数学建模铺路问题的最优化模型
- 格式:doc
- 大小:586.50 KB
- 文档页数:14
数学模型最优化方法实现数学建模最优化方法是将数学建模问题转化为数学模型,并通过数学方法求解最优解的过程。
最优化方法在数学建模中起着非常重要的作用,可以帮助我们解决各种复杂的实际问题。
本文将介绍最优化方法的实现过程,并详细讨论最优化方法的几种常见算法。
最优化方法的实现过程主要分为以下几个步骤:建立数学模型、寻找最优解算法、编写程序实现、求解并分析结果。
首先,我们需要根据实际问题建立数学模型。
数学模型是问题的抽象表示,通常包括目标函数、约束条件和变量等要素。
通过合理地选择目标函数和约束条件,可以将问题转化为数学形式,便于后续的分析和求解。
其次,我们需要根据模型选择适当的最优解算法。
最优化方法有很多种,根据具体问题的特点和求解要求,我们可以选择不同的算法来求解最优解。
然后,我们需要编写程序将数学模型和求解算法实现。
编写程序是最优化方法实现的核心步骤,通过编写程序,我们可以自动化地求解最优化问题,并得到最优解。
最后,我们需要进行求解和结果分析。
通过求解模型并分析结果,可以验证模型的合理性,并根据结果调整模型或改进算法,以得到更好的最优解。
在实际应用中,根据问题的特点和求解需求,我们可以选择不同的最优化方法。
常见的最优化方法有:线性规划、非线性规划、整数规划、动态规划、遗传算法等。
下面将分别介绍这几种方法的原理和实现过程。
线性规划是最常用的最优化方法之一,适用于目标函数和约束条件都是线性的情况。
线性规划的基本思想是将问题转化为求解一个线性函数在约束条件下的最大值或最小值。
线性规划的求解算法有很多,例如单纯形法、内点法和对偶法等。
这些算法都是基于线性规划的特点和数学性质,通过迭代求解来逼近最优解。
实现线性规划方法的主要步骤包括:建立数学模型、选择适当的算法、编写相应的程序、求解并分析结果。
非线性规划是另一种常见的最优化方法,适用于目标函数或约束条件中包含非线性项的情况。
非线性规划的求解相对复杂,通常需要使用迭代算法来逼近最优解。
最优化问题的建模与解法最优化问题(optimization problem)是指在一组可能的解中寻找最优解的问题。
最优化问题在实际生活中有广泛的应用,例如在工程、经济学、物流等领域中,我们经常需要通过数学模型来描述问题,并利用优化算法来求解最优解。
本文将介绍最优化问题的建模和解法,并通过几个实例来说明具体的应用。
一、最优化问题的数学建模最优化问题的数学建模包括目标函数的定义、约束条件的确定以及变量范围的设定。
1. 目标函数的定义目标函数是一个表达式,用来衡量问题的解的优劣。
例如,对于一个最大化问题,我们可以定义目标函数为:max f(x)其中,f(x)是一个关于变量x的函数,表示问题的解与x的关系。
类似地,对于最小化问题,我们可以定义目标函数为:min f(x)2. 约束条件的确定约束条件是对变量x的一组限制条件,用来定义问题的可行解集合。
约束条件可以是等式或不等式,通常表示为:g(x) ≤ 0h(x) = 0其中,g(x)和h(x)分别表示不等式约束和等式约束。
最优化问题的解必须满足所有的约束条件,即:g(x) ≤ 0, h(x) = 03. 变量范围的设定对于某些变量,可能需要限定其取值的范围。
例如,对于一个实数变量x,可能需要设定其上下界限。
变量范围的设定可以通过添加额外的不等式约束来实现。
二、最优化问题的解法最优化问题的解法包括数学方法和计算方法两种,常见的数学方法有最优性条件、拉格朗日乘子法等,而计算方法主要是通过计算机来求解。
1. 数学方法数学方法是通过数学分析来求解最优化问题。
其中,常见的数学方法包括:(1)最优性条件:例如,对于一些特殊的最优化问题,可以通过最优性条件来判断最优解的存在性和性质。
最优性条件包括可导条件、凸性条件等。
(2)拉格朗日乘子法:对于带有约束条件的最优化问题,可以通过拉格朗日乘子法将原问题转化为无约束最优化问题,从而求解最优解。
2. 计算方法计算方法是通过计算机来求解最优化问题。
数学建模最优化模型随着科学与技术的不断发展,数学建模已经成为解决复杂实际问题的一种重要方法。
在众多的数学建模方法中,最优化模型是一种常用的方法。
最优化模型的目标是找到最佳解决方案,使得一些目标函数取得最大或最小值。
最优化模型的基本思想是将实际问题抽象为一个数学模型,该模型包含了决策变量、约束条件和目标函数。
决策变量是需要优化的变量,约束条件是对决策变量的限制条件,目标函数是优化的目标。
最优化模型的求解方法可以分为线性规划、非线性规划和整数规划等。
线性规划是最优化模型中最基本的一种方法,其数学模型可以表示为:max/min c^T xs.t.Ax<=bx>=0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右边向量。
线性规划的目标是找到最优的决策变量向量x,使得目标函数的值最大或最小。
非线性规划是最优化模型中更为复杂的一种方法,其数学模型可以表示为:max/min f(x)s.t.g_i(x)<=0,i=1,2,...,mh_i(x)=0,i=1,2,...,p其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_i(x)是等式约束条件。
非线性规划的求解过程通常需要使用迭代的方法,如牛顿法、拟牛顿法等。
整数规划是最优化模型中另一种重要的方法,其数学模型在线性规划的基础上增加了决策变量的整数限制。
max/min c^T xs.t.Ax<=bx>=0x是整数整数规划的求解通常更为困难,需要使用特殊的算法,如分支定界法、割平面法等。
最优化模型在实际问题中有着广泛的应用,如资源调度、生产计划、路线选择、金融投资等。
通过建立数学模型并求解,可以得到最优的决策方案,提高效益和效率。
总结起来,最优化模型是数学建模的重要方法之一、通过建立数学模型,将实际问题转化为数学问题,再通过求解方法找到最佳解决方案。
最优化模型包括线性规划、非线性规划和整数规划等方法,应用广泛且效果显著。
数学建模优化城市交通规划城市交通规划是现代城市建设的重要组成部分,对于缓解交通拥堵、提高交通效率、优化城市环境起着至关重要的作用。
而数学建模作为一种科学方法,可以通过建立模型,进行优化计算,提供科学的决策依据,对城市交通规划起到指导作用。
本文将从城市交通规划的需求出发,介绍数学建模的原理、方法和在优化城市交通规划中的应用。
一、城市交通规划的需求城市化进程的加速使得城市交通问题日益突出,交通拥堵、交通事故频发、交通效率低下等问题成为困扰城市发展的痛点。
为了改善城市交通状况,提高居民出行的便利性和舒适度,需要制定合理的交通规划。
城市交通规划涉及到道路网络布局、交通设施配置、交通组织管理等多个方面,需要综合考虑各种因素,使得城市交通系统达到尽可能高的效率和可持续性。
二、数学建模在城市交通规划中的原理与方法数学建模是将实际问题抽象成数学模型,通过数学手段求解模型,得到问题的最优解或较好近似解的一种方法。
在城市交通规划中,数学建模主要包括以下原理与方法:1. 图论与网络分析:将城市交通网络抽象成图,利用图论分析网络的拓扑结构、路径选择和信息传输等问题,从而优化道路网络的布局和流量分配。
2. 优化理论与模型:通过建立数学模型,采用优化算法寻找最优解,如线性规划、整数规划、动态规划等,对城市交通规划进行综合优化。
3. 数据挖掘与智能算法:利用大数据分析方法和智能算法,挖掘城市交通数据中的隐藏规律,预测交通需求,提供决策依据。
4. 系统仿真与模拟:借助计算机技术,建立城市交通规划的仿真模型,通过对不同方案进行模拟实验,评估规划效果,提供科学决策参考。
三、数学建模优化城市交通规划的应用案例1. 道路网络设计优化:通过图论与网络分析方法,优化城市道路网络的布局和连接方式,使得整个网络的通行效率最大化,减少拥堵。
2. 交通流量分配优化:通过优化理论与模型,对城市交通网络中的交通流量进行合理分配,优化车道规划和信号灯配时,提高道路利用率。
公园内道路设计问题摘要在学校中建造公园不仅可以美化环境更可以方便同学的生活。
本文从实际问题出发,给出在不同要求下,得到公园内的最优道路设计方案的模型。
公园的修建需满足两个要求:公园八个固定入口必须能够互相连通,且各入口之间的最短距离不可超过该对点的1.4倍。
故本文给出的方案均遵循两个原则:尽量多的利用公园四周的道路,尽量重复利用公园内部的道路。
经过初步筛选,得到只有十对入口必须通过公园内部相连。
在第一种情况中,要求在给定四个交叉点的状况下,得到最优路线。
本文运用kruskal 算法对这10对点求出最小生成树,得到通过这些点及四个交叉口的最短路程,再利用floyd算法验证任意两点间的距离约束,对于不满足距离约束的入口,通过局部调整,对最小生成树进行优化,求得最优解。
在第二种情况中,公园内可以任意修路。
首先我们考虑取几个点的问题。
因为任意两路口间最短道路长需小于两路口直线距离的1.4倍,故我们利用椭圆定义,对上述十对点所确定的椭圆的位置关系分析,发现至少需要两个交叉点。
故从两个交叉点开始考虑,利用逐步逼近法,求出两个交叉点的最优位置。
利用费马点的性质,考虑到可以通过加点优化求出三个交叉点的最优位置。
利用同样的方法加第四个点,发现最短路程增大。
定性分析得到使用三个交叉点时,路径最优。
在第三种情况中,公园增加了湖,而湖所在区域不可通行,导致模型二的路径不可行。
假设湖边道路不计入总路程长,故尽量使用湖边道路可使总路程更优。
在模型二路径的前提下,对与湖相交的路径进行优化,利用穷举法对三条边上的三个交点进行运算,求出满足条件的三个最优点及最优路径。
在求出的三个点的基础上,运用第二问的方法,对另外两个交点进行局部优化,求出最优路径。
关键字:最小生成树kruskal算法Floyd算法逐步逼近费马点一、问题重述有一长为200米,宽为100米形状为矩形的公园,具有八个路口。
现要求在公园内部修建道路,达到让任意两个入口相连的目的,在任意的两个入口之间的最短道路长不大于两点连线的1.4倍的要求下,使总的道路长度和最小,其中公园四周的道路不计入总路程中。
数学建模之优化模型在我们的日常生活和工作中,优化问题无处不在。
从如何规划一条最短的送货路线,到如何安排生产以最小化成本并最大化利润,从如何分配资源以满足不同的需求,到如何设计一个系统以达到最佳的性能,这些都涉及到优化的概念。
而数学建模中的优化模型,就是帮助我们解决这些复杂问题的有力工具。
优化模型,简单来说,就是在一定的约束条件下,寻求一个最优的解决方案。
这个最优解可以是最大值,比如利润的最大化;也可以是最小值,比如成本的最小化;或者是满足特定目标的最佳组合。
为了更好地理解优化模型,让我们先来看一个简单的例子。
假设你有一家小工厂,生产两种产品 A 和 B。
生产一个 A 产品需要 2 小时的加工时间和 1 个单位的原材料,生产一个 B 产品需要 3 小时的加工时间和 2 个单位的原材料。
每天你的工厂有 10 小时的加工时间和 8 个单位的原材料可用。
A 产品每个能带来 5 元的利润,B 产品每个能带来 8 元的利润。
那么,为了使每天的利润最大化,你应该分别生产多少个A 产品和 B 产品呢?这就是一个典型的优化问题。
我们可以用数学语言来描述它。
设生产 A 产品的数量为 x,生产 B 产品的数量为 y。
那么我们的目标就是最大化利润函数 P = 5x + 8y。
同时,我们有加工时间的约束条件 2x +3y ≤ 10,原材料的约束条件 x +2y ≤ 8,以及 x 和 y 都必须是非负整数的约束条件。
接下来,我们就可以使用各种优化方法来求解这个模型。
常见的优化方法有线性规划、整数规划、非线性规划、动态规划等等。
对于上面这个简单的例子,我们可以使用线性规划的方法来求解。
线性规划是一种用于求解线性目标函数在线性约束条件下的最优解的方法。
通过将约束条件转化为等式,并引入松弛变量,我们可以将问题转化为一个标准的线性规划形式。
然后,使用单纯形法或者图解法等方法,就可以求出最优解。
在这个例子中,通过求解线性规划问题,我们可以得到最优的生产方案是生产 2 个 A 产品和 2 个 B 产品,此时的最大利润为 26 元。
数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
下面将对这些算法模型进行详细介绍。
1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。
它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。
线性规划的常用求解方法有单纯形法、内点法和对偶理论等。
2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。
在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。
整数规划常用的求解方法有分支界定法和割平面法等。
3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。
与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。
非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。
4.动态规划:动态规划是一种用于解决决策过程的优化方法。
它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。
动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。
5.图论算法:图论算法是一类用于解决图相关问题的算法。
图论算法包括最短路径算法、最小生成树算法、网络流算法等。
最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。
最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。
网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。
6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。
它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。
遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。
总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
铺路问题的最优化模型摘要本文采用了两种方法,一种是非线性规划从而得出最优解,另一种是将连续问题离散化利用计算机穷举取最优的方法。
根据A地与B地之间的不同地质有不同造价的特点,建立了非线性规划模型和穷举取最优解的模型,解决了管线铺设路线花费最小的难题。
问题一:在本问题中,我们首先利用非线性规划模型求解,我们用迭代法求出极小值(用Matlab实现),计算结果为总费用最小为748.6244万元,管线在各土层中在东西方向上的投影长度分别为15.6786km,3.1827 km,2.1839 km,5.8887km,13.0661km。
然后,我们又用穷举法另外建立了一个模型,采用C语言实现,所得最优解为最小花费为748.625602万元,管线在各土层中在东西方向上的投影长度分别为15.70km,3.20km,2.20km,5.90km,13.00km。
问题二:本问题加进了一个非线性的约束条件来使转弯处的角度至少为160度,模型二也是如此。
非线性规划模型所得计算结果为最小花费为750.6084万元,管线在各土层中在东西方向上的投影长度分别为14.4566km,4.3591km,2.5984km,6.5387km,12.0472km。
遍历模型所得最优解为最小花费为750.821154万元,管线在各土层中在东西方向上的投影长度分别为14.10km,4.30km, 2.70km,6.70km,12.20km。
问题三:因为管线一定要经过一确定点P,我们将整个区域依据P点位置分成两部分,即以A点正东30km处为界,将沙土层分成两部分。
非线性规划模型最小花费为752.6432万元,管线在各土层中在东西方向上的投影长度分别为21.2613km,3.3459km,2.2639km,3.1288km,2.4102km,7.5898km。
遍历模型最小花费为752.649007万元,管线在各土层中在东西方向上的投影长度分别为21.30km,3.30km,2.30km,3.10km,2.40km,7.60km。
关键词:非线性规划逐点遍历穷举法一.问题重述准备在A地与B地之间修建一条地下管线,B地位于A地正南面26km和正东40km 交汇处,它们之间有东西走向岩石带。
地下管线的造价与地质特点有关,下图给出了整个地区的大致地质情况,显示可分为三条沿东西方向的地质带,其宽度分别为:沙土地质带宽C1,C5;沙石地质带宽C2;沙石土地质带宽:C4;岩石地质带宽C3。
在给定三种地质条件上每千米的修建费用的情况如下:地质条件沙土沙石土沙石岩石费用(万元/千米) 12 16 18 28试解决以下几个问题:(1) 图中直线AB显然是路径最短的,但不一定最便宜;而路径ARSB过岩石和沙石的路径最短,但是否是最好的路径呢?试建立一个数学模型,确定最便宜的管线铺设路线。
(若C1=6,C2=4,C3=5,C4=6,C5=5,确定最便宜的管线铺设路线。
)160,确定最便宜的管线铺设路线。
(2) 铺设管线时,如果要求管线转弯时,角度至少为0(3) 铺设管线时,如果要求管线必须通过位于沙石地质带或岩石地质带中的某一已知点P(位于A地正南面18km和正东30km交汇处)时,确定最便宜的铺设路线。
二.模型假设1、修建费用仅与管线长度和不同地质的造价有关,不含其他费用;2、在无特殊要求情况下,管线可以向任意方向延伸;3、不考虑管线宽度;4、所有管线都铺设在同一水平面上;三.符号说明()x f 为修建总费用1x 为管线与沙土层1c 中东西方向上的投影长度2x 为管线与沙石层2c 中东西方向上的投影长度 3x 为管线与岩石层3c 中东西方向上的投影长度4x 为管线与沙石土层4c 中东西方向上的投影长度(在问题三中指在过P 点的东西方向的直线上的P 点以西的投影长度)5x 为管线与沙土层5c 中东西方向上的投影长度(在问题三中指在过P 点的东西方向的直线上的P 点以东的投影长度)6x 为管线与沙土层5c 中东西方向上的投影长度1p 为沙土层1c 每千米的修建费用 2p 为沙石层2c 每千米的修建费用 3p 为岩石层3c 每千米的修建费用4p 为沙石土层4c 每千米的修建费用5p 为沙土层5c 每千米的修建费用(在问题三中指在沙石土层每千米的修建费用) 6p 为问题三中沙土层6c 每千米的修建费用4c 在问题一、二中指沙石土层的宽度,在问题三中指沙石土层P 点以上的半层的宽度5c 在问题一、二中指沙石土层的宽度,在问题三中指沙石土层P 点以下的半层的宽度6c 问题三中最下面的沙土层的宽度四.问题分析4.1 问题一:本问题主要围绕由A 点到B 点铺设管线展开,要求花费最少。
根据不同地质条件的花费,确定在某一土层中铺设管线的长度。
我们采用了两种方法求得最少的花费,分别为非线性规划模型和逐点遍历模型。
4.1.1 方案一我们首先利用非线性规划求解,可以得出一个关于工程总造价的目标函数f(x),而且可知f(x)在整个区域连续且可微,f(x)符合在某一点有局部极小点的条件。
因此我们用迭代法求出极小值(用Matlab 实现),我们分别选用了几组不同的初始值来保证所得到的极小值也是整个区域上的最小值。
4.1.2 方案二我们又用穷举法另外建立了一个模型,用来确保模型一的结果是最小值,采用C 语言实现,我们先在每两种不同地质间的交界线上每隔0.1km 确定一个点,然后每条交界线都任取一点,连线,得出一条路径。
之后将每一条可能的路径都遍历一遍,将最小值和对应的点保存,得出结果。
4.2 问题二本问题与问题一相比,增加了约束条件“要求管线转弯时,角度至少为0160”,我们在问题一所建立的两种模型的基础上均增加相应约束条件,通过求出管线转弯处的管线角度的正切值,并利用反正切函数得出管线角度,从而对管线的铺设方向加以限制,得出最少花费的管线铺设线路。
4.3 问题三本问题要求铺设管线一定要经过一确定点P ,因此可以将此问题分为两步,即从A 到P 的路径为第一步,从P 到B 的路径为第二步。
因为从A 到P 的路径选择及其花费与从P 到B 的路径选择及其花费无关,所以求出第一步从A 到P 的最优解,以及第二步求从P 到B 的最优解,这两的最优解之和便为整个管线铺设的最优解。
五.模型建立与求解5.1 问题一5.1.1 方案一.根据题意,在第i 个土层中的管线长度为22i i i c x d +=所以,在该层中的修建花费为i i i d p S ⨯=则总花费为∑=+⨯=5122)(i i i i c x p x f因此得到目标函数∑=+⨯=5122)(:min i i i i c x p x f然后所要修建的地区为A 地正南面26km 和正东40km 所表示的区域,在每个土层中管线在东西方向的投影长度应大于0km 小于40km ,且所有土层中管线在东西方向上的投影长度之和小于40km ,因此可确定约束条件:400≤≤i x4051=∑=i ix运用MATLAB 软件编程,得到计算结果为总费用最小为748.6244万元,管线在各土层中在东西方向上的投影长度分别为15.6786km ,3.1827 km ,2.1839 km ,5.8887km ,13.0661km 。
5.1.2方案二先在每两种不同土层的交界线上每隔0.1km 确定一个点,然后在每条交界线上都任取一点,并连线,得出一条可能路径。
再将每一条可能的路径按公式∑=+⨯=5122)(i i i i c x p x f逐一计算花费,找到花费的最小值和其对应的点,确定最优路径。
在此方案中,采用C 语言编程进行遍历,所得最优解为最小花费为748.625602万元,管线在各土层中在东西方向上的投影长度分别为15.70km,3.20km,2.20km,5.90km,13.00km 。
5.2 问题二本题也为确定最便宜的管线铺设路线,所以与问题一有相同的目标函数∑=+⨯=5122)(:min i i i i c x p x f及约束条件:400≤≤i x ;4051=∑=i ix;根据本题中所要求的管线转弯角度大于0160,利用管线在各土层中在东西方向上的投影长度与相应土层宽度得出管线转弯所形成的角的正切值,即iic x ,再利用反正切函数算出具体角度。
由此得到新的约束条件:0arctan arctan 21807011≤⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--⨯++i i i i c x c x ππ;4,3,2,1=i0180110arctan arctan 211≤⨯-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-++ππi i i ic x c x ; 4,3,2,1=i在问题一建立的模型的基础上,依据本题中新增非线性约束条件,建立新的模型,利用MATLAB 编程,所得计算结果为最小花费为750.6084万元,管线在各土层中在东西方向上的投影长度分别为14.4566km,4.3591km,2.5984km,6.5387km,12.0472km 。
利用相同的约束条件,利用C 语言编程遍历,所得最优解为最小花费为750.821154万元,管线在各土层中在东西方向上的投影长度分别为14.10km,4.30km, 2.70km,6.70km,12.20km 。
5.3 问题三根据本题中管线必须通过已知点P (位于A 地正南面18km 和正东30km 交汇处)的约束条件,我们将整个区域依据P 点位置分成两部分,即以A 点正东30km 处为界,将沙土层分成两部分,使整个修建区域变成6个土层。
在问题一所建立的模型上加以改进,使目标函数变为:∑=+⨯=6122)(:min i i i i c x p x f并将约束条件改为:300≤≤i x ; 4,3,2,1=i ;100≤≤i x6,5=i3041=∑=i ix;1065=∑=i ix;利用非线性规划模型,MATLAB 编程,所得最优解为:最小花费为752.6432万元,管线在各土层中在东西方向上的投影长度分别为21.2613km,3.3459km,2.2639km, 3.1288km,2.4102km,7.5898km利用遍历模型,C 语言编程,所得最优解为:最小花费为752.649007万元,管线在各土层中在东西方向上的投影长度分别为21.30km,3.30km,2.30km,3.10km,2.40km, 7.60km 。
六.模型的评价与改进对于模型一,存在的缺点是用Matlab中的fmincon函数所求最优解可能只是局部最优解,必须代入几组不同的初始迭代值,来确定所求解为全局最优解,但仍有可能遗漏。
对于模型二,缺点是精度不够小,当精度取到0.1时,计算机要用几分钟才能得出结果,精度更小时所需时间更长,而且在问题二中,模型二因为精度太低而跳过了最优路径,所以与模型一所得结果有一定差距。