11.1.2函数2
- 格式:ppt
- 大小:3.07 MB
- 文档页数:75
章节测试题1.【答题】已知y=y1+y2,其中y1与x成反比例,且比例系数为k1(k1≠0),y2与x成正比例,且比例系数为k2(k2≠0),当x=-1时,y=0,则k1与k2的关系是()A. k1+k2=0B. k1-k2=0C. k1k2=1D. k1k2=-1【答案】A【分析】由题意y1与x成反比例,y2与x成正比例,可用待定系数法设出,再将x=-1时,y=0代入即可表示出k1与k2的关系.【解答】解:∵,∵当x=-1时,y=0,∴0=-k1-k2,∴k1+k2=0,选A.2.【答题】已知y与x2成反比例,并且当x=-2时,y=2,那么当x=4时,y等于()A. -2B. 2C.D. -4【答案】C【分析】由题意y与x2成反比例,设y=,然后把点(-2,2),代入求出k 值,从而求出函数的解析式,求出y值.【解答】解:∵y与x2成反比例,∴y=当x=-2时,y=2,∴,∴k=8,∴.当x=4时,.选C.3.【答题】甲、乙两地相距100千米,一辆汽车从甲地开往乙地,把汽车到达乙地所用时间t(小时)表示为汽车速度v(千米/时)的函数,其函数表达式为______.【答案】【分析】根据等量关系“路程=速度×时间”写出函数关系式.【解答】解:根据题意,得.故答案为:.4.【答题】已知y1与x成正比例系数为k1,y2与x成反比例,比例系数为k2,若函数y=y1-y2的图象经过点(1,2),(2,),则8k1+5k2的值为______.【答案】9【分析】设出y1和y2的解析式,由y=y1+y2的图象经过点(1,2),(2,),代入求得k1 、k2的值,再求得8k1+5k2的值.【解答】解:设则,将点(1,2),(2,),代入得,,解得,,∴8k1+5k2==9.5.【题文】已知y=y1+y2,其中y1与x成反比例,y2与(x-2)成正比例.当x=1时,y=-1;x=3时,y=3.(1)求y与x的函数关系式;(2)当x=-1时,y的值。
大一高等数学上册教材目录1. 引言1.1 数学的背景与发展1.2 高等数学的重要性与应用领域2. 函数与极限2.1 实数与实数集2.2 函数的基本概念2.2.1 函数的定义与表示2.2.2 函数的分类与性质2.3 极限的概念与性质2.3.1 数列极限2.3.2 函数极限2.3.3 极限的计算方法3. 导数与微分3.1 导数的定义与基本性质3.2 常见函数的导数3.2.1 幂函数、指数函数与对数函数的导数3.2.2 三角函数的导数3.2.3 反三角函数的导数3.3 高阶导数与隐函数求导3.4 微分的概念与应用3.4.1 微分的定义3.4.2 微分中值定理与Taylor公式4. 定积分4.1 定积分的基本概念与性质4.1.1 定积分的定义4.1.2 定积分的性质与计算方法 4.2 定积分的应用4.2.1 几何应用:面积与曲线长度4.2.2 物理应用:质量与质心5. 微分方程5.1 常微分方程的基本概念与解法 5.1.1 一阶线性微分方程5.1.2 二阶线性齐次微分方程5.1.3 高阶线性齐次微分方程5.2 变量可分离的微分方程5.3 非齐次线性微分方程5.4 高阶齐次线性微分方程6. 多元函数与偏导数6.1 二元函数的概念与性质6.1.1 二元函数的定义与表示6.1.2 二元函数的极限与连续6.2 偏导数的概念与计算6.3 高阶偏导数与全微分6.4 隐函数与参数方程7. 多元函数的极值与条件极值7.1 多元函数的极值与极值判定条件7.2 条件极值的求法与拉格朗日乘数法8. 多元函数的积分8.1 二重积分与二重积分的计算方法 8.1.1 二重积分的定义与性质8.2 三重积分与三重积分的计算方法8.2.1 三重积分的定义与性质8.2.2 三重积分的计算方法9. 空间解析几何9.1 空间直线与平面的方程9.2 空间曲线与曲面的方程9.2.1 空间曲线的参数方程与一阶导数 9.2.2 空间曲面的参数方程与切平面9.3 空间曲线和曲面的相交与重合10. 多元函数微分学的进一步应用10.1 向量及其运算10.2 曲线积分与曲线积分的计算方法 10.2.1 第一类曲线积分10.2.2 第二类曲线积分10.3 曲面积分与曲面积分的计算方法 10.3.1 曲面积分的定义与性质11. 幂级数与傅里叶级数11.1 幂级数的概念与性质11.1.1 幂级数的收敛域与收敛半径 11.1.2 幂级数的运算性质11.2 幂级数函数的性质与展开式11.3 傅里叶级数与傅里叶级数展开12. 泰勒级数与麦克劳林级数12.1 泰勒级数与余项估计12.2 麦克劳林级数与应用13. 线性代数初步13.1 线性空间与子空间的概念与性质 13.2 线性映射与线性变换13.3 线性方程组的解法与矩阵求逆 13.3.1 线性方程组的解法13.3.2 矩阵求逆与矩阵的秩13.4 特征值与特征向量14. 初等概率论14.1 随机试验与事件的概念14.2 概率的定义与性质14.3 条件概率与乘法定理14.4 离散型随机变量与概率分布14.5 连续型随机变量与概率密度函数15. 统计基础15.1 抽样与抽样分布的基本概念15.2 参数估计15.3 假设检验15.4 方差分析16. 其他附录16.1 常用数学符号与单位16.2 数学常用公式与定理以上是大一高等数学上册教材目录的简要内容安排。
松山湖南方外国语学校集体备课通案主备人:冯敬波8 年级数学科课题:11.1.2函数审核人:李德泉
学习目标(任务)知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数能力目标:会用变化的量描述事物
情感目标:回用运动的观点观察事物,分析事物
学习重、难点重点:函数的概念难点:函数的概念
主要设想、措施(学法、教法)教学媒体:多媒体电脑,计算器
教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围
课时安排及其它
1课时
导学过程引入:
信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能
看出小明各周岁时体重是如何变化的吗?
周岁 1 2 3 4 5 6 7 8 9 10 11 12 13
体重(kg)9.3 11.8 13.5 15.4 16.7 18.0 19.6 21.5 23.2 25 27.6 30.2 32.5 信息2:当你坐在摩天轮上时,随着旋转时间t(min)与你离开地面的高度h(m)之间的
关系如图,你能填写下表吗?
时间/min 0 1 2 3 4 5
高度/m
新课:
问题:(1)如图是某日的气温变化图。
①这张图告诉我们哪些信息?
问题补充(个性设
计)。
人教版初中数学章节目录七年级上册(61)第1章有理数(19)第2章整式的加减(8)第3章一元一次方程(18)第4章图形认识初步(16)_______________________________________________________________________________ 七年级下册(62)第5章相交线与平行线(14)第6章平面直角坐标系(7)第7章三角形(8)第8章二元一次方程组(12)第9章不等式与不等式组(12)第10章数据的收集整理与描述(9)_______________________________________________________________________________ 八年级上册(62)第11章全等三角形(11)第12章轴对称(13)第13章实数(8)第14章一次函数(17)第15章整式的乘除与因式分解(13)_______________________________________________________________________________ 八年级下册(61)第16章分式(14)第17章反比例函数(8)第18章勾股定理(8)第19章四边形(16)第20章数据的分析(15)_______________________________________________________________________________ 九年级上册(62)第21章二次根式(9)第22章一元二次方程(13)第23章旋转(8)第24章圆(17)第25章概率初步(15)_______________________________________________________________________________ 九年级下册(48)第26章二次函数(12)第27章相似(13)第28章锐角三角函数(12)第29章投影与视图(11)_______________________________________________________________________________%%%% 各章详细内容%%%%_______________________________________________________________________________ ~~~~七~~~年~~~级~~~上~~~册~~~~~~~~~~~~~~~~~~~~~第一章有理数1.1正数和负数阅读与思考用正负数表示加工允许误差1.2有理数1.3有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4有理数的乘除法观察与思考翻牌游戏中的数学道理1.5有理数的乘方数学活动小结复习题1第二章整式的加减2.1整式阅读与思考数字1与字母X的对话2.2整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程3.1从算式到方程阅读与思考“方程”史话3.2解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3解一元一次方程(二)——去括号与去分母3.4实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1多姿多彩的图形阅读与思考几何学的起源4.2直线、射线、线段阅读与思考长度的测量4.3角4.4课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~七年级下册第五章相交线与平行线5.1相交线5.2平行线5.3平行线的性质5.4平移数学活动小结复习题5第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用数学活动小结复习题6第七章三角形7.1与三角形有关的线段7.2与三角形有关的角7.3多边形及其内角和7.4课题学习镶嵌数学活动小结复习题7第八章二元一次方程组8.1二元一次方程组8.2消元8.3再探实际问题与二元一次方程组数学活动小结复习题8第九章不等式与不等式组9.1不等式9.2实际问题与一元一次不等式9.3一元一次不等式组9.4课题学习利用不等关系分析比赛(1)数学活动小结复习题9第十章数据的收集整理与描述10.1几种常见的统计图表10.2用图表描述数据信息技术应用利用计算机画统计图阅读与思考作者可能是谁10.3课题学习从数据谈节水数学活动小结复习题10~~八~~~年~~~级~~~上~~~册~~~~~~~~第十一章全等三角形11.1全等三角形11.2三角形全等的条件阅读与思考为什么要证明11.3角的平分线的性质数学活动小结复习题11第十二章轴对称12.1轴对称12.2轴对称变换信息技术应用探索轴对称的性质12.3等腰三角形实验与探究三角形中边与角之间的不等关系数学活动小结复习题12第十三章实数13.1平方根13.2立方根13.3实数数学活动小结复习题13第十四章一次函数14.1变量与函数信息技术应用用计算机画函数图象14.2一次函数阅读与思考科学家如何测算地球的年龄14.3用函数观点看方程(组)与不等式数学活动小结复习题14第十五章整式的乘除与因式分解15.1整式的乘法15.2乘法公式阅读与思考杨辉三角15.3整式的除法15.4因式分解观察与猜想x2+(p+q)x+pq型式子的因式分解数学活动小结复习题15 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~八年级下册第十六章分式16.1分式16.1分式的运算阅读与思考容器中的水能倒完吗16.1分式方程数学活动小结复习题16第十七章反比例函数17.1反比例函数17.1实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1勾股定理18.2勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1平行四边形19.2特殊的平行四边形实验与探究巧拼正方形19.3梯形观察与猜想平面直角坐标系中的特殊四边形19.4课题学习:重心数学活动小结复习题19第二十章数据的分析20.1数据的代表20.2数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3课题学习体质健康测试中的数据分析数学活动小结复习题20~~~九~~~年~~~级~~~上~~~册~~~~~~~~~~~~~~~~~~~~~~第二十一章二次根式21.1二次根式21.2二次根式乘除21、3二次根式的加减阅读与思考海伦──秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1一元二次方程22.2降次──解一元二次方程阅读与思考黄金分割数22.3实际问题与一元二次方程观察与猜想发现一元二次方程根与系数的关系数学活动小结复习题22第二十三章旋转23.1图形的旋转23.2中心对称信息技术应用探索旋转的性质23.3课题学习图案设计数学活动小结复习题23第二十四章圆24.1圆24.2与圆有关的位置关系24.3正多边形和圆阅读与思考圆周率π24.4弧长和扇形面积实验与研究设计跑道数学活动小结复习题24第二十五章概率初步25.1概率25.2用列举法求概率阅读与思考概率与中奖25.3利用频率估计概率阅读与思考布丰投针实验25.4课题学习键盘上字母的排列规律数学活动小结复习题25 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~九年级下册第二十六章二次函数26.1二次函数实验与探究推测植物的生长与温度的关系26.2用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3实际问题与二次函数数学活动小结复习题26第二十四章相似27.1图形的相似27.2相似三角形观察与猜想奇妙的分形图形27.3位似信息技术应用探索位似的性质数学活动小结复习题27第二十八章锐角三角函数28.1锐角三角函数阅读与思考一张古老的三角函数28.2解直角三角形数学活动小结复习题28第二十九章投影与视图29.1投影29.2三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型数学活动小结复习题29各章节详细知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线15.余角的概念16.补角的概念17.余角(补角)的性质七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定11.平行线的性质12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理9.多边形及其相关概念(多边形、对角线、正多边形)10.多边形的内角和定理11.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)4.二元一次方程的应用5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质6.一元一次不等式的解法7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定5.角平分线的性质6.角平分线的判定第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质5.线段垂直平分线的判定6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质4.立方根的概念5.立方根的性质6.实数的概念7.实数的分类8.实数的相反数、绝对值9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质6.一次函数的解析式7.一次函数的图象及其性质8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式2.幂的乘方公式3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则6.平方差公式7.完全平方公式8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质3.约分与通分4.最简分式5.分式乘除的法则6.分式加减的法则7.整数指数幂的运算性质8.分式方程的概念9.分式方程的解法10.分式方程的应用第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质3.反比例函数的应用第十八章《勾股定理》1.勾股定理2.勾股定理的逆定理第十九章《四边形》2.平行四边形的性质3.平行四边形的判定4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质8.菱形的概念9.菱形的性质10.菱形的判定11.正方形的概念12.正方形的性质与判定13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数4.方差九年级上册第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则6.最简二次根式7.二次根式的加减法法则第二十二章《一元二次方程》2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)第二十三章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质3.中心对称的相关概念(中心对称、对称中心、对称点)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征第二十四章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论3.弧、弦、圆心角、弦心距之间的关系定理4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念12.切线的性质及判定定理13.切线长定理14.圆与圆的位置关系及其相关概念15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式17.圆锥及圆柱的侧面积及表面积第二十五章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式5.用列表法、树形图计算概率6.频率与概率的关系高中数学目录此文为人教必修版新教材高中数学目录必修一第一章1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法第二章2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数图像(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图像2.2.2二次函数的性质与图像2.3函数的应用(1)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(2)必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱棱锥棱台的结构特征1.1.3圆柱圆锥圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱棱锥棱台和球的表面积1.1.7柱锥台和球的体积1.2点线面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点距离公式必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值输入输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单的随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相互关系2.3.2两个变量的线性相关第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用必修四第一章基本的初等函数(2)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图像与性质1.3.2余弦函数正切函数的图像与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件和轴上向量坐标运算2.2向量的分解和向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦余弦和正切3.3三角函数的积化和差与和差化积必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1且与或1.2.2非(否定)1.3充分条件必要条件与命题的四种形式1.3.1推出与充分条件必要条件1.3.2命题的四种形式第二章圆锥曲线方程2.1曲线方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程由方程研究曲线性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的集几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与几何体3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何1.2导数的运算1.2.1常数函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分的基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与实践的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析选修4-4第一章坐标系1.1直角坐标系平面上的伸缩变换1.1.1直角坐标系1.1.2平面上的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆1.4.2圆心在点(a,∏/2)处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线与圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2双曲线的参数方程2.3.3抛物线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程。
大学高等数学教材目录第一章前言1.1 数学教材的重要性1.2 数学教材的组成要素第二章函数与极限2.1 函数的概念与性质2.1.1 函数的定义2.1.2 函数的图像与性质2.2 极限的概念与性质2.2.1 极限的定义2.2.2 无穷小量与无穷大量2.3 一元函数的极限2.3.1 极限的运算法则2.3.2 连续函数与间断点2.4 多元函数的极限2.4.1 多元函数的定义与性质2.4.2 多元函数的极限计算2.5 极限存在准则与极限运算法则 2.5.1 极限存在准则2.5.2 极限运算法则的应用第三章导数与微分3.1 导数的概念与性质3.1.1 导数的定义与解释3.1.2 导数的几何意义与物理意义 3.2 导数运算法则3.2.1 导数的四则运算3.2.2 链式法则与复合函数的导数 3.3 高阶导数与隐函数求导3.3.1 高阶导数的定义3.3.2 隐函数求导的方法3.4 微分与微分近似3.4.1 微分的定义与计算3.4.2 微分近似与局部线性化第四章积分与定积分4.1 不定积分与反导函数4.1.1 不定积分的概念与性质4.1.2 基本积分公式与换元积分法4.2 定积分的概念与性质4.2.1 定积分的定义与几何意义4.2.2 定积分的计算方法4.3 定积分的应用4.3.1 几何应用:曲线长度与曲面面积 4.3.2 物理应用:质量、质心与弧长 4.4 微积分基本定理及其应用4.4.1 第一型与第二型微积分基本定理 4.4.2 牛顿-莱布尼茨公式的推广第五章一元函数的级数5.1 数项级数5.1.1 数项级数的概念与性质5.1.2 数项级数的敛散性判定5.2 幂级数与函数展开5.2.1 幂级数的收敛半径5.2.2 幂级数的基本性质与展开5.3 函数项级数5.3.1 函数项级数的概念与性质5.3.2 函数项级数的一致收敛性5.4 泰勒级数与傅里叶级数5.4.1 泰勒级数的定义与应用5.4.2 傅里叶级数的定义与计算第六章多元函数与偏导数6.1 多元函数的概念与性质6.1.1 多元函数的定义6.1.2 多元函数的极限与连续性6.2 偏导数与全微分6.2.1 偏导数的定义与计算6.2.2 全微分与多元函数的微分近似 6.3 多元复合函数与隐函数求导6.3.1 多元复合函数的偏导数6.3.2 多元隐函数的求导方法6.4 梯度与方向导数6.4.1 多元函数的梯度6.4.2 方向导数与梯度的应用第七章多元函数的积分学7.1 二重积分的概念与性质7.1.1 二重积分的定义与几何意义 7.1.2 二重积分的计算方法7.2 二重积分的应用7.2.1 几何应用:面积与质心7.2.2 物理应用:质量与矩7.3 三重积分的概念与性质7.3.1 三重积分的定义与几何意义 7.3.2 三重积分的计算方法7.4 三重积分的应用7.4.1 几何应用:体积与质心7.4.2 物理应用:质量与转动惯量7.5 曲线与曲面积分7.5.1 第一型曲线积分7.5.2 第二型曲线积分与曲面积分第八章常微分方程8.1 微分方程的基本概念8.1.1 微分方程的定义与分类8.1.2 初值问题与解的存在唯一性 8.2 一阶常微分方程8.2.1 可分离变量方程8.2.2 一阶线性方程8.3 二阶线性常系数齐次微分方程 8.3.1 特征方程与通解形式8.3.2 边值问题与特解法8.4 高阶线性常系数齐次微分方程 8.4.1 特征方程与通解形式8.4.2 边值问题与特解法8.5 常微分方程的应用8.5.1 骨架曲线与特解的选择8.5.2 物理领域中的应用第九章向量代数与空间解析几何9.1 向量的基本概念与运算9.1.1 向量的定义与性质9.1.2 向量的线性运算与数量积9.2 空间直线与平面9.2.1 空间直线的参数方程9.2.2 空间平面的法向量与标准方程 9.3 空间曲线与曲面9.3.1 曲线的参数方程与切向量9.3.2 曲面的方程与切平面9.4 空间解析几何的应用9.4.1 空间中的曲线运动问题9.4.2 几何体的性质与计算第十章空间向量与向量函数微积分10.1 空间向量的运算10.1.1 空间向量的定义与基本性质10.1.2 空间向量的线性运算与向量积 10.2 空间向量的微积分10.2.1 向量函数的极限与连续性10.2.2 向量函数的导数与曲率10.3 曲线与曲面的向量微积分10.3.1 参数曲线的弧长与切向量10.3.2 向量场与曲面积分第十一章多元函数与多元积分11.1 多元复合函数与链式法则11.1.1 高阶导数的定义与计算11.1.2 链式法则与复合函数的高阶导数 11.2 多元函数的积分11.2.1 多元函数的定积分11.2.2 重积分的计算方法11.3 极坐标与球面坐标系下的积分11.3.1 极坐标系下的二重积分11.3.2 球面坐标系下的三重积分11.4 多元积分的应用11.4.1 几何应用:质心与转动惯量 11.4.2 物理应用:质量、通量与功率第十二章向量场与曲线积分12.1 向量场的基本概念和性质12.1.1 向量场的定义与性质12.1.2 向量场的流线与发散度12.2 曲线积分的概念与性质12.2.1 曲线积分的定义12.2.2 曲线积分的计算方法12.3 格林公式与环量12.3.1 格林公式的表述与应用12.3.2 环量与全微分12.4 曲面积分的概念与性质12.4.1 曲面积分的定义与计算12.4.2 流量与高斯公式12.5 散度与环量12.5.1 散度的定义与计算12.5.2 散度与高斯公式的应用第十三章曲线曲面积分与斯托克斯公式 13.1 曲线积分的类型与计算13.1.1 第一型与第二型曲线积分13.1.2 曲线积分计算方法13.2 曲面积分的类型与计算13.2.1 第一型与第二型曲面积分13.2.2 曲面积分计算方法13.3 散度定理与高斯公式13.3.1 散度定理的表述与应用13.3.2 高斯公式与流量计算13.4 斯托克斯定理与环量13.4.1 斯托克斯定理的表述与应用 13.4.2 环量计算与应用第十四章常微分方程数值解14.1 常微分方程初值问题的数值解法14.1.1 欧拉方法与改进的欧拉方法14.1.2 龙格-库塔方法14.2 常微分方程边值问题的数值解法14.2.1 二点边值问题与分段线性插值14.2.2 有限差分方法与微分方程的离散化14.3 常微分方程数值解的误差估计14.3.1 局部截断误差与全局截断误差14.3.2 稳定性与收敛性的分析结语15.1 数学学科的重要性与发展15.2 高等数学教材的应用与拓展15.3 数学学科对于人类社会的贡献本教材将大学高等数学知识进行系统整理和归纳,以便帮助读者更好地学习和理解数学的基本概念、原理和应用。
大一高等数学教材目录1. 函数与极限1.1 实数与数集1.2 映射与函数1.3 数列的极限2. 导数与微分2.1 函数的导数与求导法则2.2 高阶导数与隐函数求导2.3 微分与微分近似计算3. 微分中值定理与应用3.1 微分中值定理与罗尔定理3.2 洛必达法则与泰勒公式3.3 函数的单调性与曲线的凹凸性4. 积分与不定积分4.1 不定积分的定义与基本积分法则4.2 轴对称曲线的面积与弧长4.3 定积分的定义与求积分法则5. 定积分的应用5.1 曲线的长度与曲面的面积5.2 旋转体的体积与质量5.3 牛顿-莱布尼茨公式与积分中值定理6. 微分方程6.1 常微分方程的基本概念与解法6.2 高阶微分方程与欧拉方程6.3 变量可分离方程与齐次方程7. 向量代数与空间解析几何7.1 向量的基本运算与数量积7.2 平面与直线的方程与位置关系7.3 空间曲线的参数方程与曲面的方程8. 多元函数微分学8.1 多元函数与偏导数8.2 隐函数与全微分8.3 多元函数的极值与条件极值9. 重积分9.1 重积分的定义与计算9.2 重积分的性质与换元法9.3 二重积分的应用10. 曲线积分与曲面积分10.1 第一类曲线积分10.2 第二类曲线积分与格林公式10.3 曲面积分与高斯公式11. 矢量场与无散场11.1 矢量场的流与散度11.2 无散场与斯托克斯公式11.3 无旋场与调和场12. 傅里叶级数与傅里叶变换12.1 傅里叶级数的概念与性质12.2 傅里叶级数的收敛与常用函数展开12.3 傅里叶变换与频谱分析以上是大一高等数学教材的目录,涵盖了函数与极限、导数与微分、微分中值定理与应用、积分与不定积分、定积分的应用、微分方程、向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分、矢量场与无散场、傅里叶级数与傅里叶变换等内容。
希望本教材可以帮助大一的学生对高等数学的各个知识点进行系统的学习与掌握,为今后的学习打下坚实的基础。
11.1反比例函数同步习题一.选择题1.货车每次运货吨数、运货次数和运货总吨数这三种量中,成反比例的是()A.货车每次运货吨数一定,运货次数和运货总吨数B.货车运货次数一定,每次运货吨数和运货总吨数C.货车运货总吨数一定,每次运货吨数和运货次数2.已知y与x成反比例函数,且x=2时,y=3,则该函数表达式是()A.y=6x B.y=C.y=D.y=3.已知x与y成反比例,z与x成正比例,则y与z的关系是()A.成正比例B.成反比例C.既成正比例也成反比例D.以上都不是4.下列说法中,两个量成反比例关系的是()A.商一定,被除数与除数B.比例尺一定,图上距离与实际距离C.圆锥的体积一定,圆锥的底面积和高D.圆柱的底面积一定,圆柱的体积和高5.已知y=2x2m是反比例函数,则m的值是()A.m=B.m=﹣C.m≠0D.一切实数6.函数y=中,自变量x的取值范围是()A.x>0B.x<0C.x≠0的一切实数D.x取任意实数7.若函数y=(m+1)是反比例函数,则m的值为()A.m=1B.m=﹣1C.m=±1D.m≠﹣18.若y与x成反比例,x与成正比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定9.下列函数中,y是x的反比例函数有()(1)y=3x;(2)y=﹣;(3);(4)﹣xy=3;(5);(6);(7)y=2x﹣2;(8).A.(2)(4)B.(2)(3)(5)(8)C.(2)(7)(8)D.(1)(3)(4)(6)10.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A.2B.C.D.6二.填空题11.若函数y=是反比例函数,则k0.(填“<”、“>”或“≠”)12.y=(k≠0)叫函数,x的取值范围是.13.给出的六个关系式:①x(y+1);②y=;③y=;④y=﹣;⑤y=;⑥y =x﹣1,其中y是x的反比例函数是.14.已知函数y=是y关于x的反比例函数,则m=.15.下表中,如果a与b成正比例,则“?”中应填的数是,如果a与b成反比例,“?”应填.a35b45?三.解答题16.下列哪些关系式中的y是x的反比例函数?y=4x,=3,y=﹣,y=6x+1,y=x2﹣1,y=,xy=123.17.给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成反比例.18.已知函数y=(m2+2m)(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.参考答案一.选择题1.解:A、因为:运货总吨数÷运货次数=每次运货吨数(一定),所以运货次数和运货总吨数成正比例,不合题意;B、因为:运货总吨数÷每次运货吨数=运货次数(一定),所以每次运货的吨数和运货总吨数成正比例,不合题意;C、因为:每次运货的吨数×运货的次数=运货总吨数(一定),所以每次运货的吨数和运货的次数成反比例,符合题意;故选:C.2.解:把x=2,y=3代入得k=6,所以该函数表达式是y=.故选:C.3.解:∵x与y成反比例,z与x成正比例,∴设x=,z=ax,故x=,则=,故yz=ka(常数),则y与z的关系是:成反比例.故选:B.4.解:A、=商一定,故两个量成正比例函数,故此选项不合题意;B、,不成反比例函数,故此选项不合题意;C、圆锥的体积=圆锥的底面积×高,圆锥的体积一定,圆锥的底面积和高成反比例关系,故此选项合题意;D、=圆柱的底面积一定,圆柱的体积和高成正比例关系,故此选项不符合题意;故选:C.5.解:y=2x2m是反比例函数,则2m=﹣1,所以.故选:B.6.解:函数y=中,自变量x的取值范围是x≠0,故选:C.7.解:由题意得:m2﹣2=﹣1且m+1≠0;解得m=±1,又m≠﹣1;∴m=1.故选:A.8.解:∵y与x成反比例,x与成正比例,∴设y=,x=a•(k、a为常数,k≠0,a≠0),∴y==z,即y是z的正比例函数,故选:A.9.解:(1)y=3x,是正比例函数,故此选项错误;(2)y=﹣,是反比例函数,故此选项正确;(3)是正比例函数,故此选项错误;(4)﹣xy=3是反比例函数,故此选项正确;(5),y是x+1的反比例函数,故此选项错误;(6),y是x2的反比例函数,故此选项错误;(7)y=2x﹣2,y是x2的反比例函数,故此选项错误;(8),k≠0时,y是x的反比例函数,故此选项错误.故选:A.10.解:y1=﹣=﹣,把x=﹣+1=﹣代入y=﹣中得y2=﹣=2,把x=2+1=3代入反比例函数y=﹣中得y3=﹣,把x=﹣+1=代入反比例函数y=﹣得y4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y2012=2.故选:A.二.填空题11.解:函数y=是反比例函数,则k≠0,故答案为:≠.12.解:y=(k≠0)叫反比例函数,x的取值范围是x≠0.13.解:①x(y+1)不是函数,不符合题意;②y=是y关于x+2的反比例函数,不符合题意;③y=是y关于x2的反比例函数,不符合题意;④y=﹣=,是y关于x的反比例函数,符合题意;⑤y=是y关于x的正比例函数,不符合题意;⑥y=x﹣1=,是y关于x的反比例函数,符合题意;故答案为:④⑥.14.解:∵函数y=是y关于x的反比例函数,∴解得m=﹣2,故答案为:﹣2.15.解:如果a与b成正比例,则“?”中应填的数是5×=75,如果a与b成反比例,“?”应填45×3÷5=27.故答案为:75;27.三.解答题16.解:y=4x不是反比例函数,=3不是反比例函数,y=﹣是反比例函数,y=6x+1不是反比例函数,y=x2﹣1不是反比例函数,y=不是反比例函数,xy=123是反比例函数.17.解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.18.解:(1)由y=(m2+2m)是正比例函数,得m2﹣m﹣1=1且m2+2m≠0,解得m=2或m=﹣1;(2)由y=(m2+2m)是反比例函数,得m2﹣m﹣1=﹣1且m2+2m≠0,解得m=1.故y与x的函数关系式y=3x﹣1.。
高等数学同济下册教材目录第一章无穷级数1.1 数项级数1.1.1 数项级数的概念1.1.2 数项级数的性质1.1.3 极限形式的级数1.2 幂级数1.2.1 幂级数的概念1.2.2 幂级数的收敛域1.2.3 幂级数的和函数1.3 函数项级数1.3.1 函数项级数的概念1.3.2 函数项级数的一致收敛性第二章傅里叶级数2.1 傅里叶级数的定义2.1.1 周期函数的傅里叶级数2.1.2 奇偶延拓的傅里叶级数2.2 傅里叶级数的性质2.2.1 傅里叶级数的线性性质2.2.2 傅里叶级数的逐项积分与逐项微分 2.2.3 傅里叶级数的逐项积分和逐项微分 2.3 傅里叶级数的收敛性2.3.1 傅里叶级数一致收敛的性质2.3.2 周期函数的傅里叶级数收敛性2.3.3 局部函数化的傅里叶级数第三章一元函数积分学3.1 定积分3.1.1 定积分的定义3.1.2 定积分的性质3.1.3 线性运算与换元积分法3.2 反常积分3.2.1 第一类反常积分3.2.2 第二类反常积分3.3 微积分基本定理3.3.1 牛顿-莱布尼茨公式3.3.2 积分求导法3.3.3 函数定积分的应用第四章多元函数微分学4.1 多元函数的极限与连续4.1.1 多元函数的极限4.1.2 多元函数的连续性4.2 多元函数的偏导数与全微分 4.2.1 多元函数的偏导数4.2.2 多元函数的全微分4.3 隐函数与参数方程的偏导数 4.3.1 隐函数的偏导数4.3.2 参数方程的偏导数第五章多元函数的积分学5.1 二重积分5.1.1 二重积分的概念5.1.2 二重积分的性质5.1.3 二重积分的计算方法5.2 三重积分5.2.1 三重积分的概念5.2.2 三重积分的性质5.2.3 三重积分的计算方法5.3 曲线积分与曲面积分5.3.1 第一类曲线积分5.3.2 第二类曲线积分5.3.3 曲面积分第六章多元函数的向量微积分6.1 多元函数的梯度、散度与旋度 6.1.1 多元函数的梯度6.1.2 多元函数的散度6.1.3 多元函数的旋度6.2 多元函数的曲线积分与曲面积分 6.2.1 多元函数的第一类曲线积分 6.2.2 多元函数的第二类曲线积分6.2.3 多元函数的曲面积分第七章序列与函数的多元极限7.1 多元函数的序列极限7.1.1 多元函数序列极限的概念7.1.2 多元函数序列极限的性质7.2 多元函数的函数极限7.2.1 多元函数函数极限的概念7.2.2 多元函数函数极限的性质第八章多元函数的泰勒展开8.1 函数的多元Taylor展开8.1.1 函数的多元Taylor展开定理 8.1.2 函数的多元Taylor展开的应用 8.2 隐函数存在定理与逆函数存在定理 8.2.1 隐函数存在定理8.2.2 逆函数存在定理第九章向量场与散度定理9.1 向量场9.1.1 向量场的定义9.1.2 向量场与流线9.2 散度与散度定理9.2.1 向量场的散度9.2.2 散度定理的概念与性质第十章曲线积分与斯托克斯定理10.1 向量值函数的曲线积分10.1.1 向量值函数的曲线积分的定义 10.1.2 向量值函数的曲线积分的计算 10.2 Stokes定理10.2.1 Stokes定理的概念与性质第十一章重积分与高斯定理11.1 二重积分与三重积分的概念11.1.1 二重积分与三重积分的定义 11.1.2 二重积分与三重积分的性质 11.2 高斯定理11.2.1 高斯定理的概念与性质第十二章序列与级数的广义极限12.1 无穷小量和无穷大量12.1.1 无穷小量的概念与性质12.1.2 无穷大量的概念与性质12.2 级数极限与广义极限12.2.1 级数极限的概念与性质12.2.2 广义极限的概念与性质第十三章多项式逼近与傅里叶级数近似13.1 约束方程组的最小二乘解13.1.1 约束方程组的最小二乘解的概念 13.1.2 约束方程组的最小二乘解的计算 13.2 多项式逼近13.2.1 多项式逼近的概念与性质13.2.2 最佳一致逼近13.3 傅里叶级数的近似13.3.1 傅里叶级数的收敛性13.3.2 傅里叶级数的部分和逼近第十四章偏微分方程初步14.1 偏导数14.1.1 偏导数的定义与性质14.1.2 高阶偏导数14.2 偏微分方程的分类与例子14.2.1 第一阶偏微分方程14.2.2 二阶线性偏微分方程14.2.3 泊松方程与拉普拉斯方程第十五章全微分方程初步15.1 微分方程的定义与解15.1.1 微分方程的概念与性质15.1.2 微分方程解的存在唯一性 15.2 一阶线性微分方程15.2.1 齐次线性微分方程15.2.2 非齐次线性微分方程15.3 可降阶的高阶线性微分方程15.3.1 可降阶的高阶线性微分方程第十六章复变函数初步16.1 复数的性质与运算16.1.1 复数的概念与性质16.1.2 复数的运算与表示16.2 复变函数的导数16.2.1 复变函数的导数的定义 16.2.2 复变函数的导数的性质 16.3 复变函数的积分16.3.1 复变函数的积分的定义 16.3.2 复变函数的积分的性质第十七章应用篇17.1 牛顿法与割线法17.1.1 牛顿迭代法17.1.2 割线法17.2 微分方程的应用17.2.1 放射性衰变方程17.2.3 流体的入口速度与出口速度之间的关系17.3 级数的应用17.3.1 泰勒级数的应用17.3.2 调和级数的收敛性与发散性希望以上内容能满足您对《高等数学同济下册教材目录》的需求,如有任何疑问或其他需求,请随时告知。
成考教材高等数学二目录高等数学二目录第一章极限与连续1.1 极限的概念与性质1.1.1 数列极限1.1.2 函数极限1.1.3 极限的性质与运算法则1.2 无穷小量与无穷大量1.2.1 无穷小量的定义与性质1.2.2 无穷大量的定义与性质1.2.3 无穷小量与无穷大量的关系与运算1.3 函数的连续性与间断点1.3.1 连续函数的定义与性质1.3.2 连续函数的四则运算1.3.3 间断点及其分类1.4 极限运算与连续函数的应用1.4.1 利用极限计算函数的连续性1.4.2 连续函数的介值性定理 1.4.3 立体几何问题中的应用第二章导数与微分2.1 导数的概念与性质2.1.1 导数的定义2.1.2 导数的运算法则2.1.3 高阶导数与隐函数求导 2.2 函数的微分与近似2.2.1 微分的定义与性质2.2.2 微分的应用2.2.3 泰勒公式及其应用2.3 高阶导数与高阶微分2.3.1 高阶导数的定义与性质 2.3.2 高阶微分的定义与性质 2.3.3 高阶导数的应用2.4 隐函数与参数方程的导数 2.4.1 隐函数求导的基本方法2.4.2 参数方程求导的基本方法2.4.3 参数方程与隐函数在几何中的应用第三章微分中值定理与Taylor公式3.1 微分中值定理3.1.1 Rolle定理与Lagrange中值定理3.1.2 Cauchy中值定理及其应用3.1.3 Bernoulli中值定理及其应用3.2 Taylor公式3.2.1 Taylor公式及其余项3.2.2 Taylor公式的应用3.2.3 幂级数与函数的展开第四章不定积分和定积分4.1 不定积分4.1.1 不定积分的定义与性质4.1.2 基本不定积分表4.1.3 不定积分的运算与换元法4.2 定积分4.2.1 定积分的概念与性质4.2.2 Newton-Leibniz公式4.2.3 定积分的计算与应用4.3 定积分的应用4.3.1 定积分在几何中的应用 4.3.2 定积分在物理中的应用 4.3.3 定积分在生活中的应用第五章多元函数微积分学5.1 二元函数微分学5.1.1 偏导数的定义与性质5.1.2 二元函数的全微分5.1.3 链式法则与隐函数定理 5.2 多元函数的导数5.2.1 多元函数的方向导数5.2.2 梯度与方向导数5.2.3 多元复合函数的导数5.3 多元函数的极值与条件极值5.3.1 多元函数的极值判定5.3.2 多元函数的条件极值5.3.3 基本最值定理5.4 重积分5.4.1 重积分概念与性质5.4.2 二重积分的计算与应用5.4.3 三重积分的计算与应用第六章无穷级数与幂级数6.1 无穷级数的收敛性与性质6.1.1 无穷级数的概念与性质6.1.2 收敛级数的性质与判别法 6.1.3 收敛级数的运算与函数展开 6.2 函数项级数6.2.1 函数项级数的收敛性6.2.2 函数项级数的性质与判别法 6.2.3 函数项级数的一致收敛性 6.3 幂级数与泰勒级数6.3.1 幂级数的收敛域与运算法则 6.3.2 幂级数的应用与性质6.3.3 泰勒级数与其应用第七章曲线与曲面积分7.1 曲线积分7.1.1 第一类曲线积分7.1.2 第二类曲线积分7.1.3 Green公式及其应用7.2 曲面积分7.2.1 第一类曲面积分7.2.2 第二类曲面积分7.2.3 Gauss公式及其应用7.3 广义积分7.3.1 第一类广义积分7.3.2 第二类广义积分7.3.3 海涅公式与其应用第八章空间解析几何与向量代数8.1 空间平面与直线8.1.1 空间平面的方程与性质 8.1.2 空间直线的方程与性质 8.1.3 空间曲线的参数方程8.2 空间向量与点线面距离8.2.1 空间向量的定义与运算 8.2.2 向量的数量积与向量积 8.2.3 点线面间的距离与投影 8.3 空间曲面与曲线的参数化8.3.1 参数方程的定义与性质 8.3.2 曲线的切线与法平面8.3.3 曲面的法线与切平面第九章偏导数与微分9.1 函数的偏导数9.1.1 函数的偏导数概念与性质 9.1.2 高阶偏导数与混合偏导数 9.1.3 隐函数的偏导数计算9.2 多元函数的全微分9.2.1 多元函数的全微分定义与性质9.2.2 多元函数的全微分计算9.2.3 隐函数的全微分计算9.3 微分的近似与应用9.3.1 微分的近似计算9.3.2 微分在局部线性化中的应用9.3.3 微分在误差估计中的应用第十章多元函数的极值与条件极值10.1 多元函数的极值判定10.1.1 多元函数的极值性质与判别法 10.1.2 多元函数的极值存在性与应用 10.2 多元函数的条件极值10.2.1 多元函数的条件极值求解10.2.2 条件极值的充分条件与应用10.2.3 无约束极值与最大值最小值问题第十一章重积分及其应用11.1 二重积分的概念与性质11.1.1 二重积分的定义11.1.2 二重积分的性质与计算11.1.3 二重积分的应用11.2 三重积分的概念与性质11.2.1 三重积分的定义11.2.2 三重积分的性质与计算11.2.3 三重积分的应用11.3 重积分的变量替换与坐标变换 11.3.1 重积分的变量替换方法11.3.2 极坐标与柱坐标变换11.3.3 面积分与体积分的计算方法第十二章曲线积分与曲面积分12.1 曲线积分12.1.1 一类曲线积分12.1.2 二类曲线积分12.1.3 Green公式与环量计算12.2 曲面积分12.2.1 一类曲面积分12.2.2 二类曲面积分12.2.3 Gauss公式与通量计算12.3 散度与旋度12.3.1 向量场的散度与旋度12.3.2 散度定理与Stokes公式12.3.3 求解散度与旋度的应用第十三章多元函数积分学的进一步应用 13.1 广义积分13.1.1 广义积分的基本概念13.1.2 一类广义积分的收敛性13.1.3 第二类广义积分的计算13.2 多元函数积分学的应用13.2.1 空间曲线与空间曲面的长度13.2.2 形心、质心与薄片质量13.2.3 统计学中的应用第十四章参数方程与空间解析几何 14.1 参数方程的求法与性质14.1.1 参数方程的求法与简化14.1.2 参数方程的性质与性质14.1.3 参数方程与向量函数的关系 14.2 空间曲线的性质与判断方法14.2.1 曲线的切线与法平面14.2.2 曲线的凸凹性与对称性14.3 空间几何体的性质与计算14.3.1 空间几何体的体积与表面积 14.3.2 空间几何体的位置关系14.3.3 空间几何体的方向角与夹角第十五章应用题综合实例分析15.1 实际问题的数学建模15.1.1 数学建模的基本思想15.1.2 实际问题的模型假设15.1.3 实际问题的数学建模步骤15.2 应用题的综合实例分析15.2.1 空间点与空间曲线的几何关系 15.2.2 变力做功与功率15.2.3 流体的力学性质与运动规律第十六章常微分方程16.1 常微分方程的基本概念与性质16.1.1 微分方程的基本概念16.1.2 微分方程的解与解的存在唯一性 16.1.3 微分方程的解的初值问题16.2 一阶常微分方程16.2.1 可分离变量方程16.2.2 齐次方程与非齐次方程16.2.3 一阶线性方程16.3 高阶线性常微分方程16.3.1 齐次线性方程16.3.2 常系数非齐次线性方程16.3.3 变系数非齐次线性方程16.4 常微分方程的应用16.4.1 物理问题的微分方程模型16.4.2 生态问题的微分方程模型16.4.3 人口问题的微分方程模型总结本教材共包括16章,分别介绍了高等数学二的各个知识点和概念。
苏科版数学八年级下册《11.1 反比例函数》教学设计一. 教材分析《苏科版数学八年级下册》中的“11.1 反比例函数”是学生在学习了初中数学基础知识后,对函数概念的进一步理解。
本节内容通过反比例函数的定义、性质、图像和应用,使学生掌握反比例函数的基本概念,学会运用反比例函数解决实际问题,培养学生运用数学知识解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了函数、比例的知识,具备了一定的逻辑思维能力和解决问题的能力。
但部分学生对函数的概念理解不够深入,对实际问题中变量间的函数关系辨识能力有待提高。
因此,在教学过程中,要关注学生的个体差异,引导学生深入理解反比例函数的定义和性质,提高学生解决实际问题的能力。
三. 教学目标1.知识与技能:理解反比例函数的定义,掌握反比例函数的性质和图像,学会运用反比例函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质,培养学生的抽象思维能力和解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生运用数学知识服务社会、解决问题的意识。
四. 教学重难点1.重点:反比例函数的定义、性质和图像。
2.难点:反比例函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的教学案例和实际问题,用于引导学生运用反比例函数解决实际问题。
2.准备多媒体教学设备,用于展示反比例函数的图像和案例分析。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生关注变量间的反比例关系,激发学生的学习兴趣。
例如,展示一辆汽车以恒定速度行驶,行驶的路程与时间的关系。
2.呈现(15分钟)介绍反比例函数的定义,引导学生通过观察、分析实际问题,总结出反比例函数的性质。
同时,利用多媒体展示反比例函数的图像,帮助学生更好地理解反比例函数的性质。
北工大高等数学教材目录一、导言二、集合2.1 集合的基本概念2.1.1 集合的定义2.1.2 集合的表示方法2.2 集合的运算2.2.1 并集2.2.2 交集2.2.3 差集2.2.4 补集2.3 集合的基本性质2.3.1 子集关系2.3.2 等价关系三、函数与映射3.1 函数的定义与性质3.1.1 函数的概念3.1.2 函数的表示方法3.2 映射的基本概念3.3 一元函数与多元函数3.3.1 一元函数的性质与图像3.3.2 多元函数的性质与图像四、极限与连续4.1 数列的极限4.1.1 数列极限的定义4.1.2 数列极限的性质4.2 函数的极限4.2.1 函数极限的定义4.2.2 函数极限的性质4.3 连续与间断4.3.1 连续函数的定义4.3.2 间断点与间断类型五、微分学5.1 导数的定义与计算5.1.1 导数的定义5.1.2 常见函数导数的计算方法 5.2 导数的应用5.2.1 切线与法线5.2.2 最值与单调性5.3 高阶导数5.3.1 高阶导数的定义5.3.2 高阶导数的计算方法六、积分学6.1 定积分的定义与计算6.1.1 定积分的定义6.1.2 常见函数定积分的计算方法 6.2 定积分的应用6.2.1 曲线下的面积6.2.2 弧长与旋转体的体积6.3 不定积分与基本积分公式6.3.1 不定积分的定义6.3.2 常见函数不定积分的计算方法七、微分方程7.1 一阶微分方程7.1.1 可分离变量的微分方程7.1.2 齐次线性微分方程7.2 二阶线性微分方程7.2.1 常系数齐次线性微分方程7.2.2 变系数齐次线性微分方程7.3 微分方程的应用7.3.1 生物学模型中的微分方程7.3.2 物理学模型中的微分方程八、无穷级数8.1 数项级数的收敛性8.1.1 数项级数的部分和数列8.1.2 数项级数的收敛性概念8.2 常见数项级数的收敛性判别法8.2.1 正项级数的比较判别法8.2.2 任意项级数的绝对收敛性判别法 8.3 幂级数8.3.1 幂级数的收敛半径与收敛区间8.3.2 幂级数的常见性质九、多元函数与偏导数9.1 多元函数的定义与性质9.1.1 多元函数的概念9.1.2 多元函数的表示方法9.2 偏导数的定义与计算9.2.1 偏导数的概念9.2.2 偏导数的计算方法9.3 隐函数与参数方程9.3.1 隐函数的导数9.3.2 参数方程的导数十、重积分与曲线积分10.1 二重积分的概念与计算10.1.1 二重积分的定义10.1.2 常见函数的二重积分计算方法 10.2 三重积分的概念与计算10.2.1 三重积分的定义10.2.2 常见函数的三重积分计算方法 10.3 曲线积分的概念与计算10.3.1 第一类曲线积分10.3.2 第二类曲线积分十一、场论与曲面积分11.1 向量场的定义与性质11.1.1 向量场的概念11.1.2 向量场的运算法则11.2 曲面积分的概念与计算11.2.1 曲面积分的定义11.2.2 常见函数的曲面积分计算方法 11.3 散度与旋度11.3.1 散度的定义与性质11.3.2 旋度的定义与性质注:以上仅为北工大高等数学教材的目录概要,具体内容请参阅教材正文。