了合情推理的应用,属于中档题.15.有下列一组不等式:,根据111111111111111111,,,,3424562567826789102+>++>+++>++++> 这一规律,若第2020个不等式为,则__________.11111122m m m n ++++>++ m n +=【答案】6064【分析】由归纳推理得:第个不等式为:,若第2020个不等式为k 111123222k k k ++⋯+>+++,所以,,即可得解.11111122m m m n +++⋯+>++2022m =4042n =【详解】解:因为由,,,,,根据这一111342+>11114562++>1111156782+++>1111116789102++++>⋯规律,则第个不等式为:,k 111123222k k k ++⋯+>+++若第2020个不等式为,11111122m m m n +++⋯+>++即,,22022m k =+=224042n k =+=所以,,2022m =4042n =即,202240426064m m +=+=故答案为:.6064【点睛】本题考查了归纳推理,属于基础题.16.已知变量y 关于x 的回归方程为,其一组数据如表所示:若,则预测y 值可能为2e kx y +=8x =___________.x 23456y1.5e 4.5e 5.5e 6.5e 7e 【答案】8e【分析】由已知回归方程取对数并令,得线性回归方程,根据线性回归直线过中ln z y =2z kx =+心点求得值,然后代入可得预测值.k 8x =【详解】由得:,令,即,2ekx y +=ln 2y kx =+ln z y =2z kx =+因为,2345645x ++++==,1.5 4.5 5.5 6.57ln e ln e ln e ln e ln e 1.5 4.5 5.5 6.57555z ++++++++===将点代入直线方程中,即可得:,(4,5)2z kx =+0.75k =所以回归方程为, 0.752e +=x y 若,则.8x = 0.75828ee ⨯+==y 故答案为:.8e 三、解答题17.在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,xOy C 22cos 12sin x y θθ=+⎧⎨=+⎩θ轴正半轴为极轴建立极坐标系,直线的极坐标方程为.xl cos 4πρθ⎛⎫+= ⎪⎝⎭(1)求直线的直角坐标方程和曲线的普通方程;l C (2)直线与曲线交于两点,设点的坐标为,求的值.l C ,M N P ()0,2-22||||PM PN +【答案】(1)曲线:,直线:;(2).C 22(2)(1)4x y -+-=l 20x y --=32【分析】(1)利用公式消除参数,可得曲线的方程,再利用直角坐标与极坐标22sin cos 1θθ+=θC 的转化公式求得直线的方程;l (2)利用直线参数方程中参数的几何意义求解.【详解】(1)曲线:,直线:C 22(2)(1)4x y -+-=l 20x y --=(2)设:(为参数)l 2x y ⎧=⎪⎪⎨⎪=-⎪⎩t 将的参数方程代入,l 22(2)(1)4x y -+-=得,222)(3)4-+-+=,290t -+=故,12t t +=129t t =,22222121212()2501832PM PN t t t t t t +=+=+-=-=故.2232PM PN +=【点睛】直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐cos sin x y ρθρθ=⎧⎨=⎩标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生,,222tan x y yx ρθ⎧=+⎪⎨=⎪⎩2ρcos ρθ以便转化另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数来表示动点坐标,sin ρθθ从而利用一元函数求与动点有关的最值问题.18.设实部为正数的复数,且复数在复平面上对应的点在第一、三象限z ()12i z +的角平分线上.(1)求复数;z (2)若为纯虚数,求实数的值.()i1i m z m R -+∈+m 【答案】(1);(2).3i z =-5-【分析】(1)根据待定系数法求解,设且,由题意得到关于的方程组求i(,z a b a b R =+∈0)a >,a b 解即可.(2)根据纯虚数的定义求解即可.【详解】(1)设,,,由题意:①i z a b =+,a b R ∈0a >2210a b +=,得②()()()()12i 12i i 22i z a b a b a b +=++=-++22a b a b -=+①②联立,解得,得.3a =1b =-3i z =-(2),()()i 1i i113i 31i 1i 222m m m m z ----+⎛⎫+=++=++- ⎪+⎝⎭所以且,解得.1302m -+=1102m +-≠5m =-19.近年来,共享单车进驻城市,绿色出行引领时尚.某公司计划对未开通共享单车的县城进行A 车辆投放,为了确定车辆投放量,对过去在其他县城的投放量情况以及年使用人次进行了统计,得到了投放量(单位:千辆)与年使用人次(单位:千次)的数据如下表所示,根据数据绘制投x y 放量与年使用人次的散点图如图所示.x yx1234567y611213466101196(1)观察散点图,可知两个变量不具有线性相关关系,拟用对数函数模型或指数函数lg =+y a b x 模型对两个变量的关系进行拟合,请问哪个模型更适宜作为投放量与年使用(0,0)=⋅>>xy c d c d x人次的回归方程类型(给出判断即可,不必说明理由),并求出关于的回归方程;y y x (2)已知每辆单车的购入成本为元,年调度费以及维修等的使用成本为每人次元,按用户2000.2每使用一次,收费元计算,若投入辆单车,则几年后可实现盈利?18000参考数据:其中,.lg ii v y =117nii v v ==∑y v71i ii x y=∑71i ii x v=∑0.541062.141.54253550.12 3.47参考公式:对于一组数据,,…,其回归直线的斜率和截距的最()11,x y ()22,x y (),n nx y ˆˆa y bx =-小二乘估计公式分别为.121()()()niii nii x x y y bx x ==--=-∑∑ 【答案】(1)适宜,;(2)年.xy c d =⋅0.25ˆ 3.4710x y =⨯6【分析】(1)根据散点图判断,适宜;由两边同时取对数得,设x y c d =⋅xy c d =⋅lg lg lg y c x d =+,则,根据参考数据以及参考公式首先求出的回归直线方程进而求出结lg y v =lg lg v c x d =+v x ,果;(2)将8000代入回归直线方程可得年使用人次,求出每年收益与总投资,则可求出结果.【详解】(1)由散点图判断,适宜作为投放量与年使用人次的回归方程类型.xy c d =⋅x y 由,两边同时取常用对数得.x y c d =⋅()lg lg lg lg x y c d c x d =⋅=+设,则.lg y v =lg lg v c x d =+因为,,,,4x = 1.54v =721140ii x==∑7150.12==∑i ii x v所以.7172217lg 7==-==-∑∑i i i ii x v x vd xx250.1274 1.5470.251407428-⨯⨯==-⨯把代入,得,(4,1.54)lg lg =+v c x d lg 0.54c =所以,所以,ˆ0.540.25vx =+ˆlg 0.540.25y x =+则,0.540.250.25ˆ10 3.4710x x y+⨯==故关于的回归方程为.y x 0.25ˆ 3.4710xy =⨯(2)投入千辆单车,则年使用人次为千人次,80.2583.4710347⨯⨯=每年的收益为(千元),347(10.2)277.6⨯-=总投资千元,800020016000001600⨯==假设需要年开始盈利,则,即,n 277.61600⨯>n 5.76>n 故需要年才能开始盈利.620.已知圆有以下性质:222:C x y r +=①过圆上一点的圆的切线方程是.C ()00,M x y 200x x y y r +=②若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则()00,M x y C M C ,A B 垂直,即.OM AB 1AB OM K K ⋅=-(1)类比上述有关结论,猜想过椭圆上一点的切线方程 (不要求证明);2222:1x y C a b +='()00,M x y (2)若过椭圆外一点(不在坐标轴上)作两直线,与椭圆相切于2222:1x y C a b +='()00,M x y M 两点,求证:为定值.,A B AB OM K K ⋅【答案】(1)切线方程是;(2)见解析.00221x x y ya b +=【详解】分析:(1)根据类比推理可得结果;(2)设由(1)得过椭圆上点()()1122,,,A x y B x y 的切线的方程是,同理,又过两点的直线是唯一的,直()11,A x y 1l 11221x x y ya b +=2020221x x y y a b +=,A B 线的方程是,,又,从而可得结果.AB 00221x x y y a b +=2020AB b x k a y =-00OM y k x =详解:(1)过椭圆上一点的的切线方程是()2222:10x y C a b a b =>'+>()00,M x y 00221x x y ya b +=(2)设()()1122,,,A x y B x y 由(1)得过椭圆上点的切线的方程是,()11,A x y 1l 11221x x y ya b +=∵直线过点,1l ()00,M x y ∴1010221x x y y a b +=同理2020221x x y y ab +=又过两点的直线是唯一的,,A B ∴直线的方程是.AB 00221x x y ya b +=∴,2020AB b x k a y =-又,0OM y k x =∴为定值.22002200AB OM b x y b k k a y x a ⋅=-⋅=-点睛:本题主要考查类比推理、圆锥曲线的切线,圆锥曲线的定值问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动23没有兴趣.(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?22⨯90%有兴趣没兴趣合计男55女合计(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.附表:.22(),()()()()-==+++++++n ad bc n a b c da b c d a c b d χ【答案】(1)有的把握认为“对冰球是否有兴趣与性别有关”;90%(2).710【分析】(1)根据已知数据得到列联表,根据列联表中的数据计算出,可得结论;2χ(2)由题意得概率为古典概型,根据古典概型概率公式计算可得所求.【详解】(1)根据已知数据得到如下列联表有兴趣没有兴趣合计男451055女301545合计7525100由列联表中的数据可得,()22100451510301003.0305545752533χ⨯⨯-⨯==≈⨯⨯⨯因为,23.030 2.706χ≈>所以有90%的把握认为“对冰球是否有兴趣与性别有关”;(2)记5人中对冰球有兴趣的3人为A 、B 、C ,对冰球没有兴趣的2人为m 、n ,则从这5人中随机抽取3人,所有可能的情况为:(A,m,n ),(B,m,n ),(C,m,n ),(A,B,m ),(A,B,n ),(B,C,m ),(B,C,n ),(A,C,m ),(A,C,n ),(A,B,C ),共10种情况,其中3人都对冰球有兴趣的情况有(A,B,C ),共1种,2人对冰球有兴趣的情况有(A,B,m ),(A,B,n ),(B,C,m ),(B,C,n ),(A,C,m ),(A,C,n ),共6种,所以至少2人对冰球有兴趣的情况有7种,因此,所求概率为.710P =22.写出以下各式的值:()1______;()()22sin 60sin 30sin 30 +-⋅-=______;()()22sin 150sin 120sin 120+-⋅-=______.22sin 15sin 15sinl5+⋅= 结合的结果,分析式子的共同特点,写出能反映一般规律的等式,并证明你的结论.()2()1【答案】(1),,; (2)见解析.141414【分析】利用特殊角的三角函数进行计算()1当,,借助于和差角的三角函数公式进行证明即()2αβ30+=221sin αsin βαsin β4+⋅=()可.【详解】,()()()2211sin 60sin 30sin 304+-⋅-=,()()221sin 150sin 120sin 1204 +-⋅-=,221sin 15sin 15sinl54+⋅=当,,()2αβ30+=221sin αsin βαsin β4+⋅=证明:,则,αβ30+= β30α=-,()()2222sin αsin βαsin βsin αsin 30ααsin 30α∴++⋅=+-⋅-,2211sin α(cos αα)αcos αα22⎛⎫=+⋅ ⎪ ⎪⎝⎭.222222133111sin αcos ααsin αααcos αsin αsin αcos α442444sin =+++-=+=【点睛】本题考查归纳推理,考查三角函数知识,考查学生分析解决问题的能力,属于中档题.。
2023-2024学年高二数学下学期第一次月考模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(22-23高二下·湖北恩施·期中)已知函数(是的导函数),则( )A .1B .2C .D . 2.(23-24高二上·辽宁朝阳·期末)如图,已知每条线路仅含一条通路,当一条电路从处到处接通时,不同的线路可以有( )A .5条B .6条C .7条D .8条3.(23-24高二下·广西·开学考试)曲线在点处的切线的斜率为( )A .5B .6C .7D .84.(23-24高二下·江苏南京·开学考试)设,若函数有极值点,则的取值范围为( )A .B .C .D . 5.(23-24高三上·山西运城·期末)第33届夏季奥运会预计2024年7月26日至8月11日在法国巴黎举办,这届奥运会将新增2个竞赛项目和3个表演项目.现有三个场地A ,B ,C 分别承担这5个新增项目的比赛,且每个场地至少承办其中一个项目,则不同的安排方法有( )A .150种B .300种C .720种D .1008种6.(23-24高二上·福建福州·期末)已知是函数的导数,且,则不等式的解集为( )A .B .C .D . 7.(23-24高二下·安徽宿州·开学考试)已知,则的值为( )A .-66B .-65C .-63D .-628.(23-24高二上·湖南长沙·期末)若,则( ) A . B . C . D .()()2131ln 2f x f x x x ='-++()f x '()f x ()1f =1212-M N 27ln y x x x =-++()1,6R a ∈()e 21x f x ax =++a a<02a >-102a -<<12a <-()f x '()()f x x ∈R ()(),1,32x f x f >'∀∈=R ()1f x x >-(),2-∞()2,+∞(),3-∞()3,+∞()()627012712x x a a x a x a x -+=++++ 01357a a a a a ++++11221ln ,ln ,4433e abc ===-c b a <<b c a <<c a b <<b a c <<二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高二下·河北·开学考试)下列求导运算正确的是( )A .若,则B .C .D . 10.(22-23高二下·江苏连云港·阶段练习)身高各不相同的六位同学站成一排照相,则说法正确的是( )A .A 、C 、D 三位同学从左到右按照由高到短的顺序站,共有120种站法B .A 与同学不相邻,共有种站法C .A 、C 、D 三位同学必须站在一起,且A 只能在C 与D 的中间,共有144种站法D .A 不在排头,B 不在排尾,共有504种站法11.(23-24高二上·浙江杭州·期末)设定义在上的函数的导函数分别为,若且为偶函数,则下列说法中正确的是( )A .B .C .的图象关于对称D .函数为周期函数,且周期为4三、填空题:本题共3小题,每小题5分,共15分.12.(23-24高二上·河南焦作·期末)已知为正整数,且,则 .13.(23-24高二上·山东青岛·期末)的展开式中的系数为 .(用数字作答). 14.(23-24高三下·江苏南通·开学考试)已知a ,b ,c 为某三角形的三边长,其中,且a ,b 为函数的两个零点,若恒成立,则M 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)(23-24高二上·山东青岛·期末)已知展开式中,第三项的系数与第四项的系数比为. (1)求的值;(2)求展开式中有理项的系数之和.(用数字作答)()1ln =+y x x 1ln 1y x x '=++()cos sin ππ'=-()2122ln 211x x x x x '⎛⎫-=- ⎪+⎝⎭+()1ln 22'=x xA B C D E F 、、、、、C 5424A A ⋅R (),()f x g x (),()f x g x ''(2)(2)2,()(2)f x g x f x g x ''++-==+(1)y g x =+(1)0g '=(2)(3)(4)0g g g ++=()g x '3x =()f x n 2414A C n n n -=n =81()y x y x ⎛⎫++ ⎪⎝⎭26x y a b <2()f x ax bx c =-+M a b c >+-2(n x 65n16.(15分)(23-24高二上·江苏南通·期末)已知函数. (1)求函数的极值点;(2)记曲线在处的切线为,求证,与有唯一公共点.17.(15分)(23-24高二下·江西·开学考试)某班共有团员14人,其中男团员8人,女团员6人,并且男、女团员各有一名组长,现从中选6人参加学校的团员座谈会.(用数字做答)(1)若至少有1名组长当选,求不同的选法总数;(2)若至多有3名女团员当选,求不同的选法总数;(3)若既要有组长当选,又要有女团员当选,求不同的选法总数.18.(17分)(23-24高二上·安徽·期末)已知函数. (1)若在上单调递增,求的取值范围;(2)试讨论函数的单调性.19.(17分)()2e xx x f x +=()f x ():C y f x =0x =l l C ()()222e x f x x x a =-+()f x []2,7a ()f x(23-24高二下·广西·阶段练习)固定项链的两端,在重力的作用下项链所形成的曲线是悬链线.1691年,莱布尼茨等得出“悬链线”方程为,其中为参数.当时,就是双曲余弦函数,类似地我们可以定义双曲正弦函数.它们与正、余弦函数有许多类似的性质.(1)类比正、余弦函数导数之间的关系,,,请写出,具有的类似的性质(不需要证明);(2)当时,恒成立,求实数的取值范围;(3)求的最小值.e e 2x x c c c y -⎛⎫+ ⎪⎝⎭=c 1c =()e e ch 2x x x -+=()e e sh 2x xx --=()sin cos x x '=()cos sin x x '=-()sh x ()ch x 0x >()sh x ax >a ()()2ch cos f x x x x =--。
高二下学期数学第一次月考试卷(文)(总分:150分 时间:120分钟)一、选择题:(本大题共10小题,每小题5分,共50分 在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知}{R x x y y M ∈-==,42,}{42≤≤=x x P 则M P 与的关系是( )A .P M =B .P M ∈C .φ=P MD .P M ⊇ 2、等比数列{}n a 中,已知3231891===q a a n ,,,则n 为A .3B .4C .5D .63、“3x >”是“24x >”的( ).A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件4、在△ABC 中,a =,b =B =45°,则A 等于( ). A . 30°B . 60°C . 30°或150°D .60°或120°5、函数)62sin(π+-=x y 的单调递减区间是( )A .Z k k k ∈⎥⎦⎤⎢⎣⎡++-,23,26ππππB .Z k k k ∈⎥⎦⎤⎢⎣⎡++,265,26ππππC .Z k k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππD .Z k k k ∈⎥⎦⎤⎢⎣⎡++,65,6ππππ6、不等式1213≥--xx 的解集是 ( ) A .{x|243≤≤x } B .{x|243<≤x } C .{x|x >2或43≤x } D .{x|x <2}7、已知直线l 、m ,平面α、β,且l ⊥α,m ∥β,给出下列四个命题: (1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β; (3)若α⊥β,则l ∥m ; (4)若l ∥m ,则α⊥β; 其中正确命题的个数是 ( ) A .1 B .2 C .3 D .48、曲线34y x x =-在点(1,3)--处的切线方程是( ).A .74y x =+B .72y x =+C . 4y x =-D .2y x =- 已知函数y=f(x)在区间(a,b)内可导,且x 0∈(a ,b )则hh x f h x f h )()(lim000--+→ 的值为( )A .f’(x 0)B .2 f’(x 0)C .-2 f’(x 0)D .010、已知双曲线22221x y a b-=的一条渐近线方程为43y x =,则双曲线的离心率为( )A .53B .43C D 二、填空题:(本大题共5小题,每小题5分,共25分,把答案填在横线上)11、点)3,(a P 到直线0134=+-y x 的距离等于4,且在不等式032>-+y x 表示的平面区域内,则点P 的坐标是 .12、已知双曲线221169x y -=的左支上一点P 到左焦点的距离为10,则点P 到右焦点的距离为13、已知,求42t a b =-的取值范围 ____________ .14、一质点做直线运动,它所经过的路程和时间的关系是s =3t 2+t ,则t =2时的瞬时速度为 .15、给定下列命题:① “若m>-1,则方程x 2+2x-m =0有实数根”的逆否命题;②“1=x ”是“2320x x -+=”的充分不必要条件.③“矩形的对角线相等”的逆命题;④“若220x y +=, 则x , y 全为零”的逆命题.其中真命题的序号是___________.三、解答题:(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)16、(本小题满分12分)已知锐角△ABC 的三内角A B C 、、所对的边分别为a b c 、、,边a 、b 是方程x 2-+2=0的两根,角A 、B 满足关系2sin(A +B ),求角C 的度数,边c 的长度及△ABC 的面积.17、(本小题满分12分)公交车的数量太多容易造成资源的浪费,太少又难以满足乘客的需求。
一、单选题1.已知集合,,则( ) {}12M x x =-<(){}ln 1N x y x ==+A . B .C .D .N M ⊆M N ⊆M N ⋂=∅M N =R 【答案】B【分析】化简集合,判断两个集合之间的关系即可得答案. 【详解】由题可得,, {}13M x x =-<<{}1N x x =>-所以,且 ,,. M N ⊆M N M N M =≠∅I R M N N =≠ 故选:B.2.已知向量,,且,则实数( ) ()2,a m = ()3,4b m =- a b ⊥ m =A .3 B .1C .D .131-【答案】B【分析】根据向量垂直的坐标表示可直接构造方程求得结果. 【详解】由得:,a b ⊥ ()2340a b m m ⋅=-+= 解得:. 1m =故选:B.3.在中,角,,的对边分别为,,,若,且,则角的余弦值为ABC A A B C a b c 3a c =13c b =A ( )A .B .C .D .15141613【答案】C【分析】根据余弦定理即得. 【详解】由题可得,,3a c =3b c =试题. ()()22222233cos 223c c c b c a A bc c c+-+-==⋅⋅16=故选:C .4.设为所在平面内一点,,则( )D ABC A 3BC CD =A .B .1433AD AB AC =-+1334AD AB AC =-C .D .4133AD AB AC =+ 4133AD AB AC =- 【答案】A【分析】根据给定条件,利用平面向量的线性运算求解作答.【详解】在中,,ABC A 3BC CD =.1114()3333AD AC CD AC BC AC AC AB AB AC =+=+=+-=-+故选:A5.在中,三角形三条边上的高之比为,则为( ) ABC A 2:3:4ABC A A .钝角三角形 B .直角三角形C .锐角三角形D .等腰三角形【答案】A【分析】由题可得三角形三条边之比为,然后利用余弦定理,求出最大边所对角的余弦值,6:4:3即可判断出结果.【详解】因为三角形三条边上的高之比为,2:3:4所以三角形三条边之比为,即,111::2346:4:3不妨设,6,4,3,0a x b x c x x ===>则最大角的余弦值为,22216911362c 44os 023x x x A x x +-==-<⋅⋅因此角为钝角,三角形为钝角三角形. A 故选:A.6.定义在上的偶函数满足,且在区间上递增,则( ) R ()f x ()()22f x f x +=-[]2,0-A .B .()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log 3f f f⎛⎫<< ⎪⎝⎭C .D . ()216log 63f f f ⎛⎫<< ⎪⎝⎭()2166log3f ff ⎛⎫<< ⎪⎝⎭【答案】B【分析】由条件求出函数的周期,再根据函数的单调性结合条件即得. 【详解】∵定义在R 上的偶函数,所以, ()()f x f x -=又满足,()f x ()()22f x f x +=-所以, ()()()()()42222f x f x f x f x f x +=++=--=-=所以是周期为4的函数,又函数在区间上递增, ()f x ()f x []2,0-所以在区间上递减,()f x []0,2所以,,()()62f f =()2222161616log log 4log log 3333f f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为,,所以,3223<3223<322222log 4log 3l 3g 202o ==>>>>所以,即.()()22log 3f f f <<()2166log 3f f f ⎛⎫<< ⎪⎝⎭故选:B .7.已知是的外心,,,则( ) O ABC A 4AB =u u u r 2AC = ()AO AB AC ⋅+=A .10B .9C .8D .6【答案】A【分析】根据三角形外心的性质,结合数量积的几何意义以及数量积运算律,即可求得答案. 【详解】如图,O 为的外心,设为的中点, ABC A ,D E ,AB AC 则,,OD AB OE AC ⊥⊥故()AO AB AC AO AB AO AC ⋅+=+⋅⋅||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅||||||||AD AB AE AC +=⋅⋅ , 2222111||41||2222210AB AC +=⨯+⨯⋅==故选:A8.在中,角所对的边分别为,,,若,则ABC A ,,A B C a b c 2022sin sin sin c C b B a A -=的值为( )()sin sin tan tan tan cos cos A BC A B A B ⋅+⋅⋅A .2013 B .C .2029D .2029220212【答案】D【分析】对,利用正、余弦定理整理得,根据题意结2022sin sin sin c C b B a A -=22021cos 2ab C c =合三角恒等变换分析运算即可.【详解】∵,由正弦定理可得:, 2022sin sin sin c C b B a A -=2222022c b a -=整理得:,22222021a b c c +-=由余弦定理可得:,故 22cos 2021ab C c =22021cos 2ab C c =()sin sin sin sin sin sin tan tan tan cos cos tan cos cos cos cos A BA B A B C A B A BC A BA B ⋅⋅=+⋅⋅⎛⎫+⋅⋅ ⎪⎝⎭()()22sin sin sin sin sin sin cos cos sin tan sin cos cos sin sin sin cos A B A B A B C ab CC C A B A B C c A B C⋅⋅⋅⋅====⋅⋅+⋅⋅+. 222021202122cc ==故选:D.二、多选题9.下列说法中错误的是( )A .若,,则B .a b ∥ b c∥a c ∥()()()a b c a b c b a c ⋅=⋅=⋅C .若,则D .a b a c ⋅=⋅b c = ()2222a ba ab b +=+⋅+ 【答案】ABC【分析】根据共线向量的概念,向量数量积的概念及运算法则逐项分析即得.【详解】对于A ,若时,,不一定能推出,故A 错误;0b →→=a b ∥b c ∥ a c ∥ 对于B ,不妨考虑不共线且不互相垂直时,向量与向量不共线,所以不能推,,a b c →→→()a b c ⋅()a b c ⋅ 出,故B 错误;()()a b c a b c ⋅=⋅对于C ,若且时,则,而不一定相等,故C 错误;a b ⊥ a c ⊥ a b a c ⋅=⋅,b c 对于D ,根据数量积的运算法则可知,故D 正确.()2222a ba ab b +=+⋅+故选:ABC.10.在中,,则的面积可以是( )ABC ∆1,6AB AC B π===ABC ∆AB .1 CD【答案】AD【分析】由余弦定理求出,再根据三角形的面积公式即可求出答案. BC 【详解】解:∵,1,6AB AC B π===由余弦定理得,2222cos AC AB BC AB BC B =+-⋅⋅∴, 2320BC BC -+=∴,或, 1BC =2BC =∴由的面积公式得或, ABC ∆1sin 2ABC S AB BC B ∆=⋅⋅⋅ABC S ∆=ABC S ∆=故选:AD .【点睛】本题主要考查三角形的面积公式的应用,考查余弦定理解三角形,属于基础题. 11.在中,,,则下列说法正确的是( ) ABC A cos 2C 1BC =5AC =A . B .的面积为2 4sin 5C =ABC A C.D .ABC A ABC A 【答案】ABD【分析】利用二倍角公式求出,根据同角三角函数的基本关系求出,再由余弦定理求出cosC sin C ,由正弦定理求出外接圆的直径,利用面积公式及等面积法判断B 、D ;c 【详解】解:因为,cos 2C 223cos 2cos 12125C C =-=⨯-=所以,,故A 、B 正确; 4sin 5==C 114sin 152225ABC S ab C ==⨯⨯⨯=A 由余弦定理,即,所以,2222cos c a b ab C =+-222315215205c =+-⨯⨯⨯=c =所以外接圆的直径,故C 错误; 2sin c R C ===设的内切圆半径为,则,即,所以ABC A r ()12ABCS a b c r =++△(11522r ++=r =D 正确; 故选:ABD12.设P 为所在平面内一点,则下列说法正确的是( )ABC A A .若,则点P 是的重心0PA PB PC ++=ABC A B .若,则点P 是的垂心PA PB PB PC PC PA ⋅=⋅=⋅ABC A C .若,,则点P 是的内心 (||||AB ACAP AB AC λ=+,[)0λ∈+∞ABC A D .若,则点P 是的外心()()()0PA PB BA PB PC CB PC PA AC +⋅=+⋅=+⋅=ABC A 【答案】ABD【分析】对于A :以,为邻边作平行四边形PADB ,M 为PD 的中点,利用向量的线性运算PA PB得到,即可证明;对于B :利用数量积运算证明出,,得到P 为||2||PC PM =PB CA ⊥PA BC ⊥的垂心,即可证明;对于C :在边AB ,AC 上分别取点E ,F ,使,,ABC A ||ABAE AB =||AC AF AC = 以AE ,AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形,即可判断;对于D :证明出,,,即可证明.||||PA PB = ||||PB PC = ||||PC PA =【详解】对于A :若,则.0PA PB PC ++= PA PB PC +=-以,为邻边作平行四边形PADB ,M 为PD 的中点,则,所以,又PA PBPA PB PD += PD PC =- ,所以,故P 为的重心. 2PD PM=||2||PC PM = ABC A 所以A 正确;对于B :若,则,即,即,所以PA PB PB PC ⋅=⋅ 0PA PB PB PC ⋅-⋅=()0PB PA PC ⋅-= 0PB CA ⋅= .PB CA ⊥同理,则,故P 为的垂心.PA PB PA PC ⋅=⋅u u r u u r u u r u u u rPA BC ⊥ABC A 故B 正确;对于C :在边AB ,AC 上分别取点E ,F ,使,,则,以AE ,||ABAE AB =||AC AF AC = ||||1AE AF == AF 为邻边作平行四边形AEGF ,则四边形AEGF 为菱形.连接AG ,则AG 为的角平分线,由,所以点P 在角平分线AG 上,故点P 的||||AB AC AP AB AC λ⎛⎫=+ ⎪⎝⎭轨迹一定通过的内心. ABC A 所以C 错误;对于D :若,则,同理有22()()()0PA PB BA PA PB PA PB PA PB +⋅=+⋅-=-= ||||PA PB = ,,故P 为的外心.||||PB PC = ||||PC PA =ABCA所以D 正确. 故选:ABD三、填空题13.在△ABC 中,,则=__________ ()()()a c a c b b c +-=+A ∠【答案】2π3【分析】由可得,再由余弦定理可得结果. ()()()a c a c b b c +-=+222b c a bc +-=-【详解】 ()()()a c a c b b c +-=+ 222a c b bc ∴--=222b c a bc -∴+=-,2221cos 222b c a bc A bc bc +--===-所以,故答案为. 23A π∠=23π【点睛】本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条2222cos a b c bc A =+-222cos 2b c a A bc+-=件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数30,45,60o o o 值,以便在解题中直接应用.14.若,且,则的最小值为______.0a >20a b +=21a b -+【答案】5【分析】由,且,得到,进而有,利用基本不等式求0a >20a b +=20a b =->22121a b b b -+=--+解.【详解】解:因为,且, 0a >20a b +=所以,20a b =->则,2212115a b b b -+=--+≥=当且仅当,即时,等号成立, 22b b-=-1b =-所以的最小值为5,21a b -+故答案为:515.探空气球是将探空仪器带到高空进行温度、大气压力、湿度、风速、风向等气象要素测量的气球,利用探空仪将实时探测到的大气垂直方向上的气象数据反馈给地面雷达,通过数据处理,成为全球预报员制作天气预报的重要依据.大气压强对气球能达到的最大高度和停留时间有非常大的影响.已知大气压强随海拔高度的变化规律是,其中是海平面()Pa p ()m h ()0e 0.000126k hp p k -⋅==0p 大气压强.若探空气球在两处测得的大气压强分别为,,且,那么两处的海,A B 1p 2p 122p p =,A B 拔高度的差约为______m.(参考数据:) ln20.693≈【答案】5500【分析】根据题意结合对数运算求解. 【详解】设两处的海拔高度分别为,,A B 12,h h 由题意可得:,且, 121020e e k h k h p p p p -⋅-⋅⎧=⋅⎨=⋅⎩122p p =即,且,12002ee k h k h p p -⋅-⋅⋅=⋅00p ≠可得,两边同时取对数可得:,122e e k h k h -⋅-⋅=()1212,ln lne 2ln 2e k h k h k h k h -⋅-⋅-⋅-⋅==即,整理得, 12ln 2k h k h -⋅-⋅=21ln 20.69355000.000126h h k -=≈=即两处的海拔高度的差约为5500 m. ,A B 故答案为:5500.16.已知为的垂心(三角形的三条高线的交点),若,则H ABC A 1235AH AB AC =+sin BAC ∠=______.【分析】由题可得,,利用,得2235=-+BH AB AC 1335=- CH AB AC 0BH AC ⋅= 0CH AB ⋅= ,,可得, 再利用平方关系结合条件即得.3cos 5AC BAC AB∠= 5cos 9AB BAC AC ∠= 21cos 3BAC ∠=【详解】因为,1235AH AB AC =+所以,同理,2235BH BA AH AB AC =+=-+1335CH CA AH AB AC =+=-由H 为△ABC 的垂心,得,即, 0BH AC ⋅= 22035AB AC AC ⎛⎫-+⋅= ⎪⎝⎭可知,即, 222cos 53AC AC AB BAC =∠ 3cos 5AC BAC AB∠=同理有,即,可知,即0CH AB ⋅= 13035AB AC AB ⎛⎫-⋅= ⎪⎝⎭213cos 35AB AC AB BAC =∠ ,5cos 9ABBAC AC∠= 所以, ,又, 21cos 3BAC ∠=2231cos 2sin 113∠∠=-=-=BAC BAC ()0,πBAC ∠∈所以 sin BAC ∠四、解答题17.已知,,且与的夹角为.1a = 2b = a b 2π3(1)求.()()23a b a b +⋅-(2)求.2a b +【答案】(1)5-【分析】(1)先求得,再利用数量积的运算律求解;a b ⋅(2)先求得,根据向量模的求法,结合数量积的运算律求解.a b ⋅【详解】(1)解:因为,,且与的夹角为,1a = 2b = a b 2π3所以,c 2π3o 1s a b a b ⋅-⋅=⋅=所以()()2223253a b a b a a b b +⋅-=-⋅- ;()22151325=⨯-⨯--⨯=-(2), 2a b +===18.在中,角,,的对边为,,,已知. ABC A A B C a b c ()12cos b A c +=(1)证明:; 2A B =(2)若,求的值. 23a b =cb【答案】(1)证明见解析; (2). 54【分析】(1)根据给定条件,利用正弦定理边化角,再利用和差角的正弦公式推理作答. (2)由已知结合余弦定理角化边,代入计算作答.【详解】(1)在中,由及正弦定理得:, ABC A ()12cos b A c +=sin 2sin cos sin B B A C +=而,因此, ()C A B π=-+sin 2sin cos sin()sin cos cos sin B B A A B A B A B +=+=+即有,显然,有, sin sin cos cos sin sin()B A B A B A B =-=-sin 0B >sin()0A B ->即,角B 为锐角,又,,因此, 0A B ->0πA B <-<()πB A B A +-=<B A B =-所以. 2A B =(2)在中,由及余弦定理得:,整理得,ABC A ()12cos b A c +=22222b c a b b c bc+-+⋅=22bc a b =-而,即,于是,又,即23a b =32a b =22235()24bc b b b =-=0b >54c b =所以. 54c b =19.如图,在矩形中,和分别是边和上的点,满足,.OACB E F AC BC 3AC AE =3BC BF=(1)若,其中,,求,的值;OC OE OF λμ=+ λμ∈R λμ(2)连接分别交,于,两点.记,,以,为基底来表示.AB OC OE M N CO a = CA b = a b CN 【答案】(1); 33,44λμ==(2). 1142CN a b =+【分析】(1)根据给定的图形,利用作基底,结合平面向量基本定理求解作答.,OA OB (2)结合(1)中信息,利用平面向量基本定理确定点的位置,即可求解作答.N 【详解】(1)在矩形中,,,则OACB 3AC AE = 3BC BF = 1133OE OA AE OA AC OA OB =+=+=+ ,,因此1133OF OB BF OB BC OB OA =+=+=+ , 11()()()()3333O OA OB OB OA C OA OB λμμλλμ++=+++=+ 又,不共线,于是,解得, OC OA OB =+ ,OA OB 1313μλλμ⎧+=⎪⎪⎨⎪+=⎪⎩33,44λμ==所以. 33,44λμ==(2)为与的交点,则, N AB OE 1(),R 33t ON tOE t OA OB tOA OB t ==+=+∈ ,, (1)33t t AN ON OA tOA OB OA t OA OB =-=+-=-+ AB OB OA =- 又,即存在,,则, //AN AB R m ∈AN mAB = (1)3t t OA OB mOA mOB -+=-+ 因为不共线,因此,解得, ,OA OB 13t m t m -=-⎧⎪⎨=⎪⎩31,44t m ==显然与的交点是线段、的中点,则,即是线段的中AB OC M AB OC 1142AN AB AM == N AM 点,所以. 11111111()22224242CN CA AN CA AM CA CM CA CM CA CM CA a b =+=+=+-=+=+=+ 20.已知函数的最小正周期为,的图象过点,且()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T ()f x (),1T ,将的图象向左平移个单位长度后得到函数的图象. ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π4()g x (1)求函数在上的值域; ()g x π0,2⎡⎤⎢⎥⎣⎦(2)在上恰有两个不同的实数解,求的取值范围. ()()2x g x +=[]0,m m【答案】(1)⎡-⎣(2) 11π5π,124⎡⎤⎢⎥⎣⎦【分析】(1)利用函数的最小正周期公式表示点,代入求解角,再根据对称性()f x (),1T ()f x ϕ求解,得到函数,根据图像平移变换得到函数,并求其在给定区间上的值域;ω()f x ()g x(2)化简变形,通过恰有两个不同的实数()()()F x x g x =+()()2x g x +=解,限制的取值范围,从而得解.m 【详解】(1)因为函数的最小正周期为, ()()π2sin 03,2f x x ωϕωϕ⎛⎫=+<<< ⎪⎝⎭T 所以,. 2πT ω=0ω>由于的图象过点,即过,代入得 ()f x (),1T 2π,1ω⎛⎫ ⎪⎝⎭,即. ()()2π2sin 2sin 2π2sin 1f x ωϕϕϕω⎛⎫=⋅+=+== ⎪⎝⎭1sin 2ϕ=则,或,又, πZ π2,6k k ϕ=+∈5π2π,Z 6k k ϕ=+∈π2ϕ<所以取. π0,6k ϕ==由于,则的图象关于对称, ()π3f x f x ⎛⎫-= ⎪⎝⎭()f x π6x =故,则. ππππ,Z 662k k ω+=+∈26,Z k k ω=+∈又因为,则令.03ω<<0,2k ω==故. ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭将的图象向左平移个单位长度后得. ()f x π4()ππ2π2sin 22sin 2463g x x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当,, π0,2x ⎡⎤∈⎢⎣⎦2π2π5π2,333x ⎡⎤+∈⎢⎥⎣⎦令,在单调递减,在单调递增, 2π23t x =+()2sin h t t =2π3π,32⎡⎤⎢⎥⎣⎦3π5π,32⎡⎤⎢⎥⎣⎦当时,取最小值,最小值为;当时,3π2t =()h t 2-2π3t =()h t所以,()h t ⎡∈-⎣所以函数在上的值域为. ()g x π0,2⎡⎤⎢⎥⎣⎦⎡-⎣(2)因为,, ()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭()2π2sin 23g x x ⎛⎫=+ ⎪⎝⎭令 ()()()π2π22sin 263F x x g x x x ⎛⎫⎛⎫=+=+++ ⎪ ⎪⎝⎭⎝⎭, πππ22cos 24sin 2663x x x ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由于在上恰有两个不同的实数解,()2F x =[]0,m 则在上恰有两个不同的实数解, π1sin 232x ⎛⎫+= ⎪⎝⎭[]0,m 当,, []0,x m ∈πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦当时,,或,或, π1sin 232x ⎛⎫+= ⎪⎝⎭π5π236x +=π13π236x +=π17π236x +=所以依题意,解得. 13ππ17π2636m ≤+<11π5π124m ≤<所以的取值范围. m 11π5π,124⎡⎤⎢⎥⎣⎦21.在中,内角,,所对的边分别为,,.ABC AA B C a b c cos sin C c A =(1)求角的大小;C(2)已知,若为锐角三角形,求的取值范围.c =ABC A a b +【答案】(1) π3(2)【分析】(1,再根据cos sin C c A =cos sin sin A C C A =求解;(),0,πA C ∈(2)由(1)求得,再由,利用三角函数24sin c R C ==2sin 2sin a b R A R B +=+6A π⎛⎫=+ ⎪⎝⎭的性质求解.【详解】(1)解:在中, ,ABCA cos sin C c A =,cos sin sin A C C A =因为,(),0,πA C ∈所以,即sin sin A C C ≠=tan C =则; π3C =(2)由(1)知:, 24sin c R C ===所以,2sin 2sin a b R A R B +=+, 2π4sin sin 3A A ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭, 34sin2A A ⎛⎫= ⎪ ⎪⎝⎭, 6A π⎛⎫=+ ⎪⎝⎭因为为锐角三角形,ABC A 所以所以,则,解得, π02π02π02A B C ⎧<<⎪⎪⎪<<⎨⎪⎪<<⎪⎩π022ππ032A B A ⎧<<⎪⎪⎨⎪<=-<⎪⎩ππ62A <<所以,则,ππ2π663A <+<1sin 126A π⎛⎫<+≤ ⎪⎝⎭所以a b <+≤所以的取值范围是.a b +22.已知函数.()()2ln e 2e 3x x f x a =-+(1)若的定义域为,求的取值范围;()f x R a (2)若,使得在区间上单调递增,且值域为,求的取值范围.,m n ∃∈R ()f x [],m n [],m n a 【答案】(1); 13a >(2). 2334a ≤< 【分析】(1)由题可得恒成立,然后利用参变分离结合函数的性质即得; 2e 2e 30x x a -+>(2)根据复合函数的单调性结合条件可得,且,进而可得在上0a >1e m a ≤2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭有两个不等实根,然后根据二次函数的性质即得.【详解】(1)因为的定义域为,, ()f x R ()()2ln e 2e 3x x f x a =-+所以,即恒成立, 2e 2e 30x x a -+>2222e 3321113e e e e 33x x x x x a -⎛⎫>=-+=--+ ⎪⎝⎭因为,,当时等号成立, 10e x >23211113333e e e x x x ⎛⎫+=--+≤ ⎪⎝⎭-1e 13x =所以,即的取值范围为; 13a >a 13a >(2)因为函数在其定义域上为增函数,要使在区间上单调递增, ln y x =()f x [],m n 则函数在区间上单调递增,又为增函数,2e 2e 3x x u a =-+[],m n e x t =所以在上为增函数,显然时不合题意,223y at t =-+e ,e m n ⎡⎤⎣⎦0a ≤所以,且, 0a >1e m a≤又在区间上单调递增,且值域为,()f x [],m n [],m n 所以,即, ()()()()22ln e 2e 3ln e 2e 3m m n n f m a m f n a n ⎧=-+=⎪⎨=-+=⎪⎩22e 3e 30e 3e 30m m n n a a ⎧-+=⎨-+=⎩所以在上有两个不等实根, 2330ax x -+=1,a ⎡⎫+∞⎪⎢⎣⎭则,解得, ()22Δ312031211330a a aa a a ⎧⎪=-->⎪⎪>⎨⎪⎪⎛⎫⋅-⋅+≥⎪ ⎪⎝⎭⎩2334a ≤<所以的取值范围为. a 2334a ≤<【点睛】方法点睛:恒(能)成立问题的解法:若在区间上有最值,则()f x D (1)恒成立:;;()()min ,00x D f x f x ∀∈>⇔>()()max ,00x D f x f x ∀∈<⇔<(2)能成立:;. ()()max ,00x D f x f x ∃∈>⇔>()()min ,00x D f x f x ∃∈<⇔<若能分离常数,即将问题转化为:(或),则 ()a f x >()a f x <(1)恒成立:;; ()()max a f x a f x >⇔>()()min a f x a f x <⇔<(2)能成立:;. ()()min a f x a f x >⇔>()()max a f x a f x <⇔<。
湖南省益阳市箴言中学2013-2014学年高二下学期第一次月考试题 数学(文)一、选择题(每题5分共计50分,请把正确的答案填在后面的答题框中)1. 已知复数i z -=1)(为虚数单位i ,那么复数z 的虚部为 ( )A. i -B. iC. 1D. 1- 2.点P 的直角坐标为 (1,-3),则点P 的极坐标为 ( ).A.⎝⎛⎭⎫2,π3B.⎝⎛⎭⎫2,4π3C.⎝⎛⎭⎫2,-π3D.⎝⎛⎭⎫2,-4π33.在极坐标系中,点 ⎝⎛⎭⎫2,π3到圆θρcos 2= 的圆心的距离为( ).A .2 B. 4+π29C.1+π29D. 34.已知x 、y 的取值如下表所示:若从散点图分析,y 与x 线性相关,且y =0.95x +a ,则a 的值等于 ( ) A .2.6B .6.3C .2D .4.55. 用反证法证明“方程)0(02≠=++a c bx ax 至多有两个解”的假设中,正确的是( )A. 至多有一个解B. 有且只有两个解C. 至少有三个解D. 至少有两个解6.极坐标方程θρcos =与21cos =θρ的图形是 ( ).O7. 某人进行了如下的“三段论”推理:若一个函数满足:0)('0=x f ,则0x x =是函数)(x f 的极值点,因为函数3)(x x f =在0=x 处的导数值0)0('=f ,所以,0=x 是函数3)(x x f =的极值点。
你认为以上推理是( ) A. 大前提错误B. 小前提错误C. 推理形式错误D. 结论正确8.在样本数据的回归分析中,相关指数R 2的值越大,则残差平方和∑=-ni i iyy12)ˆ( ( ) A .越小 B .越大 C .可能大也可能小D .以上都不对9.定义运算: ⎪⎪⎪⎪⎪⎪ab c d =bc ad -,则符合条件⎪⎪⎪⎪⎪⎪1 -1z z i =4+2i 的复数z 为 ( ) A .3-i B .1+3i C .3+i D .-1-3i10.在极坐标系中,曲线ρ=4sin ⎝⎛⎭⎫θ-π3关于( ).A .直线θ=π3对称B .直线θ=5π6对称C .点⎝⎛⎭⎫2,π3中心对称D .极点中心对称二、填空题(每空5分共计25分)11. 若复数)()4(23222R t i t t t z ∈-+--=为纯虚数,则t 的值为 。
2023-2024学年江西省南昌市高二下册第一次月考数学质量检测试题一、单选题1.数列11111,,,,,371531---⋅⋅⋅的一个通项公式为()A .11(1)21n n n a +=--B .11(1)2nn n a -=-C .1(1)21nn a n =-+D .1(1)21nn n a =--【正确答案】D【分析】根据规律写出数列的通项公式【详解】奇数项为负,偶数项为正,可用(1)n -来实现,而各项分母可看作12345211,213,217,2115,2131,-=-=-=-=-=⋅⋅⋅,各项分子均为1,∴该数列的通项公式为1(1)21nn n a =-⋅-.故选:D.2.3名大学生利用假期到2个山村参加扶贫工作,每名大学生只能去1个村,则不同的分配方案共有()A .4种B .6种C .8种D .10种【正确答案】C【分析】根据分步乘法计数原理求得正确答案.【详解】每个大学生都有2种选择方法,所以不同的分配方案共有2228⨯⨯=种.故选:C3.在等比数列{}n a 中,24a =,1016a =,则2a 和10a 的等比中项为()A .10B .8C .8±D .10±【正确答案】C【分析】根据等比中项的定义可得结果.【详解】根据等比中项的定义可得2a 和10a 的等比中项为8==±.故选:C4.通过抽样调研发现,当地第三季度的医院心脑血管疾病的人数和便利店购买冷饮的人数的相关系数很高,甲认为这是巧合,两者其实没有关系:乙认为冷饮的某种摄入成分导致了疾病;丙认为病人对冷饮会有特别需求:丁认为两者的相关关系是存在的,但不能视为因果,请判断哪位成员的意见最可能成立()A .甲B .乙C .丙D .丁【正确答案】D【分析】正确理解相关系数,相关关系与因果关系的区别是解题的关键.【详解】当地第三季度的医院心脑血管疾病的人数和便利店购买冷饮的人数的相关系数很高,但相关关系是一种非确定性关系,相关关系不等于因果关系,丁的意见最可能成立.故选:D.5.某学校安排音乐、阅读、体育和编程四项课后服务供学生自愿选择参加,甲、乙、丙、丁4位同学每人限报其中一项.已知甲同学报的项目其他同学不报的情况下,4位同学所报项目各不相同的概率等于()A .118B .332C .29D .89【正确答案】C【分析】设A =甲同学报的项目其他同学不报,B =4位同学所报项目各不相同,利用条件概率求解.【详解】解:设A =甲同学报的项目其他同学不报,B =4位同学所报项目各不相同,由题得()4333n A =⨯⨯⨯,()4321n AB =⨯⨯⨯,所以()43212(|)()43339n AB P B A n A ⨯⨯⨯===⨯⨯⨯.故选:C6.下列说法正确的是()①若随机变量η的概率分布列为()(1,2,3,4,5)P k ak k η===,则110a =;②若随机变量()23,X N σ ,(5)0.6P X ≤=,则(1)0.4P X ≤=;③若随机变量28,3X B ⎛⎫~ ⎪⎝⎭,则16()3E X =;④在含有4件次品的10件产品中,任取3件,X 表示取到的次品数,则3(2)10P X ==A .②③B .②④C .①②③D .②③④【正确答案】D【分析】根据分布列的性质即可判断①,利用正态分布密度曲线判断②,根据二项分布的期望公式判断③,利用超几何分布判断④.【详解】对于A ,∴随机变量ξ的概率分布为()(1,2,3,4,5)P k ak k η===,∴(1)(2)(3)(4)(5)1P P P P P ηηηηη=+=+=+=+==,∴2345151a a a a a a ++++==,∴115a =,故①不正确;对于B ,(5)1(5)0.4P X P X >=-≤=,∴(1)(5)0.4P X P X ≤=>=,故②正确;对于C ,由28,3X B ⎛⎫~ ⎪⎝⎭,得216()833E X =⨯=,故③正确;对于D ,由题意,得2146310C C 3(2)C 10P X ⋅===,故④正确.故选:D.7.已知编号为1,2,3的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个1号球,两个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从放入球的盒子中任取一个球,则第二次抽到3号球的概率为()A .12B .736C .1148D .16【正确答案】C【分析】记第一次抽到第i 号球的事件分别为()1,2,3i A i =,记第二次在第i 号盒内抽到3号球的事件分别为()1,2,3i B i =,再利用全概率公式求解即可.【详解】记第一次抽到第i 号球的事件分别为()1,2,3i A i =,则有()112P A =,()()2314P A P A ==,记第二次在第i 号盒内抽到3号球的事件分别为()1,2,3i B i =,而1A ,2A ,3A 两两互斥,和为Ω,()1114P B A =,()2214P B A =,()3316P B A =,记第二次抽到3号球的事件为B ,()()()()33111111111124444648i i i i i i i P B P A B P A P B A ==⎡⎤==⋅=⨯+⨯+⨯=⎣⎦∑∑.故选:C .8.有甲、乙两个盒子,甲盒子里有1个红球,乙盒子里有3个红球和3个黑球,现从乙盒子里随机取出()*16,n n n N ≤≤∈个球放入甲盒子后,再从甲盒子里随机取一球,记取到的红球个数为ξ个,则随着()*16,n n n N ≤≤∈的增加,下列说法正确的是()A .E ξ增加,D ξ增加B .E ξ增加,D ξ减小C .E ξ减小,D ξ增加D .E ξ减小,D ξ减小【正确答案】C【分析】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n ,可得出2nEX =,再从甲盒子里随机取一球,则ξ服从两点分布,所以()111222E P n ξξ===++,()1111222D P n ξξ=-==-+,从而可判断出E ξ和D ξ的增减性.【详解】由题意可知,从乙盒子里随机取出n 个球,含有红球个数X 服从超几何分布,即()6,3,X H n ,其中()336k n k n C C P X k C -==,其中Nk ∈,3k ≤且k n ≤,362n nEX ==.故从甲盒中取球,相当于从含有12n+个红球的1n +个球中取一球,取到红球个数为ξ.故()111211222n P n n ξ+===+++,随机变量ξ服从两点分布,所以()111211222n E P n n ξξ+====++,随着n 的增大,E ξ减小;()()()211111422D P P n ξξξ⎡⎤=-===-⎣⎦+,随着n 的增大,D ξ增大.故选:C.本题考查超几何分布、两点分布,分布列与数学期望,考查推理能力与计算能力,属于难题.二、多选题9.已知曲线222:11x y C m m+=+,则下列说法正确的是()A .若C是椭圆,则其长轴长为B .若0m <,则C 是双曲线C .C 不可能表示一个圆D .若1m =,则C上的点到焦点的最短距离为2【正确答案】BC【分析】根据21m m +>可知若为椭圆,则焦点在x 轴上,进而可判断A,进而可判断BC ,根据椭圆的几何性质可判断D.【详解】由于22131024m m m ⎛⎫+-=-+> ⎪⎝⎭,所以21m m +>,对于A,当0m >时,故222:11x y C m m+=+表示焦点在x轴上的椭圆,故椭圆的长轴长为故A 错误,对于B,当0m <时,C 是双曲线,故B 正确,对于C,由于21m m +>,故C 不可能表示一个圆,故C 正确,对于D,1m =时,22:121x y C +=,表示焦点在x 轴上的椭圆,且此时2222,1,1,===a b c故椭圆上的点到焦点的最小距离为1a c --,故D 错误,故选:BC10.已知8件产品中有3件是一等品,其余都是二等品.从这些产品中不放回地抽取三次,令i A 为第(1,2,3)i i =次取到的是一等品,则()A .()138P A =B .1A 与2A 相互独立C .()213|8P A A =D .()32328P A A =【正确答案】AD【分析】根据古典概型的概率公式及条件概率概率公式计算可得;【详解】解:依题意()13118C 3C 8P A ==,故A 正确;()1132111827C C 3C C 28A A P =⋅=,所以()()()212113228|378P A A P A A P A ===,故C 错误()1111325322288C C C C 3A A 8P A =+=,因为()()()2112P P A A A P A ≠,故1A 与2A 不独立,故B 错误;对于D :()3123532383A +C A 3A 28P A A ==,故D 正确;故选:AD11.将9个相同的小球分给甲、乙等4个人,()A .不同的分配方法共有220种B .若每人至少分到1个小球,则不同的分配方法共有56种C .若每人至少分到2个小球,则不同的分配方法共有10种D .若甲至少分到2个小球,其余3人每人至少分到1个小球,则不同的分配方法共有35种【正确答案】ABD【分析】利用隔板法直接判断各选项.【详解】A 选项:不同的分配方法有312C 220=种,故A 选项正确;B 选项:若每人至少分到1个小球,则不同的分配方法共有38C 56=种,故B 选项正确;C 选项:若每人至少分到2个小球,则四人中只有一人分到3个球,其他三人各分到2各球,故不同的分配方法共有34C 4=种,故C 选项不正确;D 选项:若甲至少分到2个小球,其余3人每人至少分到1个小球,则不同的分配方法共有37C 35=种,故D 选项正确;故选:ABD.12.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,13,21,….该数列的特点如下:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n a 称为斐波那契数列,现将{}n a 中的各项除以2所得的余数按原来的顺序构成的数列记为{}n b ,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,下列说法正确的是()A .20221348T =B .100010021S a =-C .若2022n T =,则3033n =D .2222123500500501a a a a a a ++++= 【正确答案】ABD【分析】根据数列特征得到{}n b 为1,1,0,1,1,0,L ,周期为3的数列,从而得到()20221106741348T =++⨯=,A 正确,1000S =1002210021a a a -=-,B 正确,根据数列{}n b 的周期求和得到3033n =或3032n =,所以C 错误,根据提公因式和斐波那契数列的特征得到D 正确.【详解】根据斐波那契数列的特征可以看出,数列为依次连续两个奇数和一个偶数,所以数列{}n b 为1,1,0,1,1,0,L ,则数列{}n b 为周期数列,且周期为3,所以()20221106741348T =++⨯=,故A 正确;因为1000129991000S a a a a =++++ 32431001100010021001a a a a a a a a =-+-++-+- 1002210021a a a =-=-,故B 正确;因为()20221101011=++⨯,101133033⨯=,且30311b =,30321b =,30330b =,所以3033n =或3032n =,故C 错误;22222221235001223500a a a a a a a a a ++++=++++ L ()22222123500233500a a a a a a a a a =++++=+++ 2499500500500501a a a a a ==+= ,故D 正确.故选:ABD 三、填空题13.412x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为___________.【正确答案】24【分析】根据通项公式,确定常数项,再代入二项式定理的通项中即可计算结果.【详解】解:由通项公式得:()44421441C 22C rrr r r rr T x xx ---+⎛⎫== ⎪⎝⎭,令420r -=,即可得2r =,所以展开式的常数项为:42242C 24-=.故2414.写出一个同时具有下列性质①②③的数列{}n a ,①无穷数列;②递减数列;③每一项都是正数,则n a =______.【正确答案】21n (答案不唯一)【分析】根据题目中要求的数列性质,写出满足题意的一个数列即可.【详解】根据题意,要求的数列可以为21n a n =,故21n (答案不唯一).15.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题:①若89S S <,则910S S <;②若110S =,则2100a a +=;③若13140,0S S ><,则{}n S 中7S 最大;④若210S S =,则使0n S >的n 的最大值为11.其中所有真命题的序号是__________.【正确答案】②③④【分析】①由题意可以推出90a >,不能推出100a >,判断①错误;②由题意可得1110a a +=,判断出②正确;③由题意可得780,0a a ><,判断出③正确;④由题意可得670a a +=,进而670,0a a ><,判断出④正确.【详解】若89S S <,则90a >,不能推出100a >,即不能推出910S S <,故①错误;若110S =,则1111111()02a a S +==,即1110a a +=,则2101110a a a a +=+=,故②正确;若13140,0S S ><,则113781141371413()14()14()130,0222a a a a a a S a S +++==>==<,所以780,0a a ><,则{}n S 中7S 最大,故③正确;若210S S =,则1121045a d a d +=+,即11167211560a d a d a d a a +=+++=+=,因为首项为正数,则公差小于0,则670,0a a ><,则11111611()1102a a S a +==>,112126712()6()02a a S a a +==+=,则使0n S >的n 的最大值为11,故④正确.故②③④.四、双空题16.2020年高考前第二次适应性训练结束后,某校对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布的密度曲线()()222x p x μσ--=非常拟合.已知()()max 95p x p ==则方差为_________.据此估计,在全市随机抽取10名高三同学,设X 表示10名同学中英语成绩超过95分的人数,X 的数学期望是__________.【正确答案】645【分析】由()()max 95p x p =μ、σ,写出方差即可;而1(95)2p x >=,易知1(10,)2X B ,根据二项分布的期望公式求期望即可.【详解】由()()max 95p x p ==95μ=,8σ=,故方差264σ=,由正态分布的对称性知:1(95)2p x >=,故1(10,)2X B ,∴X 的数学期望1()1052E X =⨯=.故64,5五、解答题17.某种商品价格与该商品日需求量之间的几组对照数据如下表,经过进一步统计分析,发现y 与x 具有线性相关关系.价格x (元/kg )1015202530日需求量y (kg )1110865(1)根据上表给出的数据,求出y 与x 的线性回归方程ˆˆy bx a ∧=+;(2)利用(1)中的回归方程,当价格40x =元/kg 时,日需求量y 的预测值为多少?(参考公式:线性回归方程ˆˆy bx a ∧=+,其中()()()121ni ii n ii x x yy b x x ==--=-∑∑,a y bx =-.)【正确答案】(1)ˆ0.3214.4yx =-+(2)1.6kg.【分析】(1)根据题中所给的数据,结合参考方程,对数据进行分步计算即可;(2)将价格数据代入回归方程,即可求得预测值.【详解】(1)由所给数据计算得1(1015202530)205x =++++=,1(1110865)85y =++++=,()52222221(10)(5)0510250i i x x =-=-+-+++=∑,()()51103(5)2005(2)10(3)80iii x x yy =--=-⨯+-⨯+⨯+⨯-+⨯-=-∑,()()()51521800.32250iii ii x x y y b x x ==---===--∑∑.80.322014.4a y bx =-=+⨯=.所求线性回归方程为ˆ0.3214.4yx =-+.(2)由(1)知当40x =时,ˆ0.321014.4 1.6y=-⨯+=.故当价格40x =元/kg 时,日需求量y 的预测值为1.6kg.本题考查线性回归直线方程的求解,根据公式计算回归系数即可,属基础题.18.设等差数列{}n a 的前n 项和为n S ,1518a a +=-,972S =-;(1)求数列{}n a 的通项公式;(2)当n S 取最小值时,n 的值.【正确答案】(1)12122n a n =-(2)20或21【分析】(1)求得等差数列{}n a 的首项和公差,由此求得n a .(2)由0n a ≤求得正确答案.【详解】(1)设等差数列{}n a 的公差为d ,则11241893672a d a d +=-⎧⎨+=-⎩,解得1110,2a d =-=,所以()1121101222n a n n =-+-⨯=-.(2)由121022n a n =-≤解得21n ≤,所以当n S 取得最小值时,n 的值为20或21(210a =).19.已知数列{}n a 满足1511a =,()1432n n a a n -=-≥.(1)求证:数列{}1n a +为等比数列;(2)令()2log 1n n b a =+,求数列{}n b 的前n 项和n S .【正确答案】(1)证明见解析(2)2210,5=10+50,6n n n n S n n n ⎧-≤⎨-≥⎩【分析】(1)由11344n n a a -=-知:()11114n n a a -+=+,利用等比数列的通项公式即可得出;(2)()2log 1112n n b a n =+=-,设数列{}112n -的前n 项和为n T ,则210n T n n =-.当5n ≤时,n n S T =;当6n ≥时,52n n S T T =-.【详解】(1)(1)证明:由11344n n a a -=-知()11114n n a a -+=+,由10n a +≠知:11114n n a a -+=+,∴数列{}1n a +是以512为首项,14为公比的等比数列,∴11121151224n n n a --⎛⎫+=⨯= ⎪⎝⎭,∴11221nn a -=-;(2)由(1)知()2log 1112n a n +=-,设(){}2log 1n a +的前n 项和为n T ,210n T n n =-,∴()2log 1112n n b a n =+=-,当5n ≤时,()21log 0n a +>,210n n S T n n ==-,6n ≥,()()()252621555log 1log 21050n n n n S T a a T T T T T n n +=-+--=--=-=-+ ,综上得2210,5=10+50,6n n n n S n n n ⎧-≤⎨-≥⎩.20.已知点()2,0A -、()2,0B ,动点(),M x y 满足直线AM 与BM 的斜率之积为34-,记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)经过点()1,0P -的直线l 与曲线C 交于C 、D 两点.记ABD △与ABC 的面积分别为1S 和2S ,求12S S -的最大值.【正确答案】(1)()221243x y x +=≠±;是去掉两个长轴端点的椭圆【分析】(1)结合两点间的斜率公式求解即可;(2)当直线l 斜率不存在时,120S S -=;当直线l 斜率存在时,设直线l 的方程为()()10y k x k =+≠,与椭圆方程联立,结合韦达定理表示出进行化简变形,再利用基本不等式求解即可.【详解】(1)由题意,2AM y k x =+,2BM yk x =-,2x ≠±,所以3224AM BM y y k k x x ⋅==-+-,整理可得22143x y +=,所以C 的方程为()221243x y x +=≠±,曲线C 是去掉两个长轴端点的椭圆.(2)当直线l 斜率不存在时,直线l 的方程为=1x -,此时ABD △与ABC 的面积相等,所以120S S -=.当直线l 斜率存在时,设直线l 的方程为()()10y k x k =+≠,()11,C x y ,()22,D x y ,联立方程组()221143y k x x y ⎧=+⎪⎨+=⎪⎩,可得()22223484120k x k x k +++-=,则()()()42226443441214410k k k k ∆=-+-=+>,且2122834k x x k +=-+,212241234k x x k-=+,则()()()132212112186+2331244y x k kk y k k x k x x k k k +=+++=+-=+++=,此时221211211422324S S y y y y k k -=⨯⨯=+-=+,由于0k ≠,所以212123344kkk k=≤++当且仅当34k k =,即2k =时取等号,所以12S S -综上所述,12S S -21.甲、乙两支足球队将进行某赛事的决赛.其赛程规则为:每一场比赛均须决出胜负,若在规定时间内踢成平局,则双方以踢点球的方式决出胜负.按主、客场制先进行两场比赛,若某一队在前两场比赛中均取得胜利,则该队获得冠军;否则,需在中立场进行第三场比赛,其获胜方为冠军.假定甲队在主场获胜的概率为12,在客场获胜的概率为13,在第三场比赛中获胜的概率为25,且每场比赛的胜负相互独立.(1)已知甲队获得冠军,求决赛需进行三场比赛的概率;(2)比赛主办方若在决赛的前两场中共投资m (千万元),则能盈利2m(千万元).如果需进行第三场比赛,且比赛主办方在第三场比赛中投资n (千万元).若比赛主办方准备投资一千万元,以决赛总盈利的数学期望为决策依据,则其在前两场的投资额应为多少万元?【正确答案】(1)15(2)34千万元.【分析】(1)甲获胜,且比赛进行了三场,说明前两场一队赢一场,第三场中立场甲赢;(2)根据总盈利和进行的场次有关,求出总盈利2m,即比赛只需进行两场的概率,再求出总盈利为2m.【详解】(1)由于前两场对于比赛双方都是一个主场一个客场,所以不妨设甲队为第一场为主场,第二场为客场,设甲获得冠军时,比赛需进行的场次为X ,则111121(3)11232355P X ⎡⎤⎛⎫⎛⎫==⨯-+-⨯⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.(2)由题可得1m n +=,所以[]1,0,1m n n =-∈比赛结束需进行的场次即为Y ,则2,3Y =,设决赛总盈利为Z ,则,22m mZ =,11111((2)11223232m P Z P Y ⎛⎫⎛⎫====⨯+-⨯-= ⎪ ⎪⎝⎭⎝⎭,11111((3)11223232m P Z P Y ⎛⎫⎛⎫====⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,所以决赛总盈利为Z 的分步列如下,所以11111()2222222m m E Z m n ⎛=⨯+⨯==-+ ⎝,所以211()22E Z =-+,12=,即14n =时,二次函数211()22E Z =-+有最大值为58,所以以决赛总盈利的数学期望为决策依据,则其在前两场的投资额应为13144m =-=千万元.22.为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验.研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按[)0,20,[)20,40,[)40,60,[)60,80,[]80,100分组,绘制频率分布直方图如图所示.试验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只.假设小白鼠注射疫苗后是否产生抗体相互独立.(1)填写下面的22⨯列联表,并根据列联表及0.05α=的独立性检验,判断能否认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.单位:只抗体指标值合计小于60不小于60有抗体没有抗体合计(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小白鼠产生抗体.(i )用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p ;(ii )以(i )中确定的概率p 作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n 个人注射2次疫苗后产生抗体的数量为随机变量X .试验后统计数据显示,当90X =时,()P X 取最大值,求参加人体接种试验的人数n 及()E X .参考公式:2χ2()()()()()n ad bc a b c d a c b d -=++++(其中n a b c d =+++为样本容量)参考数据:20()P k χ≥0.500.400.250.150.1000.0500.0250k 0.4550.7081.3232.0722.7063.8415.024【正确答案】(1)列联表答案见解析,认为注射疫苗后小白鼠产生抗体与指标值不小于60有关;(2)(i )0.9;(ii )当接种人数为n =99时,()89.1E X =;当n =100时,()90E X =.【分析】(1)根据频率分布直方图算出每个区间段的小白鼠数量,然后根据指标值完成列联表,并根据参考公式进行运算,然后进行数据比对,最终得到答案;(2)(i )根据古典概型公式,结合对立事件概率求法即可得到答案;(ii )根据()90P X =最大,结合二项定理概率求法列出不等式组解出X ,最后求出期望.【详解】(1)由频率分布直方图,知200只小白鼠按指标值分布为:在[)0,20内有0.00252020010⨯⨯=(只);在[)20,40内有0.006252020025⨯⨯=(只);在[)40,60内有0.008752020035⨯⨯=(只);在[)60,80内有0.025********⨯⨯=(只);在[]80,100内有0.00752020030⨯⨯=(只).由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:单位:只抗体指标值合计小于60不小于60有抗体50110160没有抗体202040合计70130200零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.根据列联表中数据,得()220.05200502020110 4.945 3.8411604070130x χ⨯⨯-⨯=≈>=⨯⨯⨯.根据0.05α=的独立性检验,推断0H 不成立,即认为注射疫苗后小白鼠产生抗体与指标值不小于60有关,此推断犯错误的概率不大于0.05.(2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”.记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C ,则()1600.8200P A ==,()200.540P B ==,()()()0.20.1150.9P C P A P B -⨯==-=.所以一只小白鼠注射2次疫苗后产生抗体的概率0.9p =.(ii )由题意,知随机变量(),0.9X B n ,()C 0.90.1k k n kn P X k -==⨯⨯(0,1,2,,k n =⋅⋅⋅).因为()90P X =最大,所以909090919191909090898989C 0.90.1C 0.90.1C 0.90.1C 0.90.1n n n n n n n n ----⎧⨯⨯≥⨯⨯⎨⨯⨯≥⨯⨯⎩,解得901999n ≤≤,因为n 是整数,所以99n =或100n =,所以接受接种试验的人数为99或100.①当接种人数为99时,()990.989.1E X np ==⨯=;②当接种人数为100时,()1000.990E X np ==⨯=.。
2023-2024学年重庆市高二下册第一次月考数学试题一、单选题1.已知函数()()321,103f x x x ax f =+-=',则实数=a ()A .4B .3C .2D .1【正确答案】B【分析】求导,利用()10f '=即可.【详解】因为()22f x x x a =+-',所以()11230f a a '=+-=-=,则3a =,故选:B.2.从0、1、2、3、4、5六个数中,选3个不同的数可以组成多少个不同的三位数?()A .60B .80C .100D .120【正确答案】C【分析】根据分步乘法计数原理,先确定百位上的数字,再分析十位与个位,进而计算即可求解.【详解】从0、1、2、3、4、5六个数中,选3个不同的数,百位上的数字有除0外的5种选法,十位上的数字有除百位上的数字外的5种选法,个位上的数字有除百位、十位上的数字外的4种选法,所以总共有554100⨯⨯=种不同的三位数,故选:C3.已知函数()sin cos 2020,f x x x x =++()g x 是函数()f x 的导函数,则函数()y g x =的部分图象是A .B .C .D .【正确答案】D求出函数()f x 的导函数即()g x 的解析式,可判断函数为奇函数,即可排除AB ,再由特殊值可排除C ,即可得解.【详解】解:()sin cos 2020,f x x x x =++ ()()sin cos sin cosg x f x x x x x x x '∴==+-=()()()cos cos g x x x x x g x -=--=-=- ()g x ∴为奇函数,图象关于原点对称,故排除AB ;02g π⎛⎫= ⎪⎝⎭ ,cos 03336g ππππ⎛⎫==> ⎪⎝⎭,故排除C ;故选:D本题考查函数的求导、函数图象的判断,考查推理论证能力,属于基础题.4.若函数()y f x =满足()()xf x f x '>-在R 上恒成立,且a b >,则()A .()()af b bf a >B .()()af a bf b >C .()()af a bf b <D .()()af b bf a <【正确答案】B【分析】构造函数()()g x xf x =,根据导数确定函数单调性,进而判断各选项.【详解】由()()xf x f x '>-,设()()g x xf x =,则()()()0g x xf x f x ''=+>,所以()g x 在R 上是增函数,又a b >,所以()()g a g b >,即()()af a bf b >,故选:B.5.如图,正方形ABCD 的边长为5,取正方形ABCD 各边的中点E ,F ,G ,H ,作第2个正方形EFGH ,然后再取正方形EFGH 各边的中点I ,J ,K ,L ,作第3个正方形IJKL ,依此方法一直继续下去.则从正方形ABCD 开始,连续10个正方形的面积之和等于()A .1015012⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦B .1012512⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦C .10251122⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦D .1015012⎡⎤⎛⎫-⎢⎥⎪⎝⎭⎢⎥⎣⎦【正确答案】A【分析】将正方形面积按作法次序排成一列得数列{}n a ,再确定该数列为等比数列,借助等比数列前n 项和公式求解作答.【详解】依题意,将正方形面积按作法次序排成一列得数列{}n a ,125a =,因为后一个正方形边长是相邻前一个正方形边长的2,因此112n n a a +=,即数列{}n a 是等比数列,公比12q =,所以前10个正方形的面积之和101010110125[1()](1)1250[1()]11212a q S q --===---.故选:A6.已知F 是椭圆C 的右焦点,O 为坐标原点,P 是C 上的一点,若2PF OF =,且120OFP ∠=︒,则C 的离心率为()A.1B.2C1D【正确答案】D【分析】由椭圆定义,在焦点三角形中由余弦定理建立齐次方程,求得离心率.【详解】设椭圆半长轴为a ,焦半径为c ,左焦点为1F ,则有()1,0F c -,(),0F c ,12FF c =,122,222PF OF c PF a PF a c ===-=-,所以在1PFF 中,())222222cos 04422122021202222c c a c OFP c a ac e e c e e c +--∠=-⇒-+=⇒-=⇒+⋅⋅>=.故选:D.7.曲线e 1x y =+上的点到直线20x y --=的距离的最小值是()A .3BC .2D .【正确答案】D【分析】求出函数的导函数,设切点为()001,e xx +,依题意即过切点的切线恰好与直线20x y --=平行,此时切点到直线的距离最小,求出切点坐标,再利用点到直线的距离公式计算可得;【详解】解:因为e 1x y =+,所以e x y '=,设切点为()001,e x x +,则01|e xx x y ===',解得00x =,所以切点为()0,2,点()0,2到直线20x y --=的距离d =e 1x y =+上的点到直线20x y --=的距离的最小值是故选:D8.已知ln1.21a =,0.21b =,0.2e 1c =-,则()A .a b c >>B .c a b >>C .c b a >>D .b c a>>【正确答案】C【分析】构造函数()()ln 1f x x x =+-,利用导数研究其单调性,从而得到a b <;再直接计算51.21 2.5937=,从而得到5e 1.21>,进而得到c b >;由此得解.【详解】令()()ln 1f x x x =+-,[)0,1x ∈,则()11011x f x x x-'=-=≤++,故()f x 在[)0,1上单调递减,所以()()0.2100f f <=,即()ln 1.210.210-<,即()ln 1.210.21<,故a b <;因为51.21 1.211.211.211.211.21 2.5937=⨯⨯⨯⨯=,e 2.718≈,所以5e 1.21>,故0.2e 1.210.211>=+,即0.2e 10.21->,即c b >;综上.c b a >>故选:C.方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.二、多选题9.如图是函数()y f x =的导函数()f x '的图像,则下列判断正确的是()A .在区间()2,1-上,()f x 单调递增B .在区间()1,2上,()f x 单调递增C .在区间()4,5上,()f x 单调递增D .在区间()3,2--上,()f x 单调递增【正确答案】BC【分析】当()0f x ¢>,则()f x 单调递增,当()0f x '<,则()f x 单调递减,据此可得答案.【详解】由题图知当()()1245,,,x x ∈∈时,()0f x ¢>,所以在区间()()1245,,,上,()f x 单调递增,BC 正确;当()2,1x ∈--时,()0f x '<,当()1,1x ∈-时,()0f x ¢>,所以在区间()2,1--上,()f x 单调递减.在()1,1-上递增,A 错误;当()3,2x ∈--时,()0f x '<,所以在区间()3,2--上,()f x 单调递减,D 错误;故选:BC10.如图,已知正方体1111ABCD A B C D -的棱长为2,,,E F G 分别为11,,AB AD B C 的中点,以下说法正确的是()A .三棱锥C EFG -的体积为1B .1AC ⊥平面EFGC .异面直线EF 与AG 所成的角的余弦值为3D .过点,,EFG 作正方体的截面,所得截面的面积是【正确答案】ABD【分析】对于A ,根据三棱锥体积公式计算,结合正方体的性质,可得答案;对于B ,根据线面垂直,证得线线垂直,利用线面垂直判定定理,可得答案;对于C ,根据异面直线夹角的定义,利用几何法,结合余弦定理,可得答案;对于D ,利用平行进行平面延拓,根据正六边形的面积公式,可得答案.【详解】对于A ,取BC 中点H ,连接GH ,CG ,CE ,CF ,如下图:,G H Q 分别为11,BC B C 的中点,∴GH ⊥平面ABCD ,设正方形ABCD 的面积4S =,1341122CEF AEF CEB CDF S S S S S =---=---= ,113C EFG G CEF CEF V V GH S --==⋅⋅= ,故A 正确;对于B ,连接1AC 、1AB 、AC ,如下图:,E F 分别为,AB AD 的中点,且AC 为正方形ABCD 的对角线,AC EF ∴⊥,在正方体1111ABCD A B C D -中,1AA ⊥平面ABCD ,且EF ⊂平面ABCD ,1AA EF ∴⊥,1AC AA A ⋂=,1,AC AA ⊂平面1AAC ,EF ∴⊥平面1A AC ,1AC ⊂ 平面1A AC ,1EF AC ∴⊥,同理可得11AB AC⊥,,F G 分别是11,AD B C 的中点,1//AF B G ∴,1AF B G =,即1//AB GF ,1AC FG ⊥,EF FG F = ,,EF FG ⊂平面EFG ,1AC ∴⊥平面EFG ,故B 正确;对于C ,连接AG ,1FC ,CE ,CF ,1C E,如下图:,F G 分别为11,AD B C 的中点,1//AF C G ∴,1AF C G =,则1//AG FC ,故1C FE ∠为异面直线EF 与AG 所成的角或其补角,222EF AE AF =+=22221113EC CE CC CB BE C E =+=++=,222221113FC CC CF CC CD DF =+=++=,22211112cos 26232C F EF C E C FE C F EF +-∠===⋅⋅⨯⨯,异面直线EF 与AG 所成的角的余弦值为6,故C 错误;对于D ,取1BB 的中点H ,11C D 的中点J ,1DD 的中点I ,连接EH ,HG ,GJ ,JI ,IF ,如下图:易知//EF JG ,//GH FI ,//IJ EH ,且正六边形EFIJGH 为过点EFG 作正方体的截面,则其面积为216sin 602S =⨯⨯⨯=,故D 正确.故选:ABD.11.新冠疫情发生后,某社区派出A ,B ,C ,D ,E 五名志愿者到甲、乙、丙、丁四个路口协助开展防护排查工作,每名志愿者只能到一个路口工作,则下列结论中正确的是()A .若每个路口至少分派1名志愿者,则所有不同的分派方案共240种B .若丙路口不安排志愿者,其余三个路口至少安排一个志愿者,则所有不同的分派方案共180种C .若每个路口至少派1名志愿者,且志愿者A 必须到甲路口,则所有不同分派方案共60种D .若每个路口至少派1名志愿者,且志愿者A 、B 不安排到甲路口,则所有不同分派方案共126种【正确答案】ACD【分析】A.先两个人一组,再全排列即可判断;B.讨论1,1,3或2,2,1两种情况即可判断;C.讨论志愿者A 一个人在甲路口,A 与另外一个人一起在甲路口,两种情况即可判断;D.讨论甲路口安排1人,甲路口安排2人即可判断.【详解】A ,B ,C ,D ,E 五名志愿者到甲、乙、丙、丁四个路口协助开展防护排查工作,每名志愿者只能到一个路口工作,A.若每个路口至少分派1名志愿者,则所有不同的分派方案共2454C A =240种,正确;B.若丙路口不安排志愿者,其余三个路口至少安排一个志愿者,分配方法有1,1,3或2,2,1,则所有不同的分派方案共11223545332222C C C C A 150A A ⎛⎫+= ⎪⎝⎭种,错误;C.每个路口至少派1名志愿者,若志愿者A 一个人在甲路口,有21342322C C A 36A ⨯=种方案,愿者A与另外一个人一起在甲路口,有1343C A 24⨯=种方案,则所有不同分派方案共362460+=种,正确;D.每个路口至少派1名志愿者,且志愿者A 、B 不安排到甲路口,若甲路口安排1人,共有123343C C A 108=种方案,若甲路口安排2人,共有233318C A =种方案,则所有不同分派方案共有10818+=126种方案,正确.故选:ACD.12.定义:在区间I 上,若函数()y f x =是减函数,且()y xf x =是增函数,则称()y f x =在区间I 上是“弱减函数”.根据定义可得()A .()1f x x=在()0,∞+上是“弱减函数”B .()e xxf x =在()1,2上是“弱减函数”C .若()ln xf x x=在(),m +∞上是“弱减函数”,则e m ≥D .若()2cos f x x kx =+在0,2π⎛⎫ ⎪⎝⎭上是“弱减函数”,则213k ππ≤≤【正确答案】BCD【分析】利用“弱减函数”的概念逐项分析即得.【详解】对于A ,1y x=在()0,+∞上单调递减,()1y xf x ==不单调,故A 错误;对于B ,()e x x f x =,()1ex xf x -'=在()1,2上()0f x ¢<,函数()f x 单调递减,()2e x x y xf x ==,()2220e ex x x x x x y --'==>,∴y 在()1,2单调递增,故B 正确;对于C ,若()ln xf x x =在(),m +∞单调递减,由()21ln 0x f x x-'==,得e x =,∴e m ≥,()ln y xf x x ==在()0,+∞单调递增,故C 正确;对于D ,()2cos f x x kx =+在0,2π⎛⎫ ⎪⎝⎭上单调递减,()sin 20f x x kx '=-+≤在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立min sin 2x k x ⎛⎫⇒≤ ⎪⎝⎭,令()sin xh x x =,()2cos sin x x x h x x -'=,令()cos sin x x x x ϕ=-,()cos sin cos sin 0x x x x x x x ϕ'=--=-<,∴()ϕx 在0,2π⎛⎫⎪⎝⎭上单调递减,()()00x ϕϕ<=,∴()0h x '<,∴()h x 在0,2π⎛⎫ ⎪⎝⎭上单调递减,()22h x h ππ⎛⎫>= ⎪⎝⎭,∴212k k ππ≤⇒≤,()()3cos g x xf x x x kx ==+在0,2π⎛⎫⎪⎝⎭上单调递增,()2cos sin 30g x x x x kx =+'-≥在0,2x π⎛⎫∈ ⎪⎝⎭上恒成立,∴2maxsin cos 3x x x k x -⎛⎫≥ ⎪⎝⎭,令()2sin cos x x x F x x -=,()23cos 2cos 0x x xF x x +'=>,∴()F x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,()22F x F ππ⎛⎫<= ⎪⎝⎭,∴2233k k ππ≥⇒≥,综上:213k ππ≤≤,故D 正确.故选:BCD.三、填空题13.已知函数()y f x =的图象在点()()1,1M f 处的切线方程是21y x =+,则()()11f f '+=______.【正确答案】5【分析】由导数的几何意义可得()1f '的值,将点M 的坐标代入切线方程可得()1f ,即可得解.【详解】由导数的几何意义可得()12f '=,将点M 的坐标代入切线方程可得()12113f =⨯+=,因此,()()115f f '+=.故答案为.514.已知函数241e ln(25)2x y x +=-+,则该函数的图象在2x =-处的切线的倾斜角为__________.【正确答案】3π4【分析】对函数求导数,计算2x =-时的斜率,得倾斜角.【详解】因为()241e ln 252x y x +=-+,所以2424112e e 2222525x x y x x ++=⨯-⨯=-++',所以2121x y =-=-'=-∣,即切线的斜率为-1,倾斜角为3π4.故答案为.3π415.为美化重庆市忠县忠州中学校银山校区的校园环境,在学校统一组织下,安排了高二某班劳动课在如图所示的花坛中种花,现有4种不同颜色的花可供选择,要求相邻区域颜色不同,则有______种不同方案.【正确答案】72【分析】根据题意,按选出花的颜色的数目分2种情况讨论,利用排列组合及乘法原理求出每种情况下种植方案数目,由加法原理计算可得答案【详解】如图,假设5个区域分别为1,2,3,4,5,分2种情况讨论:①当选用3种颜色的花卉时,2,4同色且3,5同色,共有种植方案3343C A 24⋅=(种),②当4种不同颜色的花卉全选时,即2,4或3,5用同一种颜色,共有种植方案1424C A 48⋅=(种),则不同的种植方案共有244872+=(种).故7216.若对任意正实数,x y ,不等式()()2ln ln 1xx y y x a--+≤恒成立,则实数a 的取值范围为__________.【正确答案】(]0,1【分析】由已知得12ln 1y y x x a⎛⎫⎛⎫-+≤ ⎪⎪⎝⎭⎝⎭,构造函数()()()2ln 1f x x x =-+,即()1f x a ≤恒成立,根据导数可判断函数()f x 的单调性及最大值,进而求得a 的取值范围.【详解】由()()2ln ln 1xx y y x a--+≤,0,0x y >>,得12ln 1y y x x a⎛⎫⎛⎫-+≤ ⎪⎪⎝⎭⎝⎭,设()()()2ln 1f x x x =-+,即()1f x a≤恒成立,()()()12ln 12ln 2f x x x x x x'=-++-⋅=-+-,()221220x f x x x x+''=--=-<,所以()f x ¢在()0,+¥上单调递减,且()10f '=,所以当01x <<时,()0f x ¢>;当1x >时,()0f x ¢<;即函数()f x 在()0,1上单调递增,在()1,+¥单调递减,故当1x =时,()f x 取最大值为()11f =,即11a≤,所以01a <≤,故答案为.(]0,1导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.四、解答题17.已知函数321()2313f x x x x =-++.(1)求函数()f x 在点=1x -处的切线方程;(2)求函数()f x 在[]3,4-的最大值和最小值.【正确答案】(1)1183y x =+(2)最大值为73,最小值为35-【分析】(1)根据导数的几何意义求出函数()f x 在=1x -的导数值,即切线斜率;代入直线的点斜式方程即可;(2)利用导数判断出函数()f x 在[]3,4-上的单调性,求出极大值和极小值,再分别求出端点处的函数值比较即可得出其最大值和最小值.【详解】(1)易知,函数321()2313f x x x x =-++的定义域为x ∈R ;所以113(1)23133f -=---+=-,则切点为131,3⎛⎫-- ⎪⎝⎭又()()2()4331f x x x x x '=-+=--,则()f x 在点=1x -处的切线斜率(1)8k f '=-=,所以,切线方程为()13813y x +=+,整理可得1183y x =+即函数()f x 在点=1x -处的切线方程为1183y x =+.(2)由(1)可知,当()1,3x ∈时,()0f x '<,()f x 在()1,3上单调递减;()3,1x ∈-或()3,4时,()0f x '>,()f x 在()3,1-或()3,4上单调递增;函数()f x 在[]3,4-上的单调性列表如下:x[)3,1-1()1,33(]3,4()f x极大值极小值所以,()f x 的极大值为()12313713f =-++=,极小值为()9299113f =-⨯++=;又()92991353f =--⨯-=--+,()647216341334f =-⨯+⨯+=;综上可得,函数()f x 在[]3,4-上的最大值为73,最小值为35-18.已知数列{}n a 满足11a =,1(1)(1)n n na n a n n +-+=+,设nn a b n=.(1)求证数列{}n b 为等差数列,并求{}n b 的通项公式;(2)若()212n bn n c b =-+,求数列{}n c 的前n 项和n S .【正确答案】(1)证明见解析,n b n=(2)2122n n ++-【分析】(1)将条件等式两边同时除以(1)n n +后即可证明;(2)代入n b n =,然后用分组求和法求和.【详解】(1)由1(1)(1)n n na n a n n +-+=+得111n na a n n+-=+,即11n n b b +-=,又111b a ==,∴数列{}n b 是以1为首项,1为公差的等差数列,()11n b n ∴=+-,即n b n =;(2)由(1)得()212nn c n =-+,()()()()23122123252nn n S =++++∴+-+++ ()()2313522212nn =++++++++-+ ()()2121212122212n n n nn +-+-=+=+--.19.已知:在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ⊥平面ABCD ,点M 为PD 中点,1PA AD ==.(1)求证:平面MAC ⊥平面PCD ;(2)求直线PB 与平面PCD 所成角大小;【正确答案】(1)证明见解析(2)π6【分析】(1)先证明CD ⊥平面PAD ,则有AM CD ⊥,在证明AM ⊥平面PCD ,再根据面面垂直的判定定理即可得证;(2)以A 为原点建立空间直角坐标系,利用向量法求解即可.【详解】(1)因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,又,,,AD CD AD AP A AD AP ⊥⋂=⊂平面PAD ,所以CD ⊥平面PAD ,又AM ⊂平面PAD ,所以AM CD ⊥,因为点M 为PD 中点,1PA AD ==,所以AM PD ⊥,又,,PD CD D PD CD ⋂=⊂平面PCD ,所以AM ⊥平面PCD ,因为AM ⊂平面MAC ,所以平面MAC ⊥平面PCD ;(2)以A 为原点建立如图所示的空间直角坐标系,由已知可得()()()0,0,0,1,0,01,0,0,121,02A P M B ⎛⎫ ⎪⎝⎭,,,因为AM ⊥平面PCD ,所以110,,22AM ⎛⎫= ⎪⎝⎭即为平面PCD 的一条法向量,()1,0,1PB =-,设直线PB 与平面PCD 所成角为θ,则1sin cos ,2AM PB AM PB AM PB θ⋅===,又π0,2θ⎡⎤∈⎢⎥⎣⎦,所以π6θ=,即直线PB 与平面PCD 所成角的大小为π6.20.在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的右焦点为(1,0)F,且过点.(1)求椭圆C 的方程;(2)过F 作直线l 交椭圆C 于A 、B 两点,点(2,0)P ,若ABP 的面积为23,求直线l 的方程.【正确答案】(1)2212x y +=(2)10x y ±-=【分析】(1)由已知得1c =,再将点代入椭圆方程,可得22a =,21b =;(2)先考虑直线斜率为0时,不合要求,从而设l 的方程为1x my =+,联立椭圆方程,得到两根之和,两根之积,表达出ABP 的面积,再代入根与系数的关系即可,求出答案.【详解】(1)右焦点为(1,0)F ,则1c =,则221a b =+,椭圆过点,则221112a b +=,则22a =,21b =,椭圆的方程为2212x y +=;(2)直线l 过点(1,0)F ,当直线斜率为0时,此时ABP 不存在,不合题意,设l 的方程为1x my =+,直线l 交椭圆C 于()11,A x y ,()22,B x y 两点,联立方程22121x y x my ⎧+=⎪⎨⎪=+⎩,得()222210m y my ++-=,则12222m y y m -+=+,12212y y m -=+,121223ABPS FP y y =⋅⋅-= 则21m =,1m =±,则直线l 的方程为1x y =±+,即10x y ±-=.21.已知函数()()e 1=--∈xf x ax a R .(1)当1a =时,证明()0f x ≥.(2)讨论函数()f x 零点的个数.【正确答案】(1)证明见解析(2)答案见解析【分析】(1)根据题意,求导得到最值,即可证明;(2)根据题意,分0a ≤与0a >两种情况讨论,当0a >时,得到函数()f x 的最小值,然后证明()ln 0f a ≤即可.【详解】(1)当1a =时,()e 1xf x x =--,则()e 1x f x '=-,当0x <时,()0f x '<,()f x 单调递减,当0x >时,()0f x ¢>,()f x 单调递增,即当0x =时,()()min 00f x f ==,所以()0f x ≥.(2)因为函数()()e 1=--∈x f x ax a R ,则()e xf x a '=-,当0a ≤时,()0f x ¢>,则()f x 单调递增,且()00e 10f =-=,所以()f x 在R 上只有一个零点;当0a >时,令()0f x '=,可得ln x a =,由()0f x '<,得ln x a <,由()0f x ¢>,得ln x a >,且()ln ln e ln 1ln 1af a a a a a a =--=--,令()ln 1g a a a a =--,则()ln g a a '=-,由ln 0a -=,可得1a =,则01a <<时()0g a '>,1a >时()0g a '<,所以(0,1)上()g a 递增,(1,)+∞上()g a 递减,故()()10g a g ≤=,所以()ln 0f a ≤,11e 0af a -⎛⎫-=> ⎪⎝⎭,x 趋向正无穷则()f x 趋于正无穷,此时,当(0,1)(1,)a ∈+∞ 时有两个零点,当1a =时有一个零点,综上,当(,0]{1}a ∈-∞⋃时,有1个零点;当(0,1)(1,)a ∈+∞ 时,有2个零点.22.已知函数()()2ln 0f x ax bx c x x =+-->在1x =处取得极值,其中,a b 为常数.(1)若1a =,求函数()f x 的单调区间;(2)若0a >,且函数有()f x 两个不相等的零点12,x x ,证明:122x x +>【正确答案】(1)函数()f x 的单调递增区间()1,+∞,函数()f x 的单调递减区间()0,1(2)证明见解析【分析】(1)代入1a =得出()f x ,求导得出()f x ',根据已知得出()110f b '=+=,即可得出1b =-,再根据导数的正负得出函数()f x 的单调区间;(2)求导得出()f x ',根据已知结合导数得出函数()f x 的单调区间,设12x x <,则()10,1x ∈,()21,x ∈+∞,构造函数()()()()2,0,1h x f x f x x =--∈,求导得出()h x 在()0,1单调递减,则当()0,1x ∈时,()()10h x h >=,即()()2f x f x >-,则当()10,1x ∈,则()()112f x f x >-,根据已知得出()()120f x f x ==,得出()()212f x f x >-,而12x -、()21,x ∈+∞,即可根据函数()f x 在()1,+∞上的单调性得出答案.【详解】(1)当1a =,()2ln f x x bx c x =+--,()12f x x b x'=+-,()110f b '=+=,解得1b =-,()()()212112121x x x x f x x x x x-+--'=--==,当01x <<,()0f x '<当1x >,()0f x ¢>函数()f x 的单调递增区间()1,+∞,函数()f x 的单调递减区间()0,1(2)()2ln (0)f x ax bx c x x =+-->,()12(0)f x ax b x x-'=+>,由函数在1x =处取极值,则()1210f a b =+-=',则12b a =-,()()1121212f x ax a x a x x ⎛⎫=+--=-+ ⎝'⎪⎭,(0)x >,当0a >时,120a x+>,则当()0,1x ∈,()0f x '<,当()1,x ∈+∞时,()0f x ¢>,∴函数()f x 的单调递增区间为()1,+∞,单调递减区间为(]0,1,函数有()f x 两个不相等的零点12,x x ,则()()120f x f x ==,∴不妨设12x x <,则()10,1x ∈,()21,x ∈+∞,构造函数()()()()2,0,1h x f x f x x =--∈则()()22ln 2ln h x x x x =-+--,求导()()()221112022x h x x x x x -=--=--'<-,()h x ∴在()0,1单调递减,()0,1x ∴∈时,()()10h x h >=,即()()2f x f x >-,由()10,1x ∈,则()()112f x f x >-,由()()120f x f x ==,()()212f x f x ∴>-,而12x -、()21,x ∈+∞,函数()f x 在()1,+∞上单调递增,122x x ∴+>.。
四川省广安市2017-2018学年高二数学下学期第一次月考试题(文)一、选择题(本大题共12小题,共60分)1.y=2x+1在(1,2)内的平均变化率为()A. 0B. 1C. 2D. 32.已知函数f(x)的导函数f'(x)的图象如图所示,则()A. x=-3为f(x)的极大值点B. x=1为f(x)的极大值点C. x=-1.5为f(x)的极大值点D. x=2.5为f(x)的极小值点3.若f′(x0)=4,则=()A. 2B. 4C.D. 84.曲线y=xe x-1在点(1,1)处的切线方程为()A. y=2x+1B. y=2x-1C. y=x+2D. y=x-25.下列求导正确的是()A. (3x2-2)’=3xB. (log2x)’=C. (cos x)’=sin xD. ()’=x6.已知函数f(x)的导函数为f′(x),且满足f(x)=2x+ln x,则f′(1)的值为()A. 2B. 3C. 1D. 07.函数y=e x-x的单调增区间为()A. RB. (1,+∞)C. (-1,0)∪(1,+∞)D. (0,+∞)8.已知函数f(x)=x3-3x-1,若对于区间[-3,2]上最大值为M,最小值为N,则M-N=()A. 20B. 18C. 3D. 09.设点P是曲线上的任意一点,点P处切线的倾斜角为α,则角α的取值范围是()A. B. [0,)∪[,π) C. D.10.函数y=f(x)在定义域内可导,其图象如图所示.记y=f(x)的导函数为y=f′(x),则不等式f′(x)≤0的解集为()A. B.C. D.11.若函数有两个不同的极值点,则实数a的取值范围是()A. a>1B. -1<a<0C. a<1D. 0<a<112.设函数f'(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf'(x)-f (x)>0,则使得f(x)>0成立的x的取值范围是()A. (-∞,-1)∪(-1,0)B. (0,1)∪(1,+∞)C. (-∞,-1)∪(0,1)D. (-1,0)∪(1,+∞)二、填空题(本大题共4小题,共20分)13.如果质点A按照规律s=5t2运动,则在t=3时的瞬时速度为______ .14.函数f(x)的导函数f′(x)在R上恒大于0,则对任意x1,x2(x1≠x2)在R上的符号是______ (填“正”、“负”)15.已知f(x)=x2+3xf′(2),则1+f′(1)= ______ .16.对于函数有下列命题:①在该函数图象上一点(-2,f(-2))处的切线的斜率为;②函数f(x)的最小值为;③该函数图象与x轴有4个交点;④函数f(x)在(-∞,-1]上为减函数,在(0,1]上也为减函数.其中正确命题的序号是______ .三、解答题(本大题共6小题,共70分)17.已知函数f(x)=sinx+cosx,求在点(,1)处的切线方程。
学习资料陕西省咸阳市实验中学2020—2021学年高二数学下学期第一次月考试题 文注意事项:1.试卷分第I 卷和第Ⅱ卷两部分,将答案填写在答题卡上,考试结束后只交答题卡和答案卷;2.答题前,考生务必将自己的姓名、准考证号,填写在本试题相应位置;3.全部答案在答题卡上完成,答在本试题上无效; 4。
本试卷共6页. 满分150分,考试时间120分钟.第I 卷 一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求.1.若0a b <<,那么下列不等式成立的是( ) A .2ab a -<-B .2ab b <C .11a b-<- D .11a b< 2.不等式121x -<的解集是 A .()0,1 B .()1,0- C .10,2⎛⎫ ⎪⎝⎭D .1,02⎛⎫-⎪⎝⎭3.对两个变量x 、y 进行线性相关检验,得线性相关系数10.7859r =,对两个变量u 、v 进行线性相关检验,得线性相关系数20.9568r =-,则下列判断正确的是( ) A .变量x 与y 正相关,变量u 与v 负相关,变量x 与y 的线性相关性较强 B .变量x 与y 负相关,变量u 与v 正相关,变量x 与y 的线性相关性较强 C .变量x 与y 正相关,变量u 与v 负相关,变量u 与v 的线性相关性较强 D .变量x 与y 负相关,变量u 与v 正相关,变量u 与v 的线性相关性较强 4.某学校开展研究性学习活动,某同学获得一组实验数据如下表:对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是( )A .22y x =-B .1()2xy =C .2y log x =D .()2112y x =- 5.下面是“神舟七号”宇宙飞船从发射到返回的主要环节:①箭船分离;②出舱行走;③点火发射;④返回地球;⑤轨道舱和返回舱分离.图中正确的是( ) A .③→⑤→②→①→④ B .③→⑤→②→④→① C .③→①→②→⑤→④D .④→⑤→②→①→③6.利用反证法证明“若3a b c ++=,则a ,b ,c 中至少有一个数不小于1”正确的假设为( )A .a ,b ,c 中至多有一个数大于1B .a ,b ,c 中至多有一个数小于1C .a ,b ,c 中至少有一个数大于1D .a ,b ,c 都小于17.设x ,y ,z ∈R +,且x+y+z=6,则lg x+lg y+lg z 的取值范围是( ) A .(—∞,lg 6]B .(—∞,3lg 2]C .[lg 6,+∞)D .[3lg 2,+∞)8.已知5道试题中有3道代数题和2道几何题,每次从中抽取一道题,抽出的题不再放回,在第1次抽到代数题的条件下,第2次抽到几何题的概率为( ) A .14B .25C .12D .359.有一段演绎推理是这样的:“若直线平行于平面,则平行于平面内所有直线,已知直线b 在平面α外,直线a 在平面α内,直线//b 平面α,则直线//b 直线a ”,结论显然是错误的,这是因为( ) A .大前提错误 B .小前提错误 C .推理形式错误 D .非以上错误10.三角形的面积为()12S a b c r =++⋅,(,,a b c 为三角形的边长,r 为三角形的内切圆的半径)利用类比推理,可以得出四面体的体积为 ( )A .13V abc =(,,a b c 为底面边长) B .()123413V S S S S r =+++(1234,,,S S S S 分别为四面体四个面的面积,r 为四面体内切球的半径) C .13V Sh =(S 为底面面积,h 为四面体的高)D .()13V ab bc ac h =++(,,a b c 为底面边长,h 为四面体的高) 11.已知:221a b +=,221x y +=,则ax by +的取值范围是( ) A .[]0,2B .[]1,1-C .[]22-,D .[]0,112.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( ) A .乙可以知道其他两人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置.13.若复数z 满足()1234z i i +=-+(i 是虚数单位),则复数z 的实部是______。
第二学期高二年级第一次月考数学试题(文)满分:150分 考试时间:120分钟一、选择题(本题共有12小题,每小题5分,共60分) 1.抛物线28x y =的焦点坐标为( ) A .)321,0( B .)0,161( C .)2,0( D .)1,0( 2.椭圆2218x y m+=的焦距是2,则m 的值是( ) A .9 B .12或4 C .9或7 D .203.已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是y x =,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为( )A. 22136108x y -=B. 221927x y -=C. 22110836x y -=D. 221279x y -=4.“12m <<”是“方程22113x y m m+=--表示的曲线是焦点在y 轴上的椭圆”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.已知AB 是抛物线y 2=2x 的一条焦点弦,|AB |=4,则AB 中点C 的横坐标是( ) A .2 B. 32 C. 12 D. 526.若直线k kx y -=与椭圆22194x y +=的交点个数为( ) A .至多一个 B .0个 C .1个 D .2个7.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为( )A .1 B. 3 C. 5 D.128.椭圆221169x y +=的以点(2,1)M -为中点的弦所在的直线斜率为( )A.932-B.98- C.98 D.9329.已知直线02422=+-y x 经过椭圆)0(12222>>=+b a by a x 的左焦点1F ,且与椭圆在第二象限的交点为M ,与y 轴的交点为N ,2F 是椭圆的右焦点,且2MF MN =,则椭圆的方程为( )A .144022=+y xB .2215x y +=C .22110x y += D .22195x y +=10.已知点1F ,2F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过2F 且垂直于x 轴的直线与双曲线交于M ,N 两点,若110MF NF ⋅>,则该双曲线的离心率e 的取值范围是( )A.1)B.1)C.D. )+∞11. 已知椭圆222:1x M y a+=,圆222:6C x y a +=-在第一象限有公共点P ,设圆C 在点P处的切线斜率为1k ,椭圆M 在点P 处的切线斜率为2k ,则12k k 的取值范围为( ) A.(1,6) B .(1,5) C .(3,6) D .(3,5)12.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过1F 的直线与椭圆C 交于,M N 两点,若21225MNF MF F S S ∆∆=且2121F F N F NF ∠=∠,则椭圆C 的离心率为( ) A.25C.35二、填空题(本题共有4小题,每小题5分,共20分)13.若椭圆的方程为x 210-a +y 2a -2=1,且此椭圆的焦距为4,则实数a =_______.14.椭圆)0(12222>>=+b a by a x 的左焦点F,A(-a ,0)、B(0,b )是两个顶点.如果F 到直线AB 的,那么椭圆的离心率为 . 15.若动圆与圆1)3(22=+-y x 外切,又与直线02=+x 相切,则动圆圆心的轨迹方程是___________16.设抛物线22y px = (0p >)的焦点为F ,准线为l .过焦点的直线分别交抛物线于,A B两点,分别过,A B 作l 的垂线,垂足为,C D . 若3AF BF =,且三角形CDF 则p 的值为___________.三、解答题(本部分共有6小题,共70分)17.(本小题满分10分)求适合下列条件的双曲线的标准方程: (1)焦点在y 轴上,虚轴长为8,离心率为53e =; (2)经过点)2,3(-C ,且与双曲线116822=-y x 有共同的渐近线.18.(本小题满分12分)设命题p :方程221231x y k k -=++表示双曲线;命题q :斜率为k 的直线l 过定点()2,1,P -且与抛物线24y x =有两个不同的公共点.若p ,q 都是真命题,求k 的取值范围.19.(本小题满分12分)已知抛物线的方程是x y 42=,直线l 交抛物线于B A ,两点 (1)若弦AB 的中点为)3,3(,求弦AB 的直线方程;(2)设),(),,(2211y x B y x A ,若1221-=y y ,求证AB 过定点.20. (本小题满分12分)已知椭圆)0(1:2222>>=+b a by a x C 的右焦点为F (1,0),过右焦点作垂直于x 轴的直线,并与椭圆交得的弦长为3,O 为坐标原点. (1)求椭圆C 的标准方程;(2)过右焦点F 的直线与椭圆C 交于M 、N 两点(N 点在x 轴上方),且2MF FN =,求直线MN 的方程。
江南中学第二学期第一次月考
高二数学(文科)
考试时间:120分钟卷面总分:150分
第I 卷
一、选择题(本大题共12小题,共60分)
1.复数,则z 的虚部为()
A.1
B.i
C.-1
D.-i
2.设函数)(x f 在0x 处可导,则等于()
A.)('0x f
B.)('0x f -
C.)('0x f -
D.)
(0x f --3.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分,则这串珠子被盒子遮住的部分有()颗.A.3 B.5 C.10 D.27
4.推理过程⇒⇒ac >bd ⇒>共有三个推理步骤,其中错误步骤的个数为(
)
A.0
B.1
C.2
D.3i i z
+=-21
5.用反证法证明命题:“已知a ,b 为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是()
A.方程02
=++b ax x 没有实根 B.方程02=++b ax x 至多有一个实根
C.方程02=++b ax x 至多有两个实根
D.方程02=++b ax x 恰好有两个实根6.设a 为实数,函数x a ax x x f )2()(2
3-++=的导数是)('x f ,且)('x f 是偶函数,则曲线)(x f y =在原点处的切线方程为(
)A.y =-2x B.y =3x C.y =-3x D.y =4x
7.若函数)(x f 的导函数为x x f sin )('-=,则函数图象在点))4(,4(f 处的切线的倾斜角为()
A.90°
B.0°
C.锐角
D.钝角
8.已知函数x x x f ln sin )(+=,则)1('f 的值为()
A.1-cos1
B.1+cos1
C.cos1-1
D.-1-cos1
9.若定义y y x x -=⊕3,则)(a a a ⊕⊕等于()
A.-a
B.a 3
C.a
D.a
3-10.函数)(x f y =的图象在点))5(,5(f P 处的切线方程是8+-=x y ,则=
+)5(')5(f f (
)A.21 B.1 C.2 D.0
11.设函数)(x f 的导函数为)('x f ,且)1('2)('2f x x x f ⋅+=,则)0('f 等于()
A.0
B.-4
C.-2
D.2
12.设函数)(x f 在定义域内可导,)(x f y =的图象如图所示,则导函数)
('x f y =
可能()
A. B. C. D.
第Ⅱ卷
二、填空题(本大题共4小题,共20分)
13.若复数z 满足i i z -=+1)1((i 是虚数单位),则其共轭复数=______.
14.已知一列数1,1,2,3,5,…根据其规律,下一个数应为______.15.求x
x f 1sin )(3=的导数______.16.函数63315)(23
+--=x x x x f 的单调减区间为______.
三、解答题(本大题共6小题,共70分)17.(1)设复数i m m z )2()1(++-=和复平面内点z 对应,若点z 在直线02=-y x 上,求实数m 的值.
(2)已知i z +=2,计算1
842-+-z z z .18.若0,0,,>>∈y x R y x 且2>+y x .求证:y
x +1和x y +1中至少有一个小于2.19.已知函数54)(2
3+++=bx ax x x f 的图象在1=x 处的切线方程为x y 12-=.z
(1)求函数)(x f 的解析式;
(2)求函数)(x f 在[-3,1]上的最值.
20.已知0>c ,用分析法证明:c c c 211<++-.21.已知函数x
x x f ln 1
1)(+-=(Ⅰ)求)(x f 在点))(,(e f e 处的切线方程;
(Ⅱ)当10<<x 时,若不等式1)(-≤kx x f 恒成立,求k 的取值范围.
22.数列{n a }中,1a >0,1a ≠1,又*+∈+=N n a a a n n n ,1
21.(1)若2
11=a ,求5432,,,a a a a 的值,并归纳出数列{n a }的通项公式;(2)是否存在常数)0(≠p p ,使得{n
a p +
1}为等比数列?若存在,求出其公比;若不存在,请说明理由.
高二数学(文科)
【答案】
1.A
2.C
3.D
4.C
5.A
6.A
7.C
8.B
9.C10.C
11.B12.D
13.i14.815.cos16.(-1,11)
17.解:(1)复数z=(m-1)+(m+2)i和复平面内点Z对应,若点Z在直线2x-y=0上,
所以2(m-1)-(m+2)=0
解得m=4.
(2)z=2+i,所以=====.18.证明:假设与都大于或等于2,
即≥2且≥2,
∵x,y∈R+,故可化为1+x≥2y且1+y≥2x,
两式相加,得x+y≤2,
与已知x+y>2矛盾.
∴假设不成立,即原命题成立.
19.解:(1)f′(x)=12x2+2ax+b,f′(1)=12+2a+b=-12.①
又x=1,y=-12在f(x)的图象上,
∴4+a+b+5=-12.②
由①②得a=-3,b=-18,
∴f(x)=4x3-3x2-18x+5.
(2)f′(x)=12x2-6x-18=0,得x=-1,,
f(-1)=16,f()=-,f(-3)=-76,f(1)=-13.
∴f(x)的最大值为16,最小值为-76.
20.证明:要证原不等式成立,只需证明<,
即证2c+2<4c,
即证<c ,
而c >0,故只需证明c 2-1<c
2而此式成立,
故原不等式得证.
21.解:(I)∵f (x )=x -1+
,
∴f ′(x )=1-
,∴f ′(e )=1-
,∵f (e )=e ,∴f (x )在点(e ,f (e ))处的切线方程为y -e =(1-)(x -e ),即y =(1-)x +1;
(Ⅱ)当0<x <l 时,若不等式f (x )≤kx -1恒成立,可以转化为k -1≥.
令g (x )=xlnx ,则g ′(x )=lnx +1,
<x <1时,g ′(x )>0,函数单调递增,0<x <时,g ′(x )<0,函数单调递减,
∴g (x )的最小值为-,
由0<x <1,g (x )<0,可得
的最大值为-e ,∴k -1≥-e ,
∴k ≥1-e .
22.解:(1)a 2=,a 3=,a 4=,a 5=
,
归纳猜想a n =.
(2)假设存在常数p (p ≠0),使得{1+
}为等比数列,公比为q ,则有1+=q (1+),
因为a n +1=,所以1+
,化简得,,令,
解得p=-1,q=,
经检验符合题意,故存在p=-1,使得{1+}为等比数列,公比为。