窑尾预热器与分解炉的功能及作用
- 格式:doc
- 大小:51.00 KB
- 文档页数:10
(二)、分解炉的工作原理与结构概述分解炉是把生料粉分散悬浮在气流中,使燃料燃烧和碳酸钙分解过程在很短时间(一般1.5~3秒)内发生的装置,是一种高效率的直接燃烧式固相一气相热交换装置。
在分解炉内,由于燃料的燃烧是在激烈的紊流状态下与物料的吸热反应同时进行,燃料的细小颗粒呈一面浮游,一面燃烧,使整个炉内几乎都变成了燃烧区。
所以不能形成可见辉焰,而是处于820~900℃低温无焰燃烧的状态。
水泥烧成过程大致可分为两个阶段:石灰质原料约在900℃时进行分解反应(吸热);在1200~1450℃时进行水泥化合物生成反应(放热、部分熔融)。
根据理论计算,当物料由750℃升高到850℃,分解率由原来的25%提高到85~90%时。
每千克熟料尚须1670千焦的热量。
因此,全燃料的60%左右用于分解炉的燃烧,40%用在窑内燃烧。
近几年来窑外分解技术发展很快,虽然分解炉的结构型式和工作原理不尽相同,它们各有自己的特点,但是从入窑碳酸钙分解率来看,都不相上下,一般都达到85%以上。
由此看来,分解炉的结构型式对于入窑生料碳酸钙分解率的影响是不太大的。
关键在于燃料在生料浓度很高的分解炉内能稳定、完全燃烧,炉内温度分布均匀,并使碳酸钙分解在很短时间内完成。
我国某厂烧煤分解炉的结构示意图3—18。
分解炉由预燃室和炉体两部分组成,预燃室主要起预燃和散料作用,炉体主要起燃料燃烧和碳酸钙分解作用。
在钢板壳体内壁镶砌耐火砖。
由冷却机来的二次空气分成两路进入预燃室。
三级旋风筒下来的预热料,由二次空气从预燃室柱体的中上部带入预燃室。
约四分之一的分解炉用煤粉,从预燃室顶部由少量二次空气带入并着火燃烧,约四分之三左右的煤粉在分解炉锥体的上部位置喂入,以此来提高和调整分解炉的温度,使整个炉内温度分布趋于均匀,担任分解碳酸钙的主力作用。
炉体内的煤粉颗粒,虽被大量的惰性气体CO2和N2所包围,减少了与O2接触的机会,煤粉的燃烧速度就会减慢。
但由于进入预燃室的煤粉不受生料粉的影响,而且在纯空气中燃烧,形成引燃火焰,起到火种的作用,使预燃室出口处有明火存在,对煤粉起着强制着火作用。
预热器及分解炉系统P R E H E A T E R A N DP R E C A L C I N E R S Y S T E M概述CDI在消化、吸收引进的预分解系统(特别是山西水泥厂的FR系统)技术基础上,通过对引进技术的理论研究、冷模试验,经过多年的努力,开发出由CNC预热器和CDC分解炉组成的预热预分解系统,形成了从700 t/d、1000 t/d 、1500 t/d 、2000 t/d 、2500 t/d 、3500 t/d 、4000 t/d 、5000 t/d等规模和高海拔型、无烟煤型、湿磨干烧型的系列预分解系统。
CDC分解炉以旋流和喷腾结合的C-SF分解炉技术为核心,并结合了其它炉型的优点,合理匹配和优化窑尾上升管道、分解炉、旋风预热器、联结风管和翻板阀、撒料板等子系统,注重物料在系统中停留时间、分离效率和系统阻力之间的最优化,强化系统对燃料变化的适应性,确保系统的达产达标。
通过青海水泥厂2000 t/d 、双马水泥厂1500 t/d 、金昌水泥厂1000 t/d等近年来一系列工程项目投产达产,表明了CDI开发的预热器及分解炉系统生产稳定可靠、技术合理先进。
CDI继续致力于窑外分解技术研究和发展,密切关注国内外窑外分解技术的发展动向,在总结提高的基础上不断推出更多新型的CDI窑外分解系统,满足顾客的不同需求,服务于社会。
主要指标系统阻力≤4500P aC1分离效率≥95%C a C O3表观分解率≥93%主要规格参数规模(t/d)70015001000200025003500 40005000C1(m m)Φ3500Φ6200Φ39002-Φ39002-Φ43002-Φ55302-Φ43002-Φ4300C2(m m)Φ4000Φ6700Φ4600Φ5900Φ6500Φ85002-Φ58002-Φ6400 C3(m m)Φ4000Φ6700Φ4600Φ5900Φ6500Φ85002-Φ58002-Φ6400 C4(m m)Φ4300--------Φ5000Φ6400Φ7100Φ85002-Φ63002-Φ6900 C5(m m)Φ4300--------Φ5000Φ6400Φ7100Φ85002-Φ63002-Φ6900 C a l.(m m)Φ3900Φ6100Φ4500Φ5700Φ6300Φ7480Φ7700Φ7700 C D C分解炉特点旋流(三次风)与喷腾流(窑气)形成的复合流,兼备旋流与喷腾流的特点,二者强度的合理配合,强化了物料的分散。
预分解窑操作要求的特点1. 前言新型干法预分解窑全系统主要包括几个变化和反应过程:一是燃烧,二是各种气、固、液的化学反应,三是传热过程,四是物料的运输过程,五是冷却过程等。
每个过程及其相关的因素皆对窑系统的政常运行造成较大影响。
因此在操作上要求保持发热能力与传热能力平衡与稳定,以保持煅烧能力与预热预分解能力的平衡和稳定,为达到上述目的,操作时必须做到前后兼顾,窑炉协调,需要风、煤、料及窑速的合理配合与稳定,需要热工制度的合理稳定。
2. 预分解窑的用风特点2.1 预分解窑系统的用风特点2.1.1 预热预分解系统由预热器、分解炉及上升管道组成。
其传热过程主要在上升管道内进行,以对流传热为主。
物料通过撒料器,被上升烟气吹散并悬浮在烟气中迅速完成传热过程,而且预热器的悬浮效率由0.4降到0.1时,物料的预热温度就下降39.9℃,既增加废气温度。
因此对于上升管道的风速,要求能吹散并携带物料上升进入预热器,同时风速的大小影响着对流传热系数,风速低达不到要求造成管道水平部位粉尘沉降,极易造成塌料、堵塞;风速过高又造成通风阻力过大。
因此,在上升管道中风速一般为16~20m/s。
2.1.2 预热器的主要作用是收聚物料、实现固气分离,其分离效率和它的进风口风速及筒内截面风速有关,风速也影响着旋风筒的阻力损失。
但不同形式预热器的风速范围是不同的,一般截面风速为3~6 m/s,而入口最佳风速为16~20m/s。
2.1.3 分解炉中,物料、燃料与气体必须充分混和悬浮,完成边燃烧放热,边传热。
边分解过程,达到温度及进分解炉的燃料、物料、空气、烟气动态平衡。
其中物料及燃料的分散、悬浮和混合运动需要合适的风速。
燃料燃烧和物料分解速度也受风速的影响,而物料在炉内的停留时间、煤粉燃尽率及分解炉通风阻力更受风速的直接影响。
2.2 窑内用风的特点窑内用风主要是一次风与二次风。
二次风量受一次风量和系统拉风等影响。
一次风由于窑头煤粉的输送和供给煤粉中的挥发份燃烧所需的氧,以保证煤粉的燃烧需要。
五大热工设备介绍一、预热器:预热器主要功能是充分利用回转窑和分解炉排出的废气余热加热生料,使生料预热及部分硅酸盐分解,最大限度提高气固间的预热效率,实现整个煅烧系统的优质、高产、低消耗。
它必须具备气固分散均匀、换热迅速和高效分离三个功能,在旋风预热器中,物料与气流之间的热交换主要在各级旋风筒之间的连接管道中进行,因此对旋风筒本身的设计,主要考虑了如何获得较高的分离效率和较低的压力损失,旋风筒的主要任务在于气固分离。
来自上一级旋风筒收集下来的物料经喂料管落入散料板上冲散折回进入下一级旋风筒的排气管道中均匀冲散悬浮,并随上升气流进入旋风筒进行气固分离,气流由上而下做旋风运动,最后从锥部随排风机给予的动能沿旋风筒的中心垂直往上运动,此时,固体的物料沿筒壁落下进入下料溜管,排出的是相对干净的废气。
旋风筒的收尘效率及阻力与旋风筒内的风速密切相关,旋风筒截面风速一般控制在5—6m/s,进风口风速在15-18m/s,出口风速控制在11-14m/s,若过高,引起系统阻力较大,过低不利于旋风筒收尘。
预热器主要部位工艺操作参数如下图(以天津院TDF预热器为例):预热器工作原理如下图:二、分解炉:分解炉是在预热器和回转窑之间增设的一个装置,燃煤喂入分解炉燃烧放出的热量与进入炉内的生料碳酸盐的分解和吸热过程同时在浮状态下进行,使得入窑碳酸盐分解率提高到90%以上。
原来在窑内进行的分解反应移至分解炉内来,燃料大部分从分解炉内加入,减轻了窑内热负荷,延长了衬料的寿命有利于生产大型化,由于燃料与生料粉混合均匀,燃料燃烧热及时传递给物料,使燃烧、换热及碳酸盐分解过程都得到优化,因而具有优质、高效、低耗等一系列优良性能特点,它主要作用是燃料的燃烧、换热和碳酸盐的分解。
在分解炉内,生料及燃料分别依靠“涡旋效应”、“喷腾效应”、“悬浮效应”和“流化态效应”分散于气流之中。
由于物料之间在炉内流场中产生相对运动,从而达到高度分散、均匀混合和分布、迅速换热、延长物料在炉内的滞留时间,达到提高燃烧效率、换热效率和入窑物料碳酸盐分解率的目的。
分解炉的分类按分解炉与窑的连接方式大致分为三种类型1.同线型分解炉这种类型的分解炉直接坐落在窑尾烟室之上。
这种炉型实际是上升烟道的改良和扩展。
它具有布置简单的优点,窑气经窑尾烟室直接进入分解炉,由于炉内气流量大,氧气含量低,要求分解发炉具有较大的炉容或较大的气、固滞留时间长。
这种炉型布置简单、整齐、紧凑,出炉气体直接进入最下级旋风筒,因此它们可布置在同一平台,有利于降低建筑物高度。
同时,采用“鹅颈”管结构增大炉区容,亦有利于布置,不增加建筑物高度。
2.离线型分解炉这种类型的分解炉自成体系。
采用这种方式时,窑尾设有两列预热器,一列通过窑气,一列通过炉气,窑列物料流至窑列最下级旋风筒后再进入分解炉,同炉列物料一起在炉内加热分解后,经炉列最下级旋风筒分离后进入窑内。
同时,离线型窑一般设有两台主排风机,一台专门抽吸窑气,一台抽吸炉气,生产中两列工况可以单独调节。
在特大型窑,则设置三列预热器,两个分解炉。
3.半离线型分解炉这种类型的分解炉设于窑的一侧。
这种布置方式中,分解炉内燃料在纯三次风中燃烧,炉气出炉后可以在窑尾上升烟道下部与窑气会合(如RSP、MFC等),亦可在上升烟道上部与窑气会合(如N-MFC. SLC-S等),然后进入最下级旋风筒。
这种方式工艺布置比较复杂,厂房较大,生产管理及操作亦较为复杂。
其优点在于燃料燃烧环境较好,在采用“两步到位”模式时,有利于利用窑气热焰和防止粘结堵塞。
中国新研制的新型分解炉亦有采用这种模式的。
分解炉内的气流运动,有四种基本型式:即涡旋式、喷腾式、悬浮式及流化床式。
在这四种型式的分解炉内,生料及燃料分别依靠“涡旋效应”、“喷腾效应”、“悬浮效应”和“流态化效应”分散于气流之中。
由于物料之间在炉内流场中产生相对运动,从而达到高度分散、均匀混合和分布、迅速换热、延长物料在炉内的滞留时间,达到提高燃烧效率、换热效率和入窑物料碳酸盐分解率的目的。
分解炉作为预分解窑的“第二热源”,承担着繁重的燃料燃烧和换热任务。
1.预热器及分解炉系统的工作原理预热器及分解炉系统是一种生料悬浮预热、分解的理想设备,生料粉在悬浮状态下与高温气体充分混合、迅速传热,传热面积大热效率高,生料的升温速度快。
生料由二级筒至一级筒管道喂入,随上升气流进入一级筒被收集,然后按照与系统高温气流相反的方向,依次经二级筒、三级筒、分解炉、四级筒,进行预热分解,分解率约达85-95%,最后由五级筒收集入窑,而高温气流则依次经过窑尾烟室、缩口、分解炉混合室、五级筒、四级筒、三级筒、二级筒、一级筒,与生料进行热交换,温度逐渐降低,最后由窑尾高温风机排出。
分解炉内喷入煤粉,由冷却机引来的三次空气助燃,供氧充足,煤粉燃烧快,燃烧后的高温气体进入混合室,与窑尾缩口来的气流汇合向上进入五级筒。
2.回转窑的工作原理水泥回转窑是低速旋转的圆形筒体,是用以煅烧水泥熟料的设备,它以一定斜度依靠窑体上的轮带,安放在数对托轮上,由电机带动或液压传动,通过窑身大小牙轮,使筒体在一定转速内转动。
生料自高端(窑尾)喂入,向低端(窑头)运动,燃烧自低端吹入形成火焰,将生料通过碳酸盐分解、放热反应,烧成和冷却四个自然带的复杂物理化学变化,烧成熟料,由窑头卸出,烟气由窑尾排出。
3. 篦冷机的工作原理篦冷机内部被3°倾斜的篦床分为两个主要的独立区域,即物料冷却和热气流通过煌篦上区和冷却空气进入并分隔成若干个隔室的篦下区,篦床由许多与水平面成一定角度并交叠排列的多孔篦板所组成,篦板分活动篦板及固定篦板,按“活动”、“固定”、“活动”……相间排列,并通过活动和固定篦板支承固定在活动框架和侧框架上,活动框架通过与其相连的滑块轴、由曲柄连杆机构传动,使其沿托轮导轨作往复直线运动,从而带动活动篦板往复移动,推动物料前进。
活动框架由二段组成,每段都有独自的传动装置,篦下各室由风机吹入冷风,冷却空气透过热料层进行充分热交换将物料有效冷却,熟料从卸料端经锤式破碎机破碎,达到要求粒度的熟料通过栅筛篦条卸到熟料输送机上运走,大块熟料抛回篦床再冷却、破碎。