最优化问题的数学模型
- 格式:ppt
- 大小:3.44 MB
- 文档页数:86
数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
最优化问题的建模与解法最优化问题(optimization problem)是指在一组可能的解中寻找最优解的问题。
最优化问题在实际生活中有广泛的应用,例如在工程、经济学、物流等领域中,我们经常需要通过数学模型来描述问题,并利用优化算法来求解最优解。
本文将介绍最优化问题的建模和解法,并通过几个实例来说明具体的应用。
一、最优化问题的数学建模最优化问题的数学建模包括目标函数的定义、约束条件的确定以及变量范围的设定。
1. 目标函数的定义目标函数是一个表达式,用来衡量问题的解的优劣。
例如,对于一个最大化问题,我们可以定义目标函数为:max f(x)其中,f(x)是一个关于变量x的函数,表示问题的解与x的关系。
类似地,对于最小化问题,我们可以定义目标函数为:min f(x)2. 约束条件的确定约束条件是对变量x的一组限制条件,用来定义问题的可行解集合。
约束条件可以是等式或不等式,通常表示为:g(x) ≤ 0h(x) = 0其中,g(x)和h(x)分别表示不等式约束和等式约束。
最优化问题的解必须满足所有的约束条件,即:g(x) ≤ 0, h(x) = 03. 变量范围的设定对于某些变量,可能需要限定其取值的范围。
例如,对于一个实数变量x,可能需要设定其上下界限。
变量范围的设定可以通过添加额外的不等式约束来实现。
二、最优化问题的解法最优化问题的解法包括数学方法和计算方法两种,常见的数学方法有最优性条件、拉格朗日乘子法等,而计算方法主要是通过计算机来求解。
1. 数学方法数学方法是通过数学分析来求解最优化问题。
其中,常见的数学方法包括:(1)最优性条件:例如,对于一些特殊的最优化问题,可以通过最优性条件来判断最优解的存在性和性质。
最优性条件包括可导条件、凸性条件等。
(2)拉格朗日乘子法:对于带有约束条件的最优化问题,可以通过拉格朗日乘子法将原问题转化为无约束最优化问题,从而求解最优解。
2. 计算方法计算方法是通过计算机来求解最优化问题。
优化问题数学表示方法优化问题是指在一定约束下,寻找一个最优解的问题。
在实际应用中,我们经常遇到需要优化的情况,例如寻找最短路径、最大化利润、最小化损失等。
为了解决优化问题,我们需要对问题进行数学建模,将问题转化为数学表达形式。
常用的数学表示方法包括线性规划、整数规划、非线性规划、动态规划等。
首先,我们来介绍线性规划。
线性规划是一种数学优化方法,其目标是在一组线性约束条件下,最大化或最小化一个线性目标函数。
线性规划的数学表示形式如下:max/min c^T * xsubject to Ax <= bx >= 0其中,c是一个列向量,表示目标函数的系数;x是要优化的变量;A是一个矩阵,用于表示约束条件的系数;b是一个列向量,表示约束条件的右边界。
例如,假设我们需要在给定的预算下购买商品,使得商品的总价值最大化。
假设有三种商品,其价格分别为p1、p2、p3,我们可以定义目标函数为:max p1*x1 + p2*x2 + p3*x3其中,x1、x2、x3分别表示购买商品1、商品2、商品3的数量。
还需考虑约束条件,例如预算上限为B,每种商品的购买数量不能为负数,则有以下约束条件:p1*x1 + p2*x2 + p3*x3 <= Bx1 >= 0, x2 >= 0, x3 >= 0将这些问题表示为线性规划模型后,我们可以使用常见的线性规划算法,如单纯形法、内点法等,来求解最优解。
接下来,我们介绍整数规划。
整数规划是限制解向量的每个分量为整数的线性规划问题。
整数规划常用于离散决策问题,例如在作业安排中,每个作业有预计的完成时间和紧急程度,我们需要决定如何安排作业,使得总完成时间最短,且满足每个作业的紧急程度。
整数规划的数学表示形式与线性规划类似,只需要将变量的取值限制为整数。
假设有n个作业,每个作业需要的时间为t1、t2、…、tn,紧急程度为e1、e2、…、en,我们可以将优化问题表示为以下整数规划模型:min t1*x1 + t2*x2 + ... + tn*xnsubject to e1*x1 + e2*x2 + ... + en*xn <= Dx1, x2, ..., xn是整数其中,D是总紧急程度限制,xi表示第i个作业是否被安排。
典型优化问题的模型与算法一、引言优化问题在各种领域中都有着广泛的应用,如生产管理、物流配送、资源分配、财务预算等。
为了解决这些实际问题,我们需要建立合适的数学模型,并设计有效的算法来求解。
本文将介绍一些典型的优化问题的模型与算法。
二、线性规划问题线性规划问题是一种常见的优化问题,用于求解一组线性目标函数和线性约束条件的最优解。
常用的算法包括单纯形法、分支定界法等。
模型:设有n个变量,其中n≥1,要求找到一组变量x的值,使得目标函数的值最大(或最小),同时满足一系列线性不等式约束条件。
算法:根据目标函数和约束条件,构建线性规划问题的数学模型;采用合适的算法(如单纯形法)求解该模型,得到最优解。
三、整数规划问题整数规划问题是一种特殊的优化问题,要求变量必须是整数。
常用的算法包括分支定界法、割平面法等。
模型:设有n个变量,其中n≥1,要求找到一组变量的整数值,使得目标函数的值最大(或最小),同时满足一系列不等式约束条件,且某些变量必须取整数值。
算法:根据目标函数和约束条件,构建整数规划问题的数学模型;采用分支定界法等算法,将整数规划问题分解为一系列子问题,并逐步求解,最终得到最优解。
四、非线性优化问题非线性优化问题是最常见的优化问题之一,要求目标函数和约束条件均为非线性形式。
常用的算法包括梯度下降法、牛顿法、共轭梯度法等。
模型:设有n个变量,其中n≥1,要求找到一组变量的值,使得目标函数的值最小(或最大),同时满足一系列非线性不等式约束条件。
算法:根据目标函数和约束条件,构建非线性优化问题的数学模型;采用梯度下降法、牛顿法等算法,逐步迭代优化目标函数,直到满足终止条件(如迭代次数或误差阈值)为止。
五、动态规划问题动态规划问题是一种特殊的优化问题,用于求解一系列决策过程中的最优解。
常用的算法包括记忆化搜索、最优子结构等。
模型:在给定的决策过程中,要求根据当前状态和可选动作选择最优动作,以最大化(或最小化)某一指标的值。
最优化问题数学模型在我们的日常生活和各种实际应用中,最优化问题无处不在。
从生产线上的资源分配,到物流运输中的路径规划,从金融投资中的资产配置,到工程设计中的参数选择,都需要找到最优的解决方案,以实现效率最高、成本最低、效益最大等目标。
而数学模型就是帮助我们解决这些最优化问题的有力工具。
那么,什么是最优化问题数学模型呢?简单来说,它是将实际问题转化为数学语言和表达式的一种方式,通过建立数学关系式,来描述问题中的各种约束条件和目标函数,然后运用数学方法和算法求解,找到最优的决策变量取值。
举个简单的例子,假设一家工厂要生产两种产品 A 和 B,生产 A 产品每件需要消耗 2 个单位的原材料和 3 个小时的工时,生产 B 产品每件需要消耗 3 个单位的原材料和 2 个小时的工时。
工厂共有 100 个单位的原材料和 80 个小时的工时可用,每件 A 产品的利润是 5 元,每件 B 产品的利润是 4 元。
那么,如何安排生产才能使工厂的总利润最大呢?为了建立这个问题的数学模型,我们首先定义决策变量:设生产 A 产品的数量为 x 件,生产 B 产品的数量为 y 件。
然后,我们确定目标函数,即要最大化的总利润:Z = 5x + 4y 。
接下来,考虑约束条件。
原材料的限制可以表示为:2x +3y ≤ 100 ;工时的限制可以表示为:3x +2y ≤ 80 ;还有非负约束:x ≥ 0 ,y ≥ 0 。
这样,我们就建立了一个简单的最优化问题数学模型。
通过求解这个模型,就可以得到最优的生产方案,即 x 和 y 的取值,使得总利润Z 最大。
最优化问题数学模型的类型多种多样,常见的有线性规划、非线性规划、整数规划、动态规划等。
线性规划是最简单也是应用最广泛的一种模型。
它的目标函数和约束条件都是线性的,就像我们上面的例子。
线性规划问题可以通过单纯形法等有效的算法在较短的时间内求解。
非线性规划则是目标函数或约束条件中至少有一个是非线性的。
优化问题中的数学规划模型优化问题中的数学规划模型1.优化问题及其一般模型优化问题是人们在工程技术、经济管理和科学研究等领域中最常遇到的问题之一。
例如:设计师要在满足强度要求等条件下选择材料的尺寸,使结构总重量最轻;公司经理要根据生产成本和市场需求确定产品价格,使所获利润最高;调度人员要在满足物质需求和装载条件下安排从各供应点到需求点的运量和路线,使运输总费用最低;投资者要选择一些股票、债券下注,使收益最大,而风险最小等等。
一般地,优化模型可以表述如下:minz?f(x)s.t.gi(x)?0,i=1,2,?,m (1.1)这是一个多元函数的条件极值问题,但是许多实际问题归结出的这种优化模型,其决策变量个数n和约束条件个数m一般较大,并且最优解往往在可行域的边界上取得,这样就不能简单地用微分法求解,数学规划就是解决这类问题的有效方法。
2.数学规划模型分类“数学规划是运筹学和管理科学中应用及其广泛的分支。
在许多情况下,应用数学规划取得的如此成功,以致它的用途已超出了运筹学的范畴,成为人们日常的规划工具。
”[H.P.Williams.数学规划模型的建立]。
数学规划包括线性规划、非线性规划、整数规划、几何规划、多目标规划等,用数学规划方法解决实际问题,就要将实际问题经过抽象、简化、假设,确定变量与参数,建立适当层次上的数学模型,并求解。
3.建立数学规划模型的步骤当你打算用数学建模的方法来处理一个优化问题的时候,首先要确定寻求的决策是什么,优化的目标是什么,决策受到那些条件的限制(如果有限制的话),然后用数学工具(变量、常数、函数等)表示它们,最后用合适的方法求解它们并对结果作出一些定性、定量的分析和必要的检验。
Step 1. 寻求决策,即回答什么?必须清楚,无歧义。
阅读完题目的第一步不是寻找答案或者解法,而是…… Step 2. 确定决策变量第一来源:Step 1的结果,用变量固定需要回答的决策第二来源:由决策导出的变量(具有派生结构)其它来源:辅助变量(联合完成更清楚的回答) Step 3. 确定优化目标用决策变量表示的利润、成本等。
优化问题的数学模型在现代社会中,优化问题是数学领域中非常重要的一个研究方向。
优化问题的数学模型可以帮助我们更好地理解和解决现实中的各种问题,例如最小化成本、最大化利润、最优化生产、最优化调度、最优化投资等。
本文将从优化问题的定义、数学模型及其应用等方面进行阐述和探讨。
一、优化问题的定义优化问题是指在给定的限制条件下,寻找能使某一目标函数取得最优值的决策变量的问题。
这个目标函数可以是最大化、最小化或其他形式的函数。
优化问题的求解过程可以通过数学方法来实现,例如线性规划、非线性规划、整数规划、动态规划等。
二、优化问题的数学模型优化问题的数学模型通常由目标函数、约束条件和决策变量三个部分组成。
1. 目标函数目标函数是优化问题中的一个重要概念,它描述了我们想要优化的目标,可以是最大化、最小化或其他形式的函数。
在数学模型中,目标函数通常表示为:$$max f(x)$$或$$min f(x)$$其中,$x$ 是决策变量,$f(x)$ 是关于 $x$ 的目标函数。
2. 约束条件约束条件是指限制决策变量的取值范围,使其满足一定的条件。
在数学模型中,约束条件通常表示为:$$g_i(x) leq b_i$$或$$g_i(x) geq b_i$$其中,$g_i(x)$ 是关于 $x$ 的约束条件,$b_i$ 是约束条件的上限或下限。
3. 决策变量决策变量是指我们需要优化的变量,其取值范围受到约束条件的限制。
在数学模型中,决策变量通常表示为:$$x = (x_1, x_2, ..., x_n)$$其中,$x_i$ 表示第 $i$ 个决策变量的取值。
三、优化问题的应用优化问题的应用非常广泛,包括工业、经济、管理、军事等领域。
下面我们将以几个具体的例子来说明优化问题的应用。
1. 最小化成本在生产过程中,我们希望以最小的成本来生产产品。
这时,我们可以将生产成本作为目标函数,约束条件可以是生产量的限制、材料的限制等。
通过数学模型,我们可以求出最小化成本的生产方案,从而实现成本控制的目的。
数学建模常用算法模型数学建模是将实际问题抽象为数学模型,并利用数学方法求解问题的过程。
在数学建模中,算法模型是解决问题的关键。
下面介绍一些常用的数学建模算法模型。
1.线性规划模型:线性规划是一种用于求解线性约束下的最优化问题的数学方法。
线性规划模型的目标函数和约束条件均为线性函数。
线性规划广泛应用于供需平衡、生产调度、资源配置等领域。
2.非线性规划模型:非线性规划是一种用于求解非线性目标函数和约束条件的最优化问题的方法。
非线性规划模型在能源优化调度、金融风险管理、工程设计等方面有广泛应用。
3.整数规划模型:整数规划是一种在决策变量取离散值时求解最优化问题的方法。
整数规划模型在网络设计、物流调度、制造安排等领域有广泛应用。
4.动态规划模型:动态规划是一种通过将问题分解为多个阶段来求解最优化问题的方法。
动态规划模型在资源分配、投资决策、路径规划等方面有广泛应用。
5.随机规划模型:随机规划是一种在目标函数和约束条件存在不确定性时求解最优化问题的方法。
随机规划模型在风险管理、投资决策、资源调度等方面有广泛应用。
6.进化算法模型:进化算法是一种通过模拟生物进化过程来求解最优化问题的方法。
进化算法模型包括遗传算法、粒子群算法、蚁群算法等,被广泛应用于参数优化、数据挖掘、机器学习等领域。
7.神经网络模型:神经网络是一种模仿人脑神经元连接和传递信息过程的数学模型。
神经网络模型在模式识别、数据分类、信号处理等领域有广泛应用。
8.模糊数学模型:模糊数学是一种用于处理不确定性和模糊信息的数学模型。
模糊数学模型在风险评估、决策分析、控制系统等方面有广泛应用。
除了以上常用的数学建模算法模型,还有许多其他的算法模型,如图论模型、动力系统模型、马尔科夫链模型等。
不同的问题需要选择合适的算法模型进行建模和求解。
数学建模算法模型的选择和应用需要根据具体的问题和要求进行。
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
最优化问题的数学模型《最优化问题的数学模型》嘿,同学们!你们知道什么是最优化问题的数学模型吗?这可真是个超级有趣又有点复杂的东西呢!就好像我们玩游戏,想要用最少的时间通过最多的关卡,这就是在找一种最优的方法,对吧?那最优化问题的数学模型就像是我们玩游戏时的攻略秘籍!有一次,我们数学老师在课堂上给我们出了一道题。
她说:“假如你要去商店买东西,手里只有20 块钱,商店里有铅笔1 块钱一支,笔记本3 块钱一本,橡皮5 毛钱一块,那怎么买才能让这20 块钱花得最值?” 这就是一个小小的最优化问题呀!我当时就想,哎呀,这可咋办?要是都买铅笔,能买20 支,可要是都买笔记本,只能买6 本还多2 块钱。
这就好像是在选择走不同的路,哪条路能让我们到达更好的地方呢?同桌小明凑过来跟我说:“我觉得多买点笔记本好,能记好多笔记呢!” 我摇摇头说:“可是铅笔也很有用呀,能写好多字。
” 这时候,学习委员小红发言了:“咱们得算算,怎么搭配才能让买的东西又多又有用。
” 我们大家都纷纷点头,觉得她说得有道理。
然后我们就开始算呀算,就像一群小数学家。
最后发现,如果买5 本笔记本,5 支铅笔,20 块橡皮,这样就能把20 块钱花得刚刚好,而且东西也都很实用。
这只是一个小小的例子,其实在生活中,最优化问题的数学模型无处不在呢!比如说,工厂生产东西,怎么安排生产计划能让成本最低、产量最高?物流公司送货,怎么规划路线能最快最省钱地把货物送到目的地?这难道不像我们在玩拼图游戏,要找到最合适的那块拼图,才能拼出最完美的图案吗?再想想,如果没有最优化问题的数学模型,那得多乱呀!就像做饭没有菜谱,不知道放多少盐多少油,做出来的饭能好吃吗?所以呀,最优化问题的数学模型真的超级重要!它能帮助我们在各种各样的情况中找到最好的解决办法,让我们的生活变得更有条理,更有效率。
我觉得,我们一定要好好学数学,掌握这个神奇的工具,这样才能在生活这个大舞台上,跳出最精彩的舞步!。
1 2((⎨最优化方法部分课后习题解答1.一直优化问题的数学模型为:习题一min f (x ) = (x − 3)2 + (x − 4)2⎧g (x ) = x − x − 5 ≥ 0 ⎪ 11 2 2 ⎪试用图解法求出:s .t . ⎨g 2 (x ) = −x 1 − x 2 + 5 ≥ 0 ⎪g (x ) = x ≥ 0 ⎪ 3 1 ⎪⎩g 4 (x ) = x 2 ≥ 0(1) 无约束最优点,并求出最优值。
(2) 约束最优点,并求出其最优值。
(3) 如果加一个等式约束 h (x ) = x 1 −x 2 = 0 ,其约束最优解是什么? *解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0(2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是在约束集合即可行域中找一点 (x 1 ,x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可以看出,当 x *=15 , 5) 时, f (x ) 所在的圆的半径最小。
4 4⎧g (x ) = x − x − 5 = 0⎧ 15 ⎪x 1 = 其中:点为 g 1 (x) 和 g 2 (x ) 的交点,令 ⎪ 1 1 2⎨ 2 求解得到: ⎨ 4 5即最优点为 x *= ⎪⎩g 2 (x ) = −x 1 − x 2 + 5 = 015 , 5 ) :最优值为: f (x * ) = 65⎪x = ⎪⎩ 244 4 8(3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。
2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为:max f (x ) = x 1x 2 x 3⎧x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S ⎪ s .t . ⎪x 1 > 0 ⎪x 2 > 0 ⎪⎩x 3 > 0该优化问题属于三维的优化问题。
第六章最优化数学模型§ 1最优化问题1. 1最优化问题概念1. 2最优化问题分类1. 3最优化问题数学模型§ 2经典最优化方法2. 1无约束条件极值2. 2等式约束条件极值2. 3不等式约束条件极值§ 3线性规划3. 1线性规划3. 2整数规划§ 4最优化问题数值算法4. 1直接搜索法4. 2梯度法4. 3罚函数法§ 5多目标优化问题5. 1多目标优化问题5. 2单目标化解法5. 3多重优化解法5. 4目标关联函数解法5. 5投资收益风险问题第八早最优化冋题数学模§ 1最优化问题1. 1最优化问题概念(1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。
而求解最优化问题的数学方法被称为最优化方法。
它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。
最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。
最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。
(2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。
一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。
设问题中涉及的变量为X1,X2, ,X n ;我们常常也用X =(X1,X2,…,X n)表示。
(3)约束条件在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。
在研究问题时, 这些限制我们必须用数学表达式准确地描述它们。
用数学语言描述约束条件一般来说有两种: 等式约束条件 g j (X)=o, i =1,2- ,m 不等式约束条件hj(X) _o,i =12…,r 或 h j (X)乞 0,i =1,2,…,r注:在最优化问题研究中,由于解的存在性十分复杂,一般来说,我们不考虑不 等式约束条件h(X) 0或h(X):::0。
《最优化方法》1一、填空题:1.最优化问题的数学模型一般为:____________________________,其中 ___________称为目标函数,___________称为约束函数,可行域D 可以表示 为_____________________________,若______________________________, 称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。
2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶 方向导数为___________________,几何意义为_________________________ ___________________________________。
3.设严格凸二次规划形式为:012..222)(min 2121212221≥≥≤+--+=x x x x t s x x x x x f则其对偶规划为___________________________________________。
4.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =___________________________________________________________________________。