第九章 常微方程数值解法
- 格式:ppt
- 大小:637.00 KB
- 文档页数:31
常微分方程组数值解法一、引言常微分方程组是数学中的一个重要分支,它在物理、工程、生物等领域都有广泛应用。
对于一些复杂的常微分方程组,往往难以通过解析方法求解,这时候数值解法就显得尤为重要。
本文将介绍常微分方程组数值解法的相关内容。
二、数值解法的基本思想1.欧拉法欧拉法是最基础的数值解法之一,它的思想是将时间连续化,将微分方程转化为差分方程。
对于一个一阶常微分方程y'=f(x,y),其欧拉公式为:y_{n+1}=y_n+hf(x_n,y_n)其中h为步长,x_n和y_n为第n个时间点上x和y的取值。
2.改进欧拉法改进欧拉法是对欧拉法的改良,其公式如下:y_{n+1}=y_n+\frac{h}{2}[f(x_n,y_n)+f(x_{n+1},y_n+hf(x_n,y_n))] 3.四阶龙格-库塔方法四阶龙格-库塔方法是目前最常用的数值解法之一。
其公式如下:k_1=f(x_n,y_n)k_2=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_1)k_3=f(x_n+\frac{h}{2},y_n+\frac{h}{2}k_2)k_4=f(x_n+h,y_n+hk_3)y_{n+1}=y_n+\frac{h}{6}(k_1+2k_2+2k_3+k_4)其中,k_i为中间变量。
三、常微分方程组的数值解法1.欧拉法对于一个二阶常微分方程组:\begin{cases} y'_1=f_1(x,y_1,y_2) \\ y'_2=f_2(x,y_1,y_2)\end{cases}其欧拉公式为:\begin{cases} y_{n+1,1}=y_{n,1}+hf_1(x_n,y_{n,1},y_{n,2}) \\y_{n+1,2}=y_{n,2}+hf_2(x_n,y_{n,1},y_{n,2}) \end{cases}其中,x_n和y_{n,i}(i=1, 2)为第n个时间点上x和y_i的取值。
《高等数学》标准教案第一章:函数与极限1.1 函数的概念与性质教学目标:了解函数的定义,掌握函数的性质及常见函数类型。
教学内容:函数的定义,函数的单调性、奇偶性、周期性。
教学方法:通过实例讲解,引导学生理解函数的概念,运用性质进行分析。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质及求解方法。
教学内容:极限的定义,极限的性质,无穷小与无穷大,极限的求解方法。
教学方法:通过具体例子,引导学生理解极限的概念,运用性质及方法求解极限。
第二章:微积分基本概念2.1 导数与微分教学目标:理解导数的定义,掌握基本导数公式及微分方法。
教学内容:导数的定义,基本导数公式,微分的方法及应用。
教学方法:通过实际例子,引导学生理解导数的概念,运用公式及方法进行微分。
2.2 积分与微分方程教学目标:理解积分的概念,掌握基本积分公式及解微分方程的方法。
教学内容:积分的定义,基本积分公式,微分方程的解法。
教学方法:通过具体例子,引导学生理解积分的概念,运用公式及方法解微分方程。
第三章:多元函数微分学3.1 多元函数的概念与性质教学目标:了解多元函数的定义,掌握多元函数的性质及常见类型。
教学内容:多元函数的定义,多元函数的性质,常见多元函数类型。
教学方法:通过实例讲解,引导学生理解多元函数的概念,运用性质进行分析。
3.2 多元函数的求导法则教学目标:理解多元函数求导法则,掌握多元函数的求导方法。
教学内容:多元函数的求导法则,多元函数的求导方法。
教学方法:通过具体例子,引导学生理解多元函数求导法则,运用方法进行求导。
第四章:重积分与曲线积分4.1 二重积分及其应用教学目标:理解二重积分的定义,掌握二重积分的计算方法及应用。
教学内容:二重积分的定义,二重积分的计算方法,二重积分在几何及物理中的应用。
教学方法:通过具体例子,引导学生理解二重积分的概念,运用计算方法进行计算。
4.2 曲线积分的概念与应用教学目标:理解曲线积分的定义,掌握曲线积分的计算方法及应用。
常微分方程初值问题数值解法初值问题:即满足初值条件的常微分方程的解y′=f(x,y),x∈[x0,b]y(x0)=y0.定理1(利普希茨条件)若存在正数L,使得对任意,y1,y2,有|f(x,y1)−f(x,y2)|≤L|(y1−y2)|定理2(解存在性)①若函数f在方区域x∈[a,b],y∈R连续,②函数f关于y 满足利普希茨条件,则对任意x∈[a,b],常微分方程存在唯一的连续可微数值解.两类问题:①单步法---计算下一个点的值yn+1只需要用到前面一个点的值yn②多步法---计算下一个点的值yn+1需要用到前面l个点的值yl1、欧拉法---下一个点的计算值等于前一个点的计算值加上步长乘以前一个点的函数值•具体过程一些批注:显式欧拉方程指下一步要计算的值,不在迭代方程中;隐式欧拉方程指下一步要计算的值,在迭代方程中。
怎么计算隐式欧拉方程----要借助显示欧拉迭代计算---一般用迭代法-----迭代---将微分方程在区间[xn,xn+1]进行积分,然后函数f进行近似,即可得到迭代方程-----迭代方程收敛性?由函数关于y满足利普希茨条件,可以推出迭代公式收敛。
•局部截断误差:假设前n步误差为0,我们计算第n+1步的误差,将次误差称为局部截断误差,且局部误差为O(hp+1)•p阶精度:由理论证明:若局部误差阶的时间复杂度为O(hp+1),则整体误差阶为O(hp)我们称公式精度为p。
•显示欧拉法与隐式欧拉法•梯形方法----将显式欧拉迭代方程与隐式欧拉迭代方程做一下加权平均,构造的计算公式.•改进的欧拉方法---思想:因为梯形公式是隐式公式,将显式欧拉公式对下一步的计算值进行预估,用梯形公式对下一步的计算值进行校正.2、龙格-库塔方法思想:根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以前一个点的斜率;而这个斜率用该区间上的多个点的斜率的算数平均来逼近。
注意:怎么计算任意斜率Ki?第i个点的斜率Ki有微分方程可以算出f′=f(xn,yn)所以要算的f(xn,yn)值,由欧拉法即可算出, yn+1=yn+hf′•2阶-龙格-库塔方法----类似改进的欧拉法根据Lagrange中值定理,下一次的计算值可以用前一次的计算值加上h乘以斜率;而这个斜率用区间上的端点和中点的斜率的算数平均来逼近。
第九章常微分方程初值问题数值解法图9-1n 作为()n x y 的近似值,得 ()n n y x hf ,)y x ,两边从n x 到1+n x 积分,得()dx x y x f x y x n nx x n n ⎰+=-+1))(,()1 矩形公式计算上式右侧积分,即()()x x x x x d x y x f dx x y x f n nn n⎰⎰++≈11,))(,()n ,得()n n n n y x hf y y ,1+=+,故欧拉法也称为矩形法。
为了达到较高精度的计算公式,对欧拉法进行改进,用梯形公式计算()()([1,2))(,(1++≈+n n n x f x y x f hdx x y x f n 的近似值,得9.2 龙格—库塔法前面讨论的欧拉法与改进的欧拉法都是一步法,即计算y 1+n 时,只用到前一步值。
龙格—库塔(Runge-Kutta)法(简称为R-K 方法)不是通过求导数的方法构造近似公式,而是通过计算不同点上的函数值,并对这些函数值作线性组合,构造近似公式,再把近似公式与解的泰勒展开式进行比较,使前面的若干项相同,从而使近似公式达到一定的阶数。
我们先分析欧拉法与预估—校正法。
对于欧拉法⎩⎨⎧=+=+),(111n n n n y x hf k k y y 每步计算f 的值一次,其截断误差为O (2h )。
对于预估—校正法()()⎪⎪⎩⎪⎪⎨⎧++==++=+121211,,2121k y h x hf k y x hf k k k y y n n n n n n 每步计算f 的值两次,其截断误差为O (3h ).下面对预估—校正法进行改进,将该公式写成更一般的形式()()bh y ah x hf k y x hf k k R k R y y n n n n n n ++==++=+,,2122111 (2.1)其中b a R R ,,,21为待定常数。
选择这些常数的原则是在)(n n x y y =的前提下,使11)(++-n n y x y )的阶尽量高。
常微分方程数值解法常微分方程是研究函数的导数与自变量之间的关系的数学分支,广泛应用于物理、工程、生物等领域的建模与分析。
在实际问题中,我们常常遇到无法通过解析方法求得精确解的常微分方程,因此需要利用数值解法进行求解。
本文将介绍几种常用的常微分方程数值解法。
一、欧拉方法(Euler's Method)欧拉方法是最基本的数值解法之一。
它的思想是将微分方程转化为差分方程,通过逐步逼近解的方式求得数值解。
具体步骤如下:1. 将微分方程转化为差分方程:根据微分方程的定义,可以得到差分方程形式。
2. 选择步长:将自变量范围进行离散化,确定步长h。
3. 迭代计算:根据差分方程递推公式,利用前一步的数值解计算后一步的数值解。
二、改进的欧拉方法(Improved Euler's Method)改进的欧拉方法通过使用欧拉方法中的斜率来进行更准确的数值计算。
具体步骤如下:1. 计算欧拉方法的斜率:根据当前节点的数值解计算斜率。
2. 根据斜率计算改进的数值解:将得到的斜率代入欧拉方法的递推公式中,计算改进的数值解。
三、龙格-库塔方法(Runge-Kutta Method)龙格-库塔方法是一类常微分方程数值解法,其中最著名的是四阶龙格-库塔方法。
它通过计算各阶导数的加权平均值来逼近解,在精度和稳定性方面相对较高。
具体步骤如下:1. 计算每一步的斜率:根据当前节点的数值解计算每一步的斜率。
2. 计算权重:根据斜率计算各个权重。
3. 计算下一步的数值解:根据计算得到的权重,将其代入龙格-库塔方法的递推公式中,计算下一步的数值解。
四、多步法(多步差分法)多步法是需要利用多个前面节点的数值解来计算当前节点的数值解的数值方法。
常见的多步法有Adams-Bashforth法和Adams-Moulton法。
具体步骤如下:1. 选择初始值:根据差分方程的初始条件,确定初始值。
2. 迭代计算:根据递推公式,利用前面节点的数值解计算当前节点的数值解。