汽车单片机与车载网络-4CAN 控制器局域网
- 格式:ppt
- 大小:6.71 MB
- 文档页数:272
控制器局域网(CAN)技术在重型卡车上的应用摘要:控制器局域网(CAN)是目前国际上应用最广泛的现场总线之一,广泛地应用于汽车电子系统。
近年来,越来越多的国产重型汽车也采用CAN 总线技术。
包头北奔重型卡车V3系列高档中重型汽车电气系统启用的电子车身控制器(CBCU)和CAN总线仪表(CMIC),是该公司自主研发的具有自身特色、融合前沿科技的先进产品。
它提升了整车电气系统的性能、自动化控制水平及在市场上的竞争能力。
本文着重介绍了该公司车载控制器局域网(CAN)的工作原理、系统结构及优势。
关键词:控制器局域网(CAN)技术;北奔重卡;工作原理1.前言随着重车工业的快速发展和竞争日趋激烈,整车智能化的提高成为汽车业界的一个主流趋势。
整车智能化的实现,要求在相同的车身空间中实现成倍的控制功能,为此增加车用智能化电子部件与电子控制单元成为各个汽车制造商优先选择的突破口。
由于重型汽车各种功能的增加,需要不断增加电气元件来完成各种控制逻辑,因而电气元件也会相对庞杂。
同时电子控制单元的大量引入,要求大批数据信息能在不同的子系统中共享,大量控制信号也需要实时交换,这使得传统的点对点的布线方式碰到了无法逾越的难题。
一方面车上导线数量急剧增加,不仅占用了有限的空间,还使得配线的设计与整车装配更为繁琐;另一方面传统线束及其控制模式普遍存在信号传输滞后现象,已远远不能满足控制信号的实时交换。
而每个控制单元对实时性的要求将会因为数据的更新速率和控制周期不同而不同,这就要求其数据交换网模式必须是基于优先权竞争的模式,并且它本身应有较高的通信速率。
具有国际标准的CAN总线完全能够满足这些要求,因此将控制器局域网(CAN)技术引入重型汽车已势在必行。
目前,包头北奔重型汽车公司生产的V3系列高档中重型汽车,是联合欧洲研发机构,历经三年时间共同打造的具有纯正欧洲血统的重卡至尊。
部分车型电气系统启用了电子车身控制器(CBCU)和CAN总线仪表(CMIC),成功采用了CAN-BUS总线技术,开发了具有自身特色、融合前沿科技的先进产品,以提升整车电气系统的自动化控制水平以及在市场上的竞争能力。
CAN总线简介——淄博皓轩仪表自动化技术有限公司专业自动化工程设计淄博皓轩仪表自动化技术有限公司 2011-05-30 22:29:46 作者:SystemMaster 来源: 文字大小:[大][中][小]淄博皓轩仪表自动化技术有限公司专业自动化工程设计CAN[Control(Controller)Area Network]是控制(器)局域网的简称它是德国Bosch公司在1986年为解决现代汽车中众多测量控制部件之间的数据交换而开发的一种串行数据通信总线。
现已被列入ISO 国际标准,称为ISO11898CAN最初是为汽车的监测、控制系统而设计的,现已在航天、电力、石化、冶金、纺织、造纸、仓储等行业广泛采用。
在火车、轮船、机器人、楼宇自控、医疗器械、数控机床、智能传感器、过程自动化仪表等自控设备中,都广泛采用CAN技术CAN的主要技术特点CAN网络上的节点不分主从,任一节点均可在任意时刻主动地向网络上其他节点发送信息,通信方式灵活,利用这一特点可方便地构成多机备份系统CAN网络上的节点信息具有不同的优先级,可满足对实时性的不同要求,高优先级的数据最多可在134微秒内得到传输CAN采用非破坏性总线仲裁技术,当多个节点同时向总线发送信息时,优先级较低的节点会主动地退出发送,而最高优先级的节点可不受影响地继续传输数据,从而节省了总线冲突的仲裁时间。
CAN只需通过报文滤波即可实现点对点、一点对多点及全局广播等几种方式传送接收数据,无需专门的"调度"CAN的直接通信距离最远可达10km(速率5kbps以下);通信速率最高可达1Mbps(此时通信距离最长为40m)。
CAN上的节点数主要决定于总线驱动电路,目前可达110个;报文标识符可达2032种(CAN2.0A),而扩展标准(CAN2.0B)的报文标识符几乎不受限制采用短帧结构,传输时间短,受干扰概率低,具有良好的检错效果。
CAN节点中均有错误检测、标定和自检能力。
控制器局域网CAN(Controller Area Network)是一种多主方式的串行通信总线,基本设计规范要求有高的位速率,高抗电磁干扰性,而且能够检测出产生的任何错误。
CAN在汽车上的应用,具有很多行业标准或者是国际标准,比如国际标准化组织(ISO)的ISO11992、ISO11783以及汽车工程协会(Societyof Automotive Engigeers)的SAE J1939。
CAN总线已经作为汽车的一种标准设备列入汽车的整车设计中。
CAN通信协议规定了4种不同的帧格式,即数据帧、远程帧、错误帧和超载帧。
基于以下几条基本规则进行通信协调:总线访问、仲裁、编码/解码、出错标注和超裁标注。
CAN遵从OSI模型。
按照OSI基准模型只有三层:物理层、数据链路层和哀告层,但应用层尚需用户自己定义。
CAN总线作为一种有效支持分布式控制或实时控制的串行通信网络,应用范围遍及从高速网络到低成本的多线路网络。
如:CAN在汽车中的发动机控制部件、ABS、抗滑系统等应用中的位速率可高达1Mbps。
同时,它可以廉价地用于交通运载工具电器系统中,例如电气窗口、灯光聚束、座椅调节等,以替代所需要的硬件连接。
其传输介制裁为双绞线,通信速率最高可达1Mbps/40m,直接传输距离最远可达10km/5kbps,挂接设备数最多可达110个。
CAN为多主工作方式,通信方式灵活,无需站地址等节点信息,采用非破坏性总线仲裁技术,满足实时要求。
另外,CAN采用短帧结构传输信号,传输时间短,具有较强的抗干扰能力。
CAN总线与其它通信协议的不同之处主要有两方面:一是报文传送不包含目标地址,它是以全网广播为基础,各接收站根据报文中反映数据性质的标识符过滤报文,其特点是可在线上网下网、即插即用和多站接收;另外一个方面就是特别强化了数据安全性,满足控制系统及其它较高数据要求系统的需求。
在现代汽车的设计中,CAN总线已经成为构建汽车网络的一种趋势;而汽车网络作为直接与汽车内部各个ECU连接并负责命令的传递、数据的发送及共享,其可靠性和稳定性与整车的性能紧密相关。
“汽车单片机及局域网技术”教学改革与实践在汽车行业中,单片机及局域网技术的应用日益广泛,对汽车的性能和功能起着至关重要的作用。
为了培养适应市场需求的汽车技术人才,我们进行了“汽车单片机及局域网技术”课程的教学改革与实践。
我们对课程教学内容进行了更新和优化。
针对新能源汽车、智能驾驶等新兴领域的需求,我们重新设计了课程内容,加入了对单片机及局域网技术在这些方面的应用讲解。
我们还引入了一些前沿的技术知识,如CAN总线、FlexRay等,使学生能够跟上汽车技术的发展步伐。
我们采用了多种教学方法,提高了课程的实用性和学生的参与度。
除了传统的课堂讲授,我们还注重实验实践环节的开展。
通过给学生安排实际的案例分析和项目开发,使他们能够亲身体验到单片机及局域网技术在汽车中的应用,培养其动手能力和解决问题的能力。
我们还组织一些实地考察和行业实践活动,让学生在真实的工作环境中接触到最新的技术和应用。
我们倡导学生团队合作,通过小组项目的形式进行学习和实践。
每个小组由不同专业背景的学生组成,他们需要合作完成一个包含单片机及局域网技术应用的汽车项目。
通过团队合作,学生们不仅可以互相学习和借鉴,还能锻炼他们的合作能力和沟通协调能力。
我们还与一些汽车企业进行合作,提供实习和就业机会。
通过与企业合作,我们可以更好地了解市场需求和行业动态,及时调整课程内容和教学方法。
学生也可以在实际的工作环境中将所学知识应用到实际操作中,提高其实践能力和就业竞争力。
通过以上的教学改革与实践,我们取得了一定的成效。
学生们在课程中能够更加深入地了解单片机及局域网技术在汽车领域的应用,不仅提高了对汽车技术的理论认识,还能够熟练掌握相关的实践操作技能。
许多学生通过参与实验、项目和实习,积累了宝贵的经验,并得到了企业的认可和赞赏。
“汽车单片机及局域网技术”教学改革与实践的目的是为了培养适应市场需求的汽车技术人才。
通过优化课程内容、多种教学方法的运用、学生团队合作的推行以及与企业的合作,我们希望能够更好地满足市场的需求,培养更多的优秀人才,为我国汽车产业的发展做出贡献。
汽车单片机及局域网技术在现代汽车中,单片机及局域网技术的应用已经成为了不可或缺的一部分。
它们就像是汽车的“大脑”和“神经系统”,使得汽车的性能、安全性、舒适性以及智能化水平得到了极大的提升。
首先,我们来了解一下汽车单片机。
简单来说,汽车单片机就是一种集成在汽车内部的微型计算机。
它能够接收来自各种传感器的信息,例如车速、发动机转速、油温、水温等等。
然后,根据预先设定的程序和算法,对这些信息进行处理和分析,并发出相应的控制指令,以实现对汽车各个部件的精确控制。
比如说,在发动机控制系统中,单片机可以根据进气量、节气门开度、氧传感器反馈等信息,精确计算出最佳的燃油喷射量和点火时机,从而提高发动机的燃烧效率,降低油耗和排放。
在制动系统中,单片机可以通过监测车轮转速和制动踏板的压力,实现防抱死制动(ABS)和电子制动力分配(EBD)等功能,提高制动的稳定性和安全性。
而汽车局域网技术,则是将汽车内部各个电子控制单元(ECU)连接起来,实现信息共享和协同工作的一种技术。
在过去,汽车的各个系统,如发动机、变速器、制动、空调等,都是相对独立的,各自有自己的控制单元和传感器。
这种分散式的控制方式不仅增加了成本和复杂度,而且各个系统之间的信息交流也非常有限。
有了局域网技术之后,情况就大不一样了。
汽车内部的各个 ECU可以通过总线(如 CAN 总线、LIN 总线等)连接在一起,形成一个网络。
这样,各个系统之间就可以实时地交换信息,实现更加高效和智能的控制。
举个例子,当驾驶员踩下油门踏板时,发动机 ECU 会接收到加速的请求,并将相关信息通过局域网发送给变速器 ECU。
变速器 ECU 会根据当前的车速、发动机转速等信息,选择合适的挡位,以实现最佳的动力输出。
同时,制动 ECU 也会收到加速的信息,调整制动系统的工作状态,以提供更好的制动支持。
除了提高汽车的性能和安全性,汽车单片机及局域网技术还为汽车的智能化发展提供了有力的支持。
汽车局域网CAN总线详解一、概述随着汽车工业以及自动化程度的发展,现代汽车中所使用的电子控制系统和通讯系统越来越多,如发动机电控系统、自动变速器控制系统、防抱死制动系统(ABS)、自动巡航系统(ACC)和车载多媒体系统等,这些系统之间。
系统和汽车的显示仪表之间,系统和汽车故障诊断系统之间均需要进行数据交换,如此巨大的数据交换量,如仍然采用传统数据交换的方法,即用导线进行点对点的连接的传输方式将是难以想象的,因此,用串行数据传输系统取而代之就成为必然的选择。
目前汽车上的电子部件越来越多,它们分别担负着不同的作用并挂在不同的总线- CAN总线上。
CAN 是控制局域网络(Control Area Network)的简称[/B],最早由德国BOSCH 公司推出,用于汽车内部测量与执行部件之间的数据通信。
其总线规范已被ISO 国际标准组织制订为国际标准。
CAN 的信号传输采用短帧结构,每一帧的效字节数为8 个,因而传输时间短,受干扰的概率低。
当节点严重错误时,具有自动关闭的功能,以切断该节点与总线的联系,使总线上的其他节点及其通信不受影响,具有较强的抗干扰能力。
CAN 总线开始被用于汽车的电子系统通讯上起源于欧洲,它具有极强的抗干扰能力及纠错能力。
汽车在运行过程中,所属电子部件之间需要进行通讯以交换实时数据,但是由于这些电子部件可能分别挂在不同的CAN总线上,而不同的CAN总线具有不同的数据传输速率,所以不同的CAN总线之间不能直接进行数据通讯,这就需要一个CAN总线网关控制器来进行协调高速CAN总线和低速CAN总线之间的通信。
示意图如下图所示。
二、硬件设计1、总体框图作为一个工业上应用的可靠CAN节点,看门狗、电源隔离和信号隔离是必要的,总体原理框图如下:2、硬件原理图从以上可以看出,该硬件电路主要由三部分组成。
I、处理器最小系统处理器采用带有两路CAN接口的ARM7系列单片机- LPC2119,该单片机内部有两路CAN接口、32位处理器、内部总线结构为哈佛总线结构。
车载控制器局域网技术分析与研究控制器局域网(CAN)广泛应用于汽车工业,是目前最有前途的现场总线之一。
近年来,进口汽车及国产轿车广泛采用CAN技术,标志着汽车电子控制技术进入一个新的时代。
本文介绍了控制器局域网(CAN)总线特点、构成及通信速率的设定。
为了减少汽车电器线束,保证各电子控制系统的电子控制单元(控制器)之间快速准确地进行大容量的数据通信,目前,国内外中高档轿车都已开始采用控制器局域网络(CAN,Controller Are Network)技术。
控制器局域网(CAN,Controller Area Network)是汽车应用最多的车载局域网,其通信协议(即CAN协议)是一种支持分布式控制或实时控制的串行通信网络[1]。
CAN总线允许多站点同时发送,因此,既保证信息处理的实时性,又保证网络系统的可靠性。
汽车控制器局域网是指分布在汽车上的多个控制器(即电控单元ECU)在物理上相互连接,并按照网络通信协议(CAN协议)相互通信,以共享硬件、软件和信息等资源为目的的控制器系统CAN是由中央控制组件CEM、控制器局域网总线(CAN总线)和若干个电子控制器(电控单元ECU)等器件构成[2]。
图1所示为动力及其传动系统和车身系统部分ECU组成的CAN示意图。
中央控制组件CEM由CAN控制器、CAN收发器和微处理器CPU等组成。
CEM既是整车网络系统的控制中心,又是高速局域网与低速局域网的网关服务器,电路连接如图2所示。
CAN总线由物理层和数据链路层构成,其中数据链路层定义了不同的信息类型、总线访问的仲裁规则、错误检测与处理的方式。
所有的错误检测与处理、信息的传输与接收等都是通过CAN控制器硬件完成,因此,用户组建两线CAN仅需极少的软件开发。
CAN总线具有以下特点。
(1)所有节点均可发送和接收信息。
CAN总线是一种共享信息的通信总线,即总线上所有的节点都可发送和接收传输的信息(由于所有的节点都能接收全部信息,因此信息不能送达某个指定节点)。