逻辑函数及其化简
- 格式:ppt
- 大小:980.50 KB
- 文档页数:77
逻辑函数化简公式大全逻辑函数化简是在布尔代数中常用的一种方法,它通过应用逻辑运算规则和布尔代数定律,将复杂的逻辑函数简化为更简洁的形式。
这种简化可以减少逻辑电路的复杂性,提高计算机系统的效率。
以下是一些常见的逻辑函数化简公式大全:1. 与运算的化简:- 与运算的恒等律:A∧1 = A,A∧0 = 0- 与运算的零律:A∧A' = 0,A∧A = A- 与运算的吸收律:A∧(A∨B) = A,A∧(A∧B) = A∧B- 与运算的分配律:A∧(B∨C) = (A∧B)∨(A∧C)- 与运算的交换律:A∧B = B∧A2. 或运算的化简:- 或运算的恒等律:A∨1 = 1,A∨0 = A- 或运算的零律:A∨A' = 1,A∨A = A- 或运算的吸收律:A∨(A∧B) = A,A∨(A∨B) = A∨B- 或运算的分配律:A∨(B∧C) = (A∨B)∧(A∨C)- 或运算的交换律:A∨B = B∨A3. 非运算的化简:- 非运算的双重否定律:(A) = A- 非运算的德摩根定律:(A∧B) = A∨B,(A∨B) = A∧B4. 异或运算的化简:- 异或运算的恒等律:A⊕0 = A,A⊕1 = A- 异或运算的自反律:A⊕A = 0- 异或运算的结合律:A⊕(B⊕C) = (A⊕B)⊕C- 异或运算的交换律:A⊕B = B⊕A5. 条件运算的化简:- 条件运算的恒等律:A→1 = 1,A→0 = A- 条件运算的零律:A→A' = 0,A→A = 1- 条件运算的反转律:A→B = A∨B- 条件运算的分配律:A→(B∧C) = (A→B)∧(A→C)这些公式是逻辑函数化简中常用的基本规则,通过灵活应用它们,可以将复杂的逻辑表达式简化为更简单的形式。
使用这些规则,我们可以提高逻辑电路的效率和简洁性,并降低硬件成本。
第2章逻辑函数及其化简内容提要本章是数字逻辑电路的基础,主要内容包含:(1)基本逻辑概念,逻辑代数中的三种基本运算(与、或、非)及其复合运算(与非、或非、与或非、同或、异或等)。
(2)逻辑代数运算的基本规律(变量和常量的关系、交换律、结合律、分配律、重叠律、反演律、调换律等)。
(3)逻辑代数基本运算公式及三个规则(代入规则、反演规则和对偶规则)。
(4)逻辑函数的五种表示方法(真值表法、表达式法、卡诺图法、逻辑图法及硬件描述语言)及其之间关系。
本章主要讲述了前三种。
(5)逻辑函数的三种化简方法(公式化简法、卡诺图法和Q–M法)。
教学基本要求要求掌握:(1)逻辑代数的基本定律和定理。
(2)逻辑问题的描述方法。
(3)逻辑函数的化简方法。
重点与难点本章重点:(1)逻辑代数中的基本公式、基本定理和基本定律。
(2)常用公式。
(3)逻辑函数的真值表、表达式、卡诺图表示方法及其相互转换。
(4)最小项和最大项概念。
(5)逻辑函数公式化简法和卡诺图化简法。
主要教学内容2.1 逻辑代数中的三种基本运算和复合运算2.1.1 三种基本运算2.1.2 复合运算2.2 逻辑代数运算的基本规律2.3 逻辑代数的常用运算公式和三个规则2.3.1 逻辑代数的常用运算公式2.3.2 逻辑代数的三个规则2.4 逻辑函数及其描述方法2.4.1 逻辑函数2.4.2 逻辑函数及其描述方法2.4.3 逻辑函数的标准形式2.4.4 逻辑函数的同或、异或表达式2.5 逻辑函数化简2.5.1 公式法化简2.5.2 卡诺图化简2.1 逻辑代数中的三种基本运算和复合运算2.1.1 三种基本运算1. 与运算(逻辑乘)2. 或运算(逻辑加)3. 非运算(逻辑非)2.1.2 复合运算1. 与非运算与非运算是与运算和非运算的组合,先进行与运算,再进行非运算。
2. 或非运算或非运算是或运算和非运算的组合,先进行或运算,再进行非运算。
3. 与或非运算与或非运算是与运算、或运算和非运算的组合,先进行与运算,再进行或运算,最后进行非运算。
1.3.4 逻辑函数的化简•对逻辑函数进行化简,可以求得最简逻辑表达式,也可以使实现逻辑函数的逻辑电路得以简化,这样既有利于节省元器件,也有利于提高可靠性。
•逻辑函数有如下三种化简方法:•公式化简法:利用逻辑代数的基本公式和规则来化简逻辑函数。
•图解化简法:又称卡诺图(Karnaugh Map)化简法。
•表格法:又称Q-M(Quine-McCluskey)化简法。
1.逻辑函数的公式化简法同一个逻辑函数,可以用不同类型的表达式表示,主要有以下五类:“与或”表达式、“或与”表达式、“与非”-“与非”表达式、“或非”-“或非”表达式、“与或非”表达式。
例如函数:=+Z AC AB“与或”表达式A B A C“或与”表达=++()()式AC AB“与非”-“与非”表达=⋅式=+++A B A C“或非”-“或非”表达式“与或非”表达式判断最简“与或”表达式的条件如下:(1)乘积项(即与项)个数最少的“与或”表达式;(2)当乘积项个数相等,则每个乘积项中因子(即变量)的个数最少的“与或”表达式。
例1-5 以下4个“与或”表达式是相等的,即它们表示同一个函数:(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 试判断哪一个是最简“与或”表达式。
(1)(2)(3)(4)=+++=++=++=++Z AC BC AB ACAC ABC ACAC BC ACAC AB AC 解:根据判断条件(1),式(1)含有4个与项,而式(2)~(4)都含有3个与项,因此,式(2)~(4)有可能最简;进一步比较与项中个数,式(3)和式(4)中,各与项都含2个变量,而式(2)中有一个与项含3个变量。
结论:式(3)和式(4)同为该函数的最简“与或”表达式。
公式法化简:借助定律和定理化简逻辑函数,常用以下几种方法。
(1)并项法利用互补率1A A +=()+=+=A BC A BC A B C C A B()()+++=⋅⊕+⋅⊕=A BC BC A BC BC A B C A B C A+=B ABD B,将两项合并为一项,合并时消去一个变量,如:(2)吸收法利用定理1(A + AB = A ),吸收掉(即除去)多余的项,如:(3)消去法利用定理2(+=+A AB A B ()++=++=+=+AB A C BC AB A B C AB ABC AB C(4)配项法根据互补律,利用()=+B A A B +A A ()()+++=+++++AB BC BC AB AB BC A A BC AB C C =+++++AB BC ABC A BC ABC ABC()()()=+++++AB ABC BC ABC A BC ABC =++AB BC A C),消去多余的因子,如:,先添上()作配项用,以便最后消去更多的项。