随机信号分析
- 格式:doc
- 大小:30.00 KB
- 文档页数:3
第二章随机信号分析随机信号分析确定性信号分析的不同与联系:随机信号分析、确定性信号分析的不同与联系:随机信号分析的主要内容:随机过程的一般表述平稳随机过程高斯过程窄带随机过程正弦波加窄带高斯过程稳随机过过线性系平稳随机过程通过线性系统2010-9-271引言信号:一般是时间的函数确定信号:可以用确定的时间函数表示的信号 周期信号和非周期信号能量信号和功率信号基带信号和频带信号模拟信号和数字信号随机信号:具有随机性,可用统计规律来描述 通信过程中要发送的信号是不可预知的,因此具有随机性,是随机信号,但信号的统计特性具有规律性。
噪声和干扰是随机的信号噪声和干扰是随机的信号;无线信道特性(可理解为系统传递函数)也是随机变2010-9-272化的。
随机过程:与时间有关的函数,但任一时刻的取值不确定(随机变量)随机过程可以看成对应不同随机试验的时间过程的集合。
如n(或无数)台性能完全的接收机输出的噪声波形,每个波形都是一个确定函数,为一个样本函数,各波形又各不相同。
也可看成一个接收机,不同实验输出不同的样本函数。
随机过程是所有样本函数的集合。
2010-9-2731随机过程的一般表述1 随机过程的般表述(1)样本函数:随机过程的具体实现样本空间所有实现构成的全体~()i x t )()t 样本空间:所有实现构成的全体所有样本函数及其统计特性构成了随机过程{}1~(),,),i S x x t =……~()t ξ2010-9-274随机过程是随机变量概念的延伸,即随机变量引入时间变量,成为随机过程。
每一个时刻,对应每个样本函数的取值{i(),,,,}{x(t),i=1,2,…,n}是一个随机变量。
固定时刻t1的随机变量计为ξ(t1)。
随机过程看作是在时间进程中处于不同时刻的随机变量的集合。
2010-9-27511随机过程的n维分布函数或概率密度函数往往不容易或不需要得到,常常用数字特征部分地表述随机过程的主要特征。
第9章 随机信号分析随机信号和确定信号是两类性质完全不同的信号,对它们的描述、分析和处理方法也不相同。
随机信号是一种不能用确定数学关系式来描述的,无法预测未来某时刻精确值的信号,也无法用实验的方法重复再现。
随机信号分为平稳和非平稳两类。
平稳随机信号又分为各态历经和非各态历经。
本章所讨论的随机信号是平稳的且是各态历经的。
在研究无限长信号时,总是取某段有限长信号作分析。
这一有限长信号称为一个样本(或称子集),而无限长信号x(t)称为随机信号总体(或称集)。
各态历经的平稳随机过程中的一个样本的时间均值和集的平均值相等。
因此一个样本的统计特征代表了随机信号总体,这使得研究大大简化。
工程上的随机信号一般均按各态历经平稳随机过程来处理。
仅在离散时间点上给出定义的随机信号称为离散时间随机信号,即随机信号序列。
随机信号序列可以是连续随机信号的采样结果,也可以是自然界里实际存在的物理现象,即它们本身就是离散的。
平稳随机过程在时间上是无始无终的,即其能量是无限的,本身的Fourier 变换也是不存在的;但功率是有限的。
通常用功率谱密度来描述随机信号的频域特征,这是一个统计平均的频谱特性。
平稳随机过程统计特征的计算要求信号x(n)无限长,而实际上这是不可能的,只能用一个样本,即有限长序列来计算。
因此得到的计算值不是随机信号真正的统计值,而仅仅是一种估计。
本章首先介绍随机信号的数字特征,旨在使大家熟悉描述随机信号的常用特征量。
然后介绍描述信号之间关系的相关函数和协方差。
这些是数字信号时间域内的描述。
在频率域内,本章介绍功率谱及其估计方法,并给出了功率谱在传递函数估计方面的应用。
最后介绍描述频率域信号之间关系的函数---相干函数。
9.1 随机信号的数字特征9.1.1 均值、均方值、方差若连续随机信号x(t)是各态历经的,则随机信号x(t)均值可表示为: []⎰∞→==TT x dt t x Tt x E 0)(1)(limμ (9-1)均值描述了随机信号的静态(直流)分量,它不随时间而变化。
随机信号分析李晓峰引言随机信号分析是一门研究信号及其性质的学科,其在现代通信、图像处理、生物医学工程等领域中具有重要的应用价值。
本文将介绍随机信号分析的基本概念、常见的分析方法以及李晓峰教授在随机信号分析领域的研究成果。
随机信号的定义随机信号是指在某个时间段内具有随机性质的信号。
其特点是信号的取值在时间和幅度上都是不确定的,只能通过概率统计的方法来描述。
一个随机信号可以用一个概率密度函数来描述其取值的分布情况。
随机信号有两种基本的分类方式:离散随机信号和连续随机信号。
离散随机信号是在离散的时间点上进行取样的信号,连续随机信号则是在连续的时间上变化的信号。
随机信号分析方法统计特性分析统计特性分析是随机信号分析的基本方法之一,它通过对信号进行统计分析,从而得到信号的数学特性。
常见的统计特性包括均值、方差、自相关函数和谱密度等。
均值是衡量随机信号集中程度的一个指标,它表示信号的中心位置。
方差则用来衡量信号的离散程度,方差越大表示信号的波动性越大。
自相关函数描述了信号在不同时间点之间的相关性,而谱密度则表示信号在不同频率上的能量分布情况。
概率密度函数分析随机信号的概率密度函数描述了信号取值的概率分布情况。
常见的概率密度函数包括高斯分布、均匀分布和指数分布等。
高斯分布是最常用的概率密度函数之一,其形状呈钟型曲线,具有对称性。
均匀分布则表示信号的取值在一个区间上是均匀分布的,而指数分布则表示信号的取值在一个时间段内的分布服从指数规律。
谱分析谱分析是通过对随机信号进行频域分析来研究其频率成分的分析方法。
常见的谱分析方法有功率谱密度分析和相关函数分析。
功率谱密度分析可以用来分析信号在不同频率上的能量分布情况,通过功率谱密度分析可以得到信号的频谱图。
相关函数分析则是通过对信号进行自相关操作,得到信号的相关函数,从而分析信号在不同频率上的相关性。
李晓峰教授的研究成果李晓峰教授是我国著名的随机信号分析专家,他在随机信号分析领域做出了许多重要的研究成果。
随机信号分析随机信号是在时间或空间上具有随机性质的信号,其数学模型采用随机过程来描述。
随机信号的分析是信号与系统理论中的重要内容,其应用广泛涉及通信、控制、电力系统等领域。
本文将从随机信号的基本特性、常见的随机过程以及随机信号分析的方法等方面进行阐述。
随机信号的基本特性包括:平均性、相关性和功率谱密度。
首先,平均性是指随机信号的统计平均等于其数学期望值。
随机信号的平均性是通过计算信号在一定时间或空间范围内的平均值来描述的。
其次,相关性是指随机信号在不同时刻或不同空间位置上的取值之间存在一定程度的相关性。
相关性可以描述信号之间的相似度和相关程度,常用相关函数来表示。
最后,功率谱密度是用来描述信号在频域上的分布特性,它表示了随机信号在不同频率上所占的功率份额。
随机信号的常见模型主要有白噪声、随机行走、随机震荡等。
其中,白噪声是指功率谱密度在整个频率范围内均匀分布的信号,其在通信领域中应用广泛。
随机行走模型是一种随机过程,它描述了随机信号在不同时刻之间的步长是独立同分布的。
随机震荡模型是一种具有振荡特性的随机过程,常用于描述具有周期性或周期性变化的信号。
对于随机信号的分析方法,主要包括时间域分析和频域分析两种。
时间域分析是通过观察信号在时间上的波形和变化规律来分析随机信号的特性,常用的方法有自相关函数和互相关函数等。
频域分析是将信号转换为频率域上的功率谱密度来分析信号的频谱特性,常用的方法有傅里叶变换和功率谱估计等。
在实际应用中,随机信号的分析对于信号处理和系统设计具有重要意义。
在通信系统中,随机信号的噪声特性是衡量系统性能的关键因素之一,因此通过对随机信号的分析可以有效地优化通信系统的传输质量。
此外,在控制系统和电力系统中,随机信号的分析也能帮助我们进行系统建模和性能预测,从而实现系统的稳定性和可靠性。
综上所述,随机信号的分析是信号与系统理论中的重要内容,其对于各个领域的应用具有重要的意义。
通过对随机信号的基本特性、常见的随机过程以及分析方法的了解,可以为我们深入理解和应用随机信号提供帮助。
随机信号是一种不能用确定的数学关系式来描述的、无法预测未来时刻精确值的信号,也无法用实验的方法重复再现。
换言之,随机信号是指不能用确定性的时间函数来描述,只能用统计方法研究的信号。
其统计特性:概率分布函数、概率密度函数。
统计平均:均值、方差、相关。
随机信号分为平稳和非平稳两大类。
平稳随机信号又分为各态历经和非各态历经。
1) 各态历经信号——指无限个样本在某时刻所历经的状态,等同于某个样本在无限时间里所经历的状态的信号。
2) 平稳随机信号——其均值和相关不随时间变化。
注:各态历经信号一定是随机信号,反之不然。
工程上的随机信号通常都按各态历经平稳随机信号来处理。
仅在离散时间点上给出定义的随机信号称为离散时间随机信号,即随机信号序列。
平稳随机信号在时间上的无限的,故其能量是无限的,只能用功率谱密度来描述随机信号的频域特性。
1. 随机信号的数字特征 均值、均方值、方差若连续随机信号x(t)是各态历经的,则随机信号x(t)的均值可表示为:⎰→∞==TT x dt t x Tt x E 0)(1lim)]([μ均值描述了随机信号的静态分量(直流)。
随机信号x(t)的均方值表达式为:dt t x TTT x)(1lim22⎰→∞=ψ2xψ表示信号的强度或功率。
随机信号x(t)的均方根值表示为:⎰→∞=T T x dt t x T 02)(1limψ x ψ也是信号能量的一种描述。
随机信号x(t)的方差表达式为:⎰-==-→∞Tx T x x dx t x Tx E 0222])([1lim])[(μσμ2xσ是信号的幅值相对于均值分散程度的一种表示,也是信号纯波动分量(交流)大小的反映。
随机信号x(t)的均方差(标准差)可表示为⎰-=→∞T x T x dx t x T 02])([1limμσ 它和2x σ意义相同。
平稳随机过程统计特征的计算要求信号x(t)无限长,而实际上只能用一个样本即有限长序列来计算。
随机信号分析
朱华,等北京理工大学出版社2011-07-01
《随机信号分析》是高等学校工科电子类专业基础教材。
内容为概率论基础、平稳随机过程、窄带随机过程、随机信号通过线性与非线性系统的理论与分析方法等。
在相应的部分增加了离散随机信号的分析。
《随即信号分析》的特点侧重在物理概念和分析方法上,对复杂的理论和数学问题着重用与实际的电子工程技术问题相联系的途径及方法去处理。
《随即信号分析》配套的习题和解题指南将与《随即信号分析》同期出版。
《随即信号分析》适用于电子工程系硕士研究生及高年级本科生,也适用于科技工作者参考。
第一章概率论
1.1 概率空间的概念
1.1.1 古典概率
1.1.2 几何概率
1.1.3 统计概率
1.2 条件概率空间
1.2.1 条件概率的定义
1.2.2 全概率公式
1.2.3 贝叶斯公式
1.2.4 独立事件、统计独立
1.3 随机变量及其概率分布函数
1.3.1 随机变量的概念
1.3.2 离散型随机变量及其分布列
1.3.3 连续型随机变量及其密度函数
1.3.4 分布函数及其基本性质
1.4 多维随机变量及其分布函数
1.4.1 二维分布函数及其基本性质
1.4.2 边沿分布
1.4.3 相互独立的随机变量与条件分布
1.5 随机变量函数的分布
1.5.1 一维随机变量函数的分布
1.5.2 二维随机变量函数的分布
1.5.3 二维正态随机变量函数的变换
1.5.4 多维情况
1.5.5 多维正态概率密度的矩阵表示法
1.6 随机变量的数字特征
1.6.1 统计平均值与随机变量的数学期望值
1.6.2 随机变量函数的期望值
1.6.3 条件数学期望
1.6.4 随机变量的各阶矩
1.7 随机变量的特征函数
1.7.1 特征函数的定义
1.7.2 特征函数的性质
1.7.3 随机变量函数概率密度的确定
1.7.4 特征函数与矩的关系
1.7.5 多维随机变量的特征函数
1.8 极限定理
1.8.1 切比雪夫不等式
1.8.2 样本均值与弱大数定律
1.8.3 相对概率与贝努里定理
1.8.4 各种收敛关系的比较
1.8.5 中心极限定理
1.9 各种概率分布的参数和特征汇编
1.9.1 连续分布的随机变量
1.9.2 离散分布的随机变量
第二章随机过程
2.1 随机过程的基本概念及其统计特性
2.1.1 随机过程的基本概念
2.1.2 随机过程的分类
2.1.3 随机过程的概率分布
2.1.4 随机过程的数字特征
2.1.5 随机过程的特征函数
2.2 随机过程的微分与积分
2.2.1 随机连续性
2.2.2 随机过程的微分及其数学期望与相关函数2.2.3 随机过程的积分及其数学期望与相关函数2.3 平稳随机过程和遍历性过程
2.3.1 平稳随机过程
2.3.2 遍历性过程
2.3.3 平稳随机过程相关函数的性质
2.4 随机过程的联合概率分布和互相关函数2.4.1 两个随机过程的联合概率分布
2.4.2 互相关函数
2.5 复随机过程
2.5.1 复随机变量
2.5.2 复随机过程
2.6 离散时间随机过程
2.6.1 离散时间随机过程的定义
2.6.2 离散时间随机过程的概率分布
2.6.3 离散时间随机过程的数字特征
2.6.4 平稳离散时间随机过程相关函数的性质2.7 正态随机过程
……
第三章平稳随机过程的谱分析
第四章随机信号通过线性系统的分析
第五章窄带随机过程
第六章随机信号通过非线性系统的分析
第七章几种常用的随机过程。