不等式选讲之不等式证明与数学归纳法二轮复习专题练习(四)带答案人教版高中数学高考真题汇编
- 格式:doc
- 大小:253.00 KB
- 文档页数:5
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.1 .(汇编年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为_______.
2.已知x y z 、、均为正数,求证:2223111111()3x y z x y z
++≤++.
评卷人
得分 二、解答题
3.(选修4—5:不等式证明选讲)(本小题满分10分)
已知,,a b c 均为正数,证明:2222111()63a b c a b c
+++++≥. 【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人得分一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.已知正数,,x y z 满足2221x y z ++=,则12zS xyz+=的最小值为________ 评卷人得分二、解答题3.[选修4-5:不等式选讲](本小题满分10分) 已知a 、b 、c 均为正实数,且a +b +c =1,求111a b c +++++的最大值.4.(选修4—5:不等式证明选讲)(本小题满分10分)已知,,a b c 均为正数,证明:2222111()63a b c a b c +++++≥.5.已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <.【答案与解析】【点评】本题主要考查不等式的基本性质、绝对值不等式及其运用,属于中档题,难度适中.切实注意绝对值不等式的性质与其灵活运用. 6.对于实数y x ,,若,12,11≤-≤-y x 求1+-y x 的最大值.7.若正数a ,b ,c 满足a +b +c =1,求111323232a b c +++++的最小值.8.设123a a a ,,均为正数,且123a a a m ++=,求证1231119.a a a m++≥【证明】因为123111()m a a a ++g 123123111()()a a a a a a =++++33123123111339a a a a a a ⋅⋅⋅⋅⋅=≥,当且仅当1233m a a a ===时等号成立.又因为1230m a a a =++>,所以1231119.a a a m ++≥ ……………10分【参考答案】***试卷处理标记,请不要删除评卷人得分一、填空题1.; 2.4 评卷人得分二、解答题3. 解:因 a 、b 、c >0,故(111a b c +++++)2 = (111111a b c +⋅++⋅++⋅)2≤((a +1)+(b +1)+(c +1))(1+1+1)=12,························································3分于是111a b c +++++≤23, 当且仅当111a b c +=+=+,即a =b =c =13时,取“=”. 所以,111a b c +++++的最大值为23.··········································10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答..,解答时应写出文字说明、证明过程或演算步骤. 4. (选修4-5:不等式选讲) 证法一:因为a b c ,,均为正数,由均值不等式得22223()a b c abc ++≥3,………………………2分因为13111()abc a b c-++≥3,所以223111(()abc a b c-++)≥9 .…………………………………5分故22222233111(()()a b c abc abc a b c-++++++)≥39.又32233()9()22763abc abc -+=≥,所以原不等式成立.…………………………………10分证法二:因为a b c ,,均为正数,由基本不等式得222a b ab +≥,222b c bc +≥,222c a ca +≥.所以2a b ++++≥.……………………………………………………………………2分 同理2211a b++++≥,…………………………………………………………………5分所以2222111333(63a b c ab bc ca a b c ab bc ca ++++++++++)≥≥.所以原不等式成立.………………………………………………………………………………10分 5.6.解法一:1+-y x =|)2()1(|---y x …………………………5′ 221≤-+-≤y x …………………………9′(当且仅当3,2==y x 或x=0,y=1时取等号)…………………………10′ 解法二:∵11≤-x , ∴20≤≤x …………………………3′ ∵,12≤-y ∴31≤≤y …………………………6′ ∴13-≤-≤-y∴212≤+-≤-y x …………………………9′ ∴1+-y x 的最大值为2. …………………………10′ 7.因为正数a ,b ,c 满足a +b +c =1, 所以,()()()()()211132323a b c a b c +++++++++⎡⎤⎣⎦+++≥,………………5分即1111 323232≥a b c+++++,当且仅当32323a b c+=+=+,即13a b c===时,原式取最小值1.………………10分8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 评卷人得分 二、解答题3.【题文】[选修4 - 5:不等式选讲](本小题满分10分)设2()13f x x x =-+,实数a 满足1x a -<,求证:()()2(1)f x f a a -<+.4.(汇编年高考湖南卷(理))在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”.如图6所示的路径1231MM M M N MN N 与路径都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点(3,20),(10,0),(14,0)A B C -处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(I)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(II)若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度值和最小.5.已知实数z y x ,,满足,2=++z y x 求22232z y x ++的最小值.【必做题】第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.6.已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <. 【答案与解析】【点评】本题主要考查不等式的基本性质、绝对值不等式及其运用,属于中档题,难度适中.切实注意绝对值不等式的性质与其灵活运用.7.对于实数y x ,,若,12,11≤-≤-y x 求1+-y x 的最大值.8.证明:对于任意实数,x y ,有4421()2x y xy x y +≥+【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.;2.[]0,4 评卷人得分二、解答题3.1()21+-=-+-x a x a a 21≤-+-x a a 1212(1)<++=+a a .【结束】4.解: .0),,(≥y y x P 且设点(Ⅰ) d L A P 路径”的最短距离的“到点点)20,3(, |20 -y | + |3 -x |=+d 垂直距离,即等于水平距离,其中.,0R x y ∈≥(Ⅱ)本问考查分析解决应用问题的能力,以及绝对值的基本知识.点P 到A,B,C 三点的“L 路径”长度之和的最小值d = 水平距离之和的最小值h + 垂直距离之和的最小值v.且h 和v 互不影响.显然当y=1时,v = 20+1=21;时显然当]14,10[-∈x ,水平距离之和h=x – (-10) + 14 – x + |x-3| 24≥,且当x=3时, h=24.因此,当P(3,1)时,d=21+24=45.所以,当点P(x,y)满足P(3,1)时,点P 到A,B,C 三点的“L 路径”长度之和d 的最小值为45.5.由柯西不等式,222222211()(2)(3)()()123x y z x y z ⎡⎤⎡⎤++++⋅++⎢⎥⎣⎦⎣⎦≤,……5分因为2x y z =++,所以222242311x y z ++≥, 当且仅当2311123x y z ==,即6412,,111111x y z ===时,等号成立, 所以22223x y z ++的最小值为2411.…………………………………………………10分6.7.解法一:1+-y x =|)2()1(|---y x …………………………5′ 221≤-+-≤y x …………………………9′(当且仅当3,2==y x 或x=0,y=1时取等号)…………………………10′ 解法二:∵11≤-x , ∴20≤≤x …………………………3′∵,12≤-y ∴31≤≤y …………………………6′∴13-≤-≤-y∴212≤+-≤-y x …………………………9′∴1+-y x 的最大值为2. …………………………10′8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为_______.2.已知x y z 、、均为正数,求证:2223111111()3x y z x y z++≤++.评卷人得分 二、解答题3.2 .(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.4.已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <. 【答案与解析】【点评】本题主要考查不等式的基本性质、绝对值不等式及其运用,属于中档题,难度适中.切实注意绝对值不等式的性质与其灵活运用.5.已知x ,y ,z 均为正数.求证:111y x z yz zx xy x y z≥++++. 证明:因为x ,y ,z 都是为正数,所以12()x y x y yz zx z y x z +=+≥. …………………3分同理可得22y z z x zx xy x xy yz y++≥,≥. 将上述三个不等式两边分别相加,并除以2,得111x y z y z z x x y x y z ++++≥.………10分3.甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望)(ξE .6.已知实数,,x y z 满足2x y z ++=,求22223x y z ++的最小值;7.设f (x )= x 2-x + l ,实数a 满足| x -a |<l ,求证:|f (x )-f (a )|<2(| a | +1).8.已知,,,a b x y R +∈且11a b >,x y >。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.若,,x y z 为正实数,则222xy yz x y z+++的最大值是22. 提示:2222112222x y y z xy yz +++≥+. 评卷人 得分二、解答题3.选修4—5:不等式选讲(本小题满分10分)设实数a ,b 满足a ≠b ,求证:4422a b ab a b +>+().4.(汇编年高考湖南卷(理))在平面直角坐标系xOy 中,将从点M 出发沿纵、横方向到达点N 的任一路径成为M 到N 的一条“L 路径”.如图6所示的路径1231MM M M N MN N 与路径都是M 到N 的“L 路径”.某地有三个新建的居民区,分别位于平面xOy 内三点(3,20),(10,0),(14,0)A B C -处.现计划在x 轴上方区域(包含x 轴)内的某一点P 处修建一个文化中心.(I)写出点P 到居民区A 的“L 路径”长度最小值的表达式(不要求证明);(II)若以原点O 为圆心,半径为1的圆的内部是保护区,“L 路径”不能进入保护区,请确定点P 的位置,使其到三个居民区的“L 路径”长度值和最小.5.解不等式x |x -4|-3<0.6.(1)设321,,a a a 均为正数,且m a a a =++321,求证ma a a 9111321≥++; (2)已知a,b 都是正数,x,y ∈R ,且a+b=1,求证:ax 2+by 2≥(ax+by)2.7.若2294 132y x y x +=+求,的最小值,并求相应的x 、y 的值。
8.已知,,,a b x y R +∈且11a b>,x y >。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______. 评卷人得分 二、解答题3.已知0a >,0b >,n ∈*N .求证:11n n n n a b ab a b ++++≥. 证明:先证112n n n n a b a b a b +++++≥, 只要证112()()()n n n n a b a b a b +++++≥,即要证11n n n n a b a b ab +++--≥0,即要证()(n n a b a b --)≥0, ………5分若a b ≥,则a b -≥0,n n a b -≥0,所以()(n n a b a b --)≥0,若a b <,则0a b -<,0n n a b -<,所以()()0n n a b a b -->,综上,得()(n n a b a b --)≥0.从而112n n n n a b a b a b +++++≥, ………8分 因为2a b ab +≥, 所以11n n n na b ab a b ++++≥. ………10分4.设正数a ,b ,c 满足1a b c ++=,求111323232a b c +++++的最小值.5.已知x ,y 均为正数,且x >y ,求证:2212232x y x xy y ++-+≥.6.已知a ,b ,x ,y 均为正数,且1a >1b ,x >y.求证:x x +a >y y +b.7.已知正数a ,b ,c 满足1abc =,求证:(2)(2)(2)27a b c +++≥.8.已知关于x 的不等式11ax ax a -+-≥(0a >).(1)当1a =时,求此不等式的解集;(2)若此不等式的解集为R ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.;2.3147评卷人 得分二、解答题3.4.因为a ,b ,c 均为正数,且1a b c ++=,所以(32)(32)(32)9a b c +++++=.于是 ()[]111(32)(32)(32)323232a b c a b c ++++++++++ 33133(32)(32)(32)9(32)(32)(32)a b c a b c ⋅+++=+++≥,当且仅当13a b c ===时,等号成立. …………………………………8分即1111323232a b c +++++≥,故111323232a b c +++++的最小值为1.…………10分 5.6.选修45:不等式选讲证明:∵ x x +a -y y +b =x (y +b )-y (x +a )(x +a )(y +b )=bx -a y (x +a )(y +b ), 又b >a >0,x >y >0,∴ (x +a)(y +b)>0,bx >ay ,即bx -ay >0, ∴ x x +a -y y +b >0,即x x +a >y y +b.(10分) 7.选修4—5:不等式选讲本小题主要考查均值不等式等基础知识,考查推理论证能力.满分10分. 证明:(2)(2)(2)a b c +++(11)(11)(11)a b c =++++++ …………………………………………4分 333333a b c ⋅⋅⋅⋅⋅≥ 327abc =⋅27=(当且仅当1a b c ===时等号成立). ……………………………………………10分8.(选修4-5:不等式选讲)(1)当1a =时,得211x -≥, 即112x -≥, 解得3122x x ≥≤或, ∴不等式的解集为13(,][,)22-∞+∞. ………………………………………………………5分 (2)∵11,ax ax a a -+-≥- ∴原不等式解集为R 等价于1 1.a -≥ ∴2,0.a a ≥≤或 ∵0a >,∴ 2.a ≥ ∴实数a 的取值范围为),2[+∞. …………………………………………10分。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.若,,x y z 为正实数,则222
xy yz x y z +++的最大值是22. 提示:2222112222
x y y z xy yz +++≥+. 2.已知正数,,x y z 满足2221x y z ++=,则12z S xyz +=
的最小值为________ 评卷人
得分 二、解答题
3.1 .(汇编年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5:不定式选讲]本小题满分10分.
已知b a ≥>0,求证:b a ab b a 223322-≥-
[必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤.
4.已知,,x y z ∈R ,且234x y z --=,求222x y z ++的最小值.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.若,,x y z 为正实数,则222xy yz x y z+++的最大值是22. 提示:2222112222x y y z xy yz +++≥+. 评卷人 得分二、解答题3.(选修4-5:不等式选讲)设R x y ∈,,z ,且满足:222++z 1x y =,2314x y ++=z ,求证:3147x y z ++=.[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内.4.选修4—5:不等式选讲(本小题满分10分)设实数a ,b 满足a ≠b ,求证:4422a b ab a b +>+().5.已知实数,,a b c 满足a b c >>,且2221,1a b c a b c ++=++=,求证:413a b <+<6.设*n ∈N ,求证:12(21)n n n n n C C C n +++-≤.7.已知实数,,x y z 满足2x y z ++=,求22223x y z ++的最小值;8.已知,,,a b x y R +∈且11a b >,x y >。
求证:x y x a y b >++本题三种方法:作差比较;分析法;或构造函数()x f x x a=+皆可。
【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.;2. 评卷人得分 二、解答题3. 解:设x y z R ∈,,,且满足:222x +y+z 1=,2314x y z ++=,求证: 3147x y z ++=. 证:222222214(23)(123)(x +y +z )14x y z =+≤+=++,∴123x y z ==,∴3,2z x y x ==,又2314x y z ++=, ∴123,,141414x y z ===,∴3147x y z ++=.…………………………………………10分 4. 选修4—5:不等式选讲证明:作差得442233()()()a b ab a b a a b b b a ++=-+-- …………………… 1分=33()()a b a b --=222()()a b a ab b -++ …………………… 4分 =2223()[()]24ba b a b -++. …………………… 6分 因为a ≠b ,所以a ,b 不同时为0,故223()024ba b ++>,2()0a b ->, 所以2223()[()]24b a b a b -++>,即有44a b a b a b+>+(). …………………… 10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.5.因为a +b =1-c ,ab =222()()2a b a b +-+=c 2-c , ………………………3分所以a ,b 是方程x 2-(1-c )x +c 2-c =0的两个不等实根,则△=(1-c )2-4(c 2-c )>0,得-13<c <1, ………………………5分 而(c -a )(c -b )=c 2-(a +b )c +ab >0,即c 2-(1-c )c +c 2-c >0,得c <0,或c >23, …………………………8分 又因为a b c >>,所以0c <.所以-13<c <0,即1<a +b <43. …………10分6.选修4-5:不等式选讲证明:由柯西不等式,得12212(C C C )(111)(C C C )n n n n n n n n +++++++++≤ …………………………………5分((11)1)(21)n n n n =+-=-. ∴12C C C (21)n n n n n n +++-≤.…………………………………………………10分7.略8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.若,,x y z 为正实数,则222xy yz x y z+++的最大值是22. 提示:2222112222x y y z xy yz +++≥+. 评卷人 得分二、解答题3.已知实数,,a b c 满足a b c >>,且2221,1a b c a b c ++=++=,求证:413a b <+<4.设a 、b 、c 为各不相等的正数,求证:2229a b b c c a a b c++>+++++.5.已知a 、b 、c 是正实数,求证:a 2b 2+b 2c 2+c 2a 2≥b a +c b +a c. 6.已知x ,y ,z 均为正数.求证:111y x z yz zx xy x y z≥++++. 证明:因为x ,y ,z 都是为正数,所以12()x y x y yz zx z y x z +=+≥. …………………3分同理可得22y z z x zx xy x xy yz y++≥,≥. 将上述三个不等式两边分别相加,并除以2,得111x y z y z z x x y x y z ++++≥.………10分1.甲、乙、丙三个同学一起参加某高校组织的自主招生考试,考试分笔试和面试两部分,笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取),两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析,甲、乙、丙三个同学能通过笔试的概率分别是0.6,0.5,0.4,能通过面试的概率分别是0.5,0.6,0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)设经过两次考试后,能被该高校预录取的人数为ξ,求随机变量ξ的期望)(ξE .7.若2294 132y x y x +=+求,的最小值,并求相应的x 、y 的值。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.若,,x y z 为正实数,则222
xy yz x y z +++的最大值是22. 提示:2222112222
x y y z xy yz +++≥+. 2.已知正数,,x y z 满足2221x y z ++=,则12z S xyz +=
的最小值为________ 评卷人
得分 二、解答题
3.1 .(汇编年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5:不定式选讲]本小题满分10分.
已知b a ≥>0,求证:b a ab b a 223322-≥-
[必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤.
4.已知,,x y z ∈R ,且234x y z --=,求222x y z ++的最小值.。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;
2.已知正数,,x y z 满足2221x y z ++=,则12z S xyz +=
的最小值为________ 评卷人
得分 二、解答题
3.【题文】[选修4 - 5:不等式选讲](本小题满分10分)
设2
()13f x x x =-+,实数a 满足1x a -<,求证:()()2(1)f x f a a -<+. 4.1 .(汇编年高考新课标1(理))选修4—5:不等式选讲 已知函数()f x =|21||2|x x a -++,()g x =3x +. (Ⅰ)当a =2时,求不等式()f x <()g x 的解集;
(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、填空题1.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x--≤的解集为_________2.2 .(汇编年高考陕西卷(理))(不等式选做题) 已知a, b, m, n均为正数, 且a+b=1, mn=2, 则(am+bn)(bm+an)的最小值为_______.评卷人得分二、解答题3.选修4—5:不等式选讲已知x,y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.证:因为|x+5y|=|3(x+y)-2(x-y)|.………………………………………5分由绝对值不等式性质,得|x+5y|=|3(x+y)-2(x-y)|≤|3(x+y)|+|2(x-y)|=3|x+y|+2|x-y|≤3×16+2×14=1.即|x +5y |≤1. ………………………………………10分4.选修45-:不等式选讲若正数a ,b ,c 满足a +b +c =1,求13a +2+13b +2+13c +2的最小值. 5.选修4—5:不等式选讲已知1x ≥,1y ≥,求证:22221x x y xy y x y ++++≤.6.已知对于任意非零实数m ,不等式|)32||1(||||1||12|+--≥-+-x x m m m 恒成立,求实数x 的取值范围.7.已知a 、b 、c 是正实数,求证:a 2b 2+b 2c 2+c 2a 2≥b a +c b +a c.8.设f (x )= x 2-x + l ,实数a 满足| x -a |<l ,求证:|f (x )-f (a )|<2(| a | +1).【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.[]0,42.2 评卷人得分 二、解答题3.4.因为正数a ,b ,c 满足a +b +c =1,所以⎝⎛⎭⎫13a +2+13b +2+13c +2[(3a +2)+(3b +2)+(3c +2)] ≥(1+1+1)2,…………6分即13a +2+13b +2+13c +2≥1,…………………………………………………………8分当且仅当3a +2=3b +2=3c +2,即a =b =c =13时,原式取最小值1. …………10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.5. 选修4—5:不等式选讲证明:左边-右边=2222()(1)1(1)[(1)1]y y x y x y y yx y x -+--+=--++………4分 =(1)(1)(1)y xy x ---, ………………………………………………………6分 ∵1x ≥,1y ≥,∴0,0,0111y xy x ---≤≥≥. ………………………………………………8分 从而左边-右边≤0,∴22221x x y xy y x y ++++≤. ………………………………………………10分6.选修4-5:不等式选讲解:211123m m x x m-+---+≤恒成立, (4)211m mm-+-=11211m m -+-≥,∴只需1231x x --+≤, 综上x 的取值范围为(,3-∞-⋃-+∞. ………………10分7.证明:由⎝⎛⎭⎫a b -b c 2+ ⎝⎛⎭⎫b c -c a 2+ ⎝⎛⎭⎫c a -a b 2≥0,得 2(a 2b 2+b 2c 2+c 2a 2)-2(a b +b c +c a )≥0,∴a 2b 2+b 2c 2+c 2a 2≥b a +c b +a c.……………………10分8.2()1f x x x =-+,22()()-=--+f x f a x x a a1=-⋅+-x a x a ……………………………………………………………2分 1<+-x a , 又1()21+-=-+-x a x a a …………………………………………… 6分 21≤-+-x a a ……………………………………………8分1212(1)<++=+a a . …………………………………10分。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.已知正数,,x y z 满足2221x y z ++=,则12z S xyz
+=
的最小值为________
2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人
得分 二、解答题
3.(选修4-5:不等式选讲)
设R x y ∈,,z ,且满足:222++z 1x y =,2314x y ++=z ,求证:3147x y z ++=.
[必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.已知x y z 、、均为正数,求证:2223111111()3x y z x y z ++≤++.评卷人得分 二、解答题3.选修4—5:不等式选讲设2()14,||1f x x x x a =-+-<且,求证:|()()|2(||1)f x f a a -<+.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.4.选修45-:不等式选讲若正数a ,b ,c 满足a +b +c =1,求13a +2+13b +2+13c +2的最小值. 5.2 .(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥. 6.已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <. 【答案与解析】【点评】本题主要考查不等式的基本性质、绝对值不等式及其运用,属于中档题,难度适中.切实注意绝对值不等式的性质与其灵活运用.7.已知,x y 均为正实数,求证:1144x y +≥1x y+。
8.设1a ,2a ,3a 均为正数,且m a a a m ,a a a 9111:321321≥++=++求证【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.3147 2.证明:由柯西不等式得……………5分则,即…………10分解析:证明:由柯西不等式得2222222111111(111)()()x y z x y z ++++≥++……………5分 则2221111113x y z x y z ⨯++≥++,即2223111111()3x y z x y z ++≤++…………10分 评卷人得分 二、解答题3.4.因为正数a ,b ,c 满足a +b +c =1,所以⎝⎛⎭⎫13a +2+13b +2+13c +2[(3a +2)+(3b +2)+(3c +2)] ≥(1+1+1)2,…………6分即13a +2+13b +2+13c +2≥1,…………………………………………………………8分当且仅当3a +2=3b +2=3c +2,即a =b =c =13时,原式取最小值1. …………10分【必做题】第22题、第23题,每题10分,共计20分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤.5.6.7.8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.2 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 评卷人得分 二、解答题3.选修4 - 5:不等式选讲(本小题满分10分)已知x ,y ,z 均为正数.求证:111x y z yz zx xy x y z++++≥.4.选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3.证明:因为|m|+|n|≥|m -n|,所以|x a -+≥|.………………………………………… 8分又a ≥2,故21|a -|≥3.所以|x a -+≥.…………………………………………………………………… 10分5.(汇编年高考课标Ⅱ卷(文))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.6.已知0,0,a b >>且21a b +=,求2224S ab a b =--的最大值.7.已知实数a,b,c ∈R,a+b+c=1,求4a +4b +4c 2的最小值,并求出取最小值时a,b,c 的值。
8.已知,,a b c 为正数,且满足22cos sin a b c θθ+<,求证:22cos sin a b c θθ+<【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.31472.[]0,4 评卷人得分二、解答题3.4.5.6.0,0,21,a b a b >>+=∴2224(2)414a b a b ab ab +=+-=-, ………………………………………………………………2分 且1222a b ab =+≥,即24ab ≤,18ab ≤, ……………………………………………………5分 ∴2224S ab a b =--2(14)ab ab =--241ab ab =+-212-≤, 当且仅当11,42a b ==时,等号成立.…………………………………………………………………10分 7.8.解:由柯西不等式,得22cos sin a b θθ+ 11222222[(cos )(sin )](cos sin )a b θθθθ≤++1222(cos sin )a b c θθ=+<. ………………………………10分。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人得分 二、解答题3.选修4—5:不等式选讲已知0x >,0y >,a ∈R ,b ∈R .求证()222ax by a x b y x y x y++++≤. 【证明】因为0x >,0y >,所以0x y +>,所以要证()222ax by a x b y x y x y++++≤, 即证222()()()ax by x y a x b y +++≤.即证22(2)0xy a ab b -+≥, ……………………………5分即证2()0a b -≥,而2()0a b -≥显然成立, 故()222ax by a x b y x y x y++++≤. ……………………………10分 4.2 .(汇编年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5:不定式选讲]本小题满分10分.已知b a ≥>0,求证:b a ab b a 223322-≥-[必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤.5.已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18y <. 【答案与解析】【点评】本题主要考查不等式的基本性质、绝对值不等式及其运用,属于中档题,难度适中.切实注意绝对值不等式的性质与其灵活运用.6.已知,x y 均为正实数,求证:1144x y +≥1x y+。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:222
1x y z ++=,2314x y z ++=,则x y z ++=_______.
2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人
得分 二、解答题
3.选修4-5:不等式选讲
解不等式211x x +--≤.
综上所述,不等式211x x +--≤的解集为
(],0-∞. …………………………10分
4.选修4—5:不等式选讲
已知1x ≥,1y ≥,求证:22221x x y xy y x y ++++≤.
5.(汇编年高考辽宁卷(文))选修4-5:不等式选讲
已知函数()f x x a =-,其中1a >.
(I)当=2a 时,求不等式()44f x x ≥=-的解集;
(II)已知关于x 的不等式()(){}
222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.
6.2 .(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲
设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)222
1a b c b c a
++≥. 7.已知0a >,0b >,n ∈*
N .求证:11
n n n n a b ab a b ++++≥. 证明:先证112
n n n n a b a b a b +++++≥, 只要证112()()()n n n n a b a b a b +++++≥,
即要证11n n n n a b a b ab +++--≥0,
即要证()(n n a b a b --)≥0, ………5分 若a b ≥,则a b -≥0,n n a b -≥0,所以()(n n a b a b --)≥0,
若a b <,则0a b -<,0n n a b -<,所以()()0n n a b a b -->,
综上,得()(n n a b a b --)≥0.
从而112
n n n n a b a b a b +++++≥, ………8分 因为2
a b ab +≥, 所以11
n n n n
a b ab a b ++++≥. ………10分
8.已知a ,b ,c 都是正数,且236a b c ++=,求
12131a b c +++++的最
大值.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分 一、填空题
1.3147
2.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分
二、解答题
3.含绝对值不等式的解法、分段函数
4. 选修4—5:不等式选讲
证明:左边-右边=2222()(1)1(1)[(1)1]y y x y x y y yx y x -+--+=--++………4分 =(1)(1)(1)y xy x ---, ………………………………………………………6分 ∵1x ≥,1y ≥,
∴0,0,0111y xy x ---≤≥≥. ………………………………………………8分 从而左边-右边≤0,
∴22221x x y xy y x y ++++≤. ………………………………………………10分
5.
6.7.8.。