I1 0 k 1 k 2 0 1 I 2 2 k 2
k2 x1 P 1 (t ) k2 k3 x2 P2 (t )
k 2 1 M 1 (t ) k 2 k 3 2 M 2 (t )
准静态外力列向量
15
多自由度系统振动 / 多自由度系统的动力学方程
KX P (t ) 作用力方程: MX
KX P (t )
X Rn
假设作用于系统的是这样一组外力:它们使系统只在第 j 个坐标上产生单位位移,而在其他各个坐标上不产生位移.
T T X [ x ,..., x , x , x ,..., x ] [ 0 ,..., 0 , 1 , 0 ,..., 0 ] 即: 1 j 1 j j 1 n
k11...k1 j ...k1n k 21...k 2 j ...k 2 n K .......... .......... . k n1...k nj ...k nn n n
刚度矩阵第 j 列
P 1 (t ) P (t ) P (t ) 2 Pn (t )
14
多自由度系统振动 / 多自由度系统的动力学方程
• 刚度矩阵和质量矩阵
KX P (t ) 作用力方程: MX
X Rn
当 M、K 确定后,系统动力方程可完全确定
M、K 该如何确定? 先讨论 K 假设外力是以准静态方式施加于系统
KX P (t )
0 加速度为零 X
静力平衡
多自由度系统的角振动与直线振动在数学描述上相同 。 如同在单自由度系统中所定义的,在多自由度系统中 也将质量、刚度、位移、加速度及力都理解为广义的。