高考数学二轮专题复习 解答题强化练 第三周 数列问题 理
- 格式:doc
- 大小:25.01 KB
- 文档页数:1
第2讲 数列■真题调研——————————————【例1】 [2019·全国卷Ⅱ]已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.解:(1)由题设得4(a n +1+b n +1)=2(a n +b n ), 即a n +1+b n +1=12(a n +b n ).又因为a 1+b 1=1,所以{a n +b n }是首项为1,公比为12的等比数列.由题设得4(a n +1-b n +1)=4(a n -b n )+8, 即a n +1-b n +1=a n -b n +2.又因为a 1-b 1=1,所以{a n -b n }是首项为1,公差为2的等差数列. (2)由(1)知,a n +b n =12n -1,a n -b n =2n -1.所以a n =12[(a n +b n )+(a n -b n )]=12n +n -12,b n =12[(a n +b n )-(a n -b n )]=12n -n +12.【例2】 [2019·某某卷]定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }(n ∈N *)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M -数列”;(2)已知数列{b n }(n ∈N *)满足:b 1=1,1S n =2b n -2b n +1,其中S n 为数列{b n }的前n 项和.①求数列{b n }的通项公式;②设m 为正整数.若存在“M-数列”{}(n ∈N *),对任意正整数k ,当k ≤m 时,都有c k ≤b k ≤c k +1成立,求m 的最大值.解:(1)设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0.由⎩⎪⎨⎪⎧a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩⎪⎨⎪⎧a 21q 4=a 1q 4,a 1q 2-4a 1q +4a 1=0,解得⎩⎪⎨⎪⎧a 1=1,q =2.因此数列{a n }为“M-数列”. (2)①因为1S n =2b n -2b n +1,所以b n ≠0.由b 1=1,S 1=b 1,得11=21-2b 2,则b 2=2.由1S n =2b n -2b n +1,得S n =b n b n +12(b n +1-b n ), 当n ≥2时,由b n =S n -S n -1, 得b n =b n b n +12(b n +1-b n )-b n -1b n2(b n -b n -1),整理得b n +1+b n -1=2b n .所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *). ②由①知,b k =k ,k ∈N *. 因为数列{}为“M-数列”, 设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以q k -1≤k ≤q k,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln k k ≤ln q ≤ln kk -1.设f (x )=ln x x (x >1),则f ′(x )=1-ln xx2. 令f ′(x )=0,得x =e.列表如下:因为2=6<6=3,所以f (k )max =f (3)=ln33.取q =33,当k =1,2,3,4,5时,ln k k≤ln q ,即k ≤q k ,经检验知q k -1≤k 也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.【例3】 [2019·某某卷]设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2-2,b 3=2a 3+4.(1)求{a n }和{b n }的通项公式;(2)设数列{}满足c 1=1,=⎩⎪⎨⎪⎧1,2k<n <2k +1,b k ,n =2k,其中k ∈N *.①求数列的通项公式; ②求.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意得⎩⎪⎨⎪⎧6q =6+2d ,6q 2=12+4d ,解得⎩⎪⎨⎪⎧d =3,q =2,故a n =4+(n -1)×3=3n +1,b n =6×2n -1=3×2n.所以,{a n }的通项公式为a n =3n +1,{b n }的通项公式为b n =3×2n.(2)①=(3×2n +1)(3×2n -1)=9×4n-1.所以,数列{}的通项公式为=9×4n-1.②=⎣⎢⎡⎦⎥⎤2n×4+2n (2n-1)2×3+i =1n (9×4i -1) =(3×22n -1+5×2n -1)+9×4(1-4n)1-4-n=27×22n -1+5×2n -1-n -12(n ∈N *).【例4】 [2019·某某卷]设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N *,S n +b n ,S n +1+b n ,S n +2+b n 成等比数列.(1)求数列{a n },{b n }的通项公式;(2)记=a n 2b n,n ∈N *,证明:c 1+c 2+…+<2n ,n ∈N *. 解:(1)设数列{a n }的公差为d ,由题意得a 1+2d =4,a 1+3d =3a 1+3d ,解得a 1=0,d =2. 从而a n =2n -2,n ∈N *. 所以S n =n 2-n ,n ∈N *.由S n +b n ,S n +1+b n ,S n +2+b n 成等比数列得 (S n +1+b n )2=(S n +b n )(S n +2+b n ). 解得b n =1d(S 2n +1-S n S n +2).所以b n =n 2+n ,n ∈N *. (2)=a n2b n =2n -22n (n +1)=n -1n (n +1),n ∈N *.我们用数学归纳法证明.(1)当n =1时,c 1=0<2,不等式成立; (2)假设当n =k (k ∈N *)时不等式成立,即c 1+c 2+…+c k <2k ,那么,当n =k +1时,c 1+c 2+…+c k +c k +1<2k +k(k +1)(k +2)<2k +1k +1<2k +2k +1+k=2k +2(k +1-k )=2k +1,即当n =k +1时不等式也成立.根据(1)和(2),不等式c 1+c 2+…+<2n 对任意n ∈N *成立. ■模拟演练——————————————1.[2019·某某二模]已知数列{a n }是公差不为零的等差数列,a 1=1,且存在实数λ满足2a n +1=λa n +4,n ∈N *.(1)求λ的值及数列{a n }的通项公式; (2)求数列{a 2n -n }的前n 项和S n .解:(1)设等差数列{a n }的公差为d ,d ≠0, 由2a n +1=λa n +4(n ∈N *),① 得2a n =λa n -1+4(n ∈N *,n ≥2),②两式相减得,2d =λd ,又d ≠0,所以λ=2. 将λ=2代入①可得a n +1-a n =2,即d =2, 又a 1=1,所以a n =1+(n -1)×2=2n -1. (2)由(1)可得a 2n -n =2(2n -n )-1=2n +1-(2n +1),所以S n =(22+23+…+2n +1)-[3+5+…+(2n +1)]=4(1-2n)1-2-n (3+2n +1)2=2n +2-n2-2n -4.2.[2019·某某综合测试二]已知{a n }是递增的等比数列,a 2+a 3=4,a 1a 4=3. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 解:(1)解法一:设等比数列{a n }的公比为q .因为a 2+a 3=4,a 1a 4=3,所以⎩⎪⎨⎪⎧a 1q +a 1q 2=4,a 1·a 1q 3=3.解得⎩⎪⎨⎪⎧a 1=9,q =13,或⎩⎪⎨⎪⎧a 1=13,q =3.因为{a n }是递增的等比数列,所以a 1=13,q =3,所以数列{a n }的通项公式为a n =3n -2.解法二:设等比数列{a n }的公比为q . 因为a 2+a 3=4,a 1a 4=a 2a 3=3,所以a 2,a 3是方程x 2-4x +3=0的两个根,解得⎩⎪⎨⎪⎧a 2=1,a 3=3,或⎩⎪⎨⎪⎧a 2=3,a 3=1.因为{a n }是递增的等比数列,所以a 2=1,a 3=3,则q =3, 所以数列{a n }的通项公式为a n =3n -2.(2)由(1)知b n =n ×3n -2,则S n =1×3-1+2×30+3×31+…+n ×3n -2, ①在①式两边同时乘以3得, 3S n =1×30+2×31+3×32+…+n ×3n -1, ②①-②得-2S n =3-1+30+31+…+3n -2-n ×3n -1,即-2S n =13(1-3n )1-3-n ×3n -1,所以S n =14(2n -1)×3n -1+112.3.[2019·某某质检]数列{a n }的前n 项和S n 满足S n =2a n -n . (1)求证数列{a n +1}是等比数列,并求a n ;(2)若数列{b n }为等差数列,且b 3=a 2,b 7=a 3,求数列{a n b n }的前n 项和. 解:(1)当n =1时,S 1=2a 1-1,所以a 1=1. 因为S n =2a n -n , ①所以当n ≥2时,S n -1=2a n -1-(n -1), ② ①-②得a n =2a n -2a n -1-1,所以a n =2a n -1+1, 所以a n +1a n -1+1=2a n -1+1+1a n -1+1=2a n -1+2a n -1+1=2,所以{a n +1}是首项为2,公比为2的等比数列, 所以a n +1=2·2n -1=2n,所以a n =2n-1.(2)由(1)知,a 2=3,a 3=7, 所以b 3=a 2=3,b 7=a 3=7.设{b n }的公差为d ,则b 7=b 3+(7-3)·d , 所以d =1,所以b n =b 3+(n -3)·d =n , 所以a n b n =n (2n -1)=n ·2n-n .设数列{n ·2n}的前n 项和为K n ,数列{n }的前n 项和为T n , 所以K n =2+2×22+3×23+…+n ·2n, ③ 2K n =22+2×23+3×24+…+n ·2n +1, ④③-④得-K n =2+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1=(1-n )·2n +1-2.所以K n =(n -1)·2n +1+2.又T n =1+2+3+…+n =n (n +1)2,所以K n -T n =(n -1)·2n +1-n (n +1)2+2,所以{a n b n }的前n 项和为 (n -1)·2n +1-n (n +1)2+2.4.[2019·某某某某质检]已知等比数列{a n }的各项都是正数,其中a 3,a 2+a 3,a 4成等差数列,a 5=32.(1)求数列{a n }的通项公式;(2)记数列{log 2a n }的前n 项和为S n ,求数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n .解:(1)设等比数列{a n }的公比为q,由已知得⎩⎪⎨⎪⎧2(a 2+a 3)=a 3+a 4,a 5=32,即⎩⎪⎨⎪⎧2a 1q +a 1q 2=a 1q 3,a 1q 4=32.∵a n >0,∴q >0,解得⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n. (2)由已知得,S n =log 2a 1+log 2a 2+…+log 2a n =n (n +1)2,∴1S n=2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴⎩⎨⎧⎭⎬⎫1S n 的前n 项和 T n =2⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n -1n +1=2n n +1.。
高考数学二轮复习提高题专题复习数列多选题练习题附解析一、数列多选题1.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.2.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d =C .()261n S n n =+D .数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为64nn + 【答案】BCD 【分析】根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、C ,再利用裂项求和即可判断选项D. 【详解】因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,对于选项A :535114a =⨯-=,故选项A 不正确;对于选项C :()()2222132612n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确; 对于选项D :()()111111313233132n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以前n 项和为111111111325588113132n n ⎛⎫-+-+-++-⎪-+⎝⎭()611132322324n n n n n ⎛⎫=-== ⎪++⎝⎭+,故选项D 正确, 故选:BCD. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.3.已知等差数列{}n a 中,59a a =,公差0d >,则使得前n 项和n S 取得最小值的正整数n 的值是( ) A .5 B .6C .7D .8【答案】BC 【分析】分析出数列{}n a 为单调递增数列,且70a =,由此可得出结论. 【详解】在等差数列{}n a 中,59a a =,公差0d >,则数列{}n a 为递增数列,可得59a a <,59a a ∴=-,可得5975202a a a a +==>,570a a ∴<=,所以,数列{}n a 的前6项均为负数,且70a =, 因此,当6n =或7时,n S 最小. 故选:BC. 【点睛】方法点睛:本题考查等差数列前n 项和最大值的方法如下:(1)利用n S 是关于n 的二次函数,利用二次函数的基本性质可求得结果; (2)解不等式0n a ≥,解出满足此不等式的最大的n 即可找到使得n S 最小.4.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列 【答案】AB 【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.5.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( ) A .11111n n n a a a +=-+ B .{}n a 是单调递增数列 C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a aa a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确;对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n n n n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a a a a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确. 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.6.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.7.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列【答案】BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.8.下列说法中正确的是( )A .数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+B .数列{}n a 成等比数列的充要条件是对于任意的正整数n ,都有212n n n a a a ++=C .若数列{}n a 是等差数列,则n S 、2n n S S -、32n n S S -也是等差数列D .若数列{}n a 是等比数列,则n S 、2n n S S -、32n n S S -也是等比数列 【答案】AC 【分析】利用等差中项法可判断A 选项的正误;取0n a =可判断B 选项的正误;利用等差数列求和公式以及等差中项法可判断C 选项的正误;取1q =-,n 为偶数可判断D 选项的正误. 【详解】对于A 选项,充分性:若数列{}n a 成等差数列,则对任意的正整数n ,n a 、1n a +、2n a +成等差数列,则121n n n n a a a a +++-=-,即122n n n a a a ++=+,充分性成立; 必要性:对任意的正整数n ,都有122n n n a a a ++=+,则121n n n n a a a a +++-=-, 可得出2132431n n a a a a a a a a +-=-=-==-=,所以,数列{}n a 成等差数列,必要性成立.所以,数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+,A 选项正确;对于B 选项,当数列{}n a 满足0n a =时,有212n n n a a a ++=,但数列{}n a 不是等比数列,B选项错误;对于C 选项,设等差数列{}n a 的公差为d ,则()112n n n dS na -=+,()2122122n n n d S na -=+,()3133132n n n dS na -=+, 所以,()()()22111322112222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, ()()()232111533122132222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以,()()()()22232111532222n n n n n d n n d n n d S S S na na na ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥-+=+++=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()22n n S S =-,所以,n S 、2n n S S -、32n n S S -是等差数列,C 选项正确;对于D 选项,当公比1q =-,且n 是偶数时,n S 、2n n S S -、32n n S S -都为0, 故n S 、2n n S S -、32n n S S -不是等比数列,所以D 选项错误. 故选:AC. 【点睛】 方法点睛;1.判断等差数列有如下方法:(1)定义法:1n n a a d +-=(d 为常数,n *∈N ); (2)等差中项法:()122n n n a a a n N*++=+∈;(3)通项法:n a p n q =⋅+(p 、q 常数);(4)前n 项和法:2n S p n q n =⋅+⋅(p 、q 常数).2.判断等比数列有如下方法: (1)定义法:1n na q a +=(q 为非零常数,n *∈N ); (2)等比中项法:212n n n a a a ++=⋅,n *∈N ,0n a ≠; (3)通项公式法:nn a p q =⋅(p 、q 为非零常数); (4)前n 项和法:nn S p q p =⋅-,p 、q 为非零常数且1q ≠.9.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;10.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a = B .2nn S =C .38n T ≥D .12n T <【答案】ACD 【分析】在1+14,()n n a S a n N *==∈中,令1n =,则A 易判断;由32122S a a =+=,B 易判断;令12(1)n n n b n n a ++=+,138b =,2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,裂项求和3182n T ≤<,则CD 可判断. 【详解】解:由1+14,()n n a S a n N *==∈,所以2114a S a ===,故A 正确;32212822S a a =+==≠,故B 错误;+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,12n na a +=, 所以2n ≥时,2422n n n a -=⋅=,令12(1)n n n b n n a ++=+,12123(11)8b a +==+, 2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,1138T b ==,2n ≥时,()()23341131111111118223232422122122n n n n T n n n ++=+-+-++-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,3182n T ≤<,故CD 正确;故选:ACD. 【点睛】方法点睛:已知n a 与n S 之间的关系,一般用()11,12n nn a n a S S n -=⎧=⎨-≥⎩递推数列的通项,注意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和.。
重难增分训练(三) 数列的综合问题1.已知函数f (x )=x +sin x ,项数为19的等差数列{a n }满足a n ∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则当k =________时,f (a k )=0.解析:因为函数f (x )=x +sin x 是奇函数,所以图象关于原点对称,图象过原点,而等差数列{a n }有19项,a n ∈⎝ ⎛⎭⎪⎫-π2,π2,若f (a 1)+f (a 2)+…+f (a 18)+f (a 19)=0,则必有f (a 10)=0,所以k =10.答案:102.如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一(直接递推归纳):等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二(求通项):等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n ,故a 7=2×⎝ ⎛⎭⎪⎫226=14. 答案:143.已知数列{b n }的通项公式为b n =3×⎝ ⎛⎭⎪⎫12n -1+12,T n 为{b n }的前n 项和.若对任意n ∈N *,不等式12k12+n -2T n≥2n -7恒成立,则实数k 的取值范围为________.解析:因为b n =3×⎝ ⎛⎭⎪⎫12n -1+12,所以T n =3·⎝ ⎛⎭⎪⎫1+12+122+…+12n -1+n 2=3⎝ ⎛⎭⎪⎫1-12n 1-12+n 2=6⎝ ⎛⎭⎪⎫1-12n +n 2.因为不等式12k12+n -2T n≥2n -7,化简得k ≥2n -72n 对任意n ∈N *恒成立.设c n =2n -72n ,则c n +1-c n =n +-72n +1-2n -72n =9-2n2n +1. 当n ≥5时,c n +1≤c n ,{c n }为单调递减数列,当1≤n <5时,c n +1>c n ,{c n }为单调递增数列,116=c 4<c 5=332.所以n =5时,c n 取得最大值332. 所以,要使k ≥2n -72n 对任意n ∈N *恒成立,k ≥332.答案:⎣⎢⎡⎭⎪⎫332,+∞4.(2018届高三·浙江名校联考)已知数列{a n }满足a 1=12,a n +1=a 2n +a n ,[x ]表示不超过x的最大整数,则(1) ⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1=________;(2) ⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 018+1=________.解析:(1)由题意得a 2=a 21+a 1=34,所以1a 1+1+1a 2+1=23+47=2621, 所以⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1=1.(2)因为a n +1=a 2n +a n , 所以1a n +1=1a 2n +a n =1a n -1a n +1, 即1a n +1=1a n -1a n +1, 所以1a 1+1+1a 2+1+…+1a 2 018+1=1a 1-1a 2+1a 2-1a 3+…+1a 2 018-1a 2 019=1a 1-1a 2 019.而a n +1=a 2n +a n >a n ,所以数列{a n }单调递增且各项均为正数, 所以1a 1+1+1a 2+1+…+1a 2 018+1=1a 1-1a 2 019<1a 1=2.又结合(1)可知1a 1+1+1a 2+1+…+1a 2 018+1>1, 所以⎣⎢⎡⎦⎥⎤1a 1+1+1a 2+1+…+1a 2 018+1=1.答案:(1)1 (2)15.已知函数f n (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,且f n (-1)=(-1)n ·n ,n ∈N *. (1)求数列{a n }的通项公式;(2)设函数g (n )=⎩⎪⎨⎪⎧a n ,n 为奇数,g ⎝ ⎛⎭⎪⎫n 2,n 为偶数,c n =g (2n +4),n ∈N *,求数列{c n }的前n 项和T n .解:(1)依题意,得f n (-1)=-a 1+a 2-a 3+…+(-1)na n =(-1)n·n , 当n ≥2时,f n -1(-1)=-a 1+a 2-a 3+…+(-1)n -1·a n -1=(-1)n -1·(n -1),两式相减,得(-1)na n =(-1)n·n -(-1)n -1·(n -1)=(-1)n·(2n -1),即a n =2n -1.当n =1时,f 1(-1)=-a 1=-1,得a 1=1,符合上式, 所以a n =2n -1.数列{a n }的通项公式为a n =2n -1.(2)由g (n )=⎩⎪⎨⎪⎧a n ,n 为奇数,g ⎝ ⎛⎭⎪⎫n 2,n 为偶数,得c 1=g (6)=g (3)=a 3=5,c 2=g (8)=g (4)=g (2)=g (1)=a 1=1,当n ≥3时,c n =g (2n+4)=g (2n -1+2)=g (2n -2+1)=a 2n -2+1=2×(2n -2+1)-1=2n -1+1,所以当n ≥3时,T n =5+1+(22+1)+(23+1)+…+(2n -1+1)=6+-2n -21-2+(n -2)=2n+n ,当n =2时,也符合上式.于是T n =⎩⎪⎨⎪⎧5,n =1,2n +n ,n ≥2,n ∈N *.6.(2017·昆明模拟)已知数列{a n }满足a 1=12,a n +1=a 2na 2n -a n +1.证明:(1)a n +1<a n <1; (2)a 1+a 2+…+a n <1.证明:(1)a n +1-1=a 2na 2n -a n +1-1=a n -1a 2n -a n +1,由于a 2n -a n +1>0,所以a n +1-1与a n -1同号, 由a 1=12,可知a n -1<0,所以a n <1.易得a n +1=a 2na 2n -a n +1>0,则a n +1-a n =a 2na 2n -a n +1-a n =2a 2n -a 3n -a n a 2n -a n +1=-a n a 2n -2a n +a 2n -a n +1=-a n a n -2a 2n -a n +1<0,所以a n +1<a n .综上a n +1<a n <1.(2)由a n +1=a 2na 2n -a n +1,可知1a n +1=1+1-a n a 2n,所以1a n +1-1=1-a na 2n,即a n +11-a n +1=a 2n1-a n. 可得a n +11-a n +1=a 2n1-a n =-a n +a n 1-a n.所以a n =a 2n -1a 2n -1-a n -1+1<a 2n -11-a n -1=-a n -1+a n -11-a n -1=-a n -1-a n -2+a n -21-a n -2=…=-a n -1-a n -2…-a 2-a 1+a 11-a 1, 所以a 1+a 2+…+a n <a 11-a 1=1.7.已知曲线C :y 2=2x (y ≥0),A 1(x 1,y 1),A 2(x 2,y 2),…,A n (x n ,y n ),…是曲线C 上的点,且满足0<x 1<x 2<…<x n <…,一列点B i (a i,0)(i =1,2,…)在x 轴上,且△B i -1A i B i (B 0是坐标原点)是以A i 为直角顶点的等腰直角三角形.(1)求A 1,B 1的坐标 ; (2)求数列{y n }的通项公式; (3)令b n =1a n,c n =2-y n2,分别求数列{b n },{c n }的前n 项和S n ,T n . 解:(1)∵△B 0A 1B 1是以A 1为直角顶点的等腰直角三角形, ∴直线B 0A 1的方程为y =x .由⎩⎪⎨⎪⎧y =x ,y 2=2x ,y >0,得x 1=y 1=2,即点A 1的坐标为(2,2),进而得B 1(4,0).(2)根据△B n -1A n B n 和△B n A n +1B n +1分别是以A n 和A n +1为直角顶点的等腰直角三角形,可得⎩⎪⎨⎪⎧a n =x n +y n ,a n =x n +1-y n +1,即x n +y n =x n +1-y n +1.(*)∵A n 和A n +1均在曲线C :y 2=2x (y ≥0)上, ∴y 2n =2x n ,y 2n +1=2x n +1,∴x n =y 2n 2,x n +1=y 2n +12,代入(*)式得 y 2n +1-y 2n =2(y n +1+y n ),∴y n +1-y n =2(n ∈N *),∴数列{y n }是以y 1=2为首项,2为公差的等差数列, ∴其通项公式为y n =2n (n ∈N *). (3)由(2)可知,x n =12y 2n =2n 2,∴a n =x n +y n =2n (n +1), ∴b n =12n n +=12⎝ ⎛⎭⎪⎫1n -1n +1, c n =2-2n2=12n +1.∴S n =b 1+b 2+…+b n=12⎝ ⎛⎭⎪⎫11-12+12-13+…+1n -1n +1=12⎝ ⎛⎭⎪⎫1-1n +1 =n n +.T n =c 1+c 2+c 3+…+c n=122+123+…+12n +1 =122⎝ ⎛⎭⎪⎫1-12n 1-12=12-12n +1.8.(2017·杭州模拟)已知数列{a n },点P (n ,a n )在函数f (x )=23x +43的图象上.(1)求数列{a n }的通项公式,并求出其前n 项和S n ;(2)若从{a n }中抽取一个公比为q 的等比数列{ak n },其中k 1=1,且k 1<k 2<…<k n <…,k n ∈N *,是否存在正整数q ,使得关于n (n ∈N *)的不等式6S n >k n +1有解?若存在,求出所有符合条件的q 值;若不存在,请说明理由.解:(1)因为点P (n ,a n )在函数f (x )=23x +43的图象上,所以a n =23n +43.当n ≥2时,a n -a n -1=23(常数),所以,数列{a n }是首项为a 1=2,公差为d =23的等差数列,所以S n =⎝ ⎛⎭⎪⎫2+23n +43n 2=n n +3.(2)存在正整数q ,使得关于n (n ∈N *)的不等式6S n >k n +1有解,求解如下: 因为ak 1=a 1=2,ak n =2k n +43=2q n -1,得k n =3q n -1-2,显然q >1,所以当q >1且q ∈N *时,所有的k n =3qn -1-2均为正整数,符合题意;要使不等式6S n >k n +1有解,即2n (n +5)>3q n-2有解,则2n n ++23qn >1有解,经检验,当q =2,q =3,q =4时,n =1都是2n n ++23q n>1的解,符合题意;下面证明当q ≥5时,2nn ++23qn >1无解.设b n =2n n ++23qn ,则b n +1-b n =-q n 2+-5qn +7-q ]3qn +1,因为5q -71-q<0,1-q <0,所以f (n )=2[(1-q )n 2+(7-5q )n +7-q ]在n ∈N *上单调递减, 又f (1)<0,则f (n )<0恒成立,可得b n +1-b n <0, 所以b n ≤b 1恒成立, 又当q ≥5时,b 1<1, 所以当q ≥5时,2nn ++23qn >1无解,不符合题意.综上所述,存在正整数q ,使得关于n (n ∈N *)的不等式6S n >k n +1有解,且q 的所有取值为2,3,4. 9.(2017·嘉兴模拟)已知无穷数列{a n }满足:a 1=12 018,a 2n -2a n +2a n -1=0(n ≥2).(1)试判断数列{a n }的单调性;(2)求证:①0<a n <12;②12-a 1+12-a 2+…+12-a n<2 018. 解:(1)由a 2n -2a n +2a n -1=0(n ≥2)得a 2n =2(a n -a n -1)≥0,∴a n ≥a n -1,而a n =a n -1时,得a n =0与a 1=12 018矛盾,故a n >a n -1,所以数列{a n }为递增数列. (2)证明:①由a 2n -2a n +2a n -1=0(n ≥2)得a 2n -2a n +1=1-2a n -1,则(a n -1)2=1-2a n -1≥0, ∴a n -1≤12,当a n -1=12时有a n =1,这显然矛盾,∴a n <12,由a n >a n -1得a n >a 1>0, ∴0<a n <12.②由a 2n -2a n +2a n -1=0(n ≥2)得2a n -1=a n (2-a n ), 则1a n -1=2a n-a n =1a n +12-a n, ∴12-a n =1a n -1-1a n(n ≥2), ∴12-a 1+12-a 2+…+12-a n=12-a 1+⎝ ⎛⎭⎪⎫1a 1-1a 2+⎝ ⎛⎭⎪⎫1a 2-1a 3+…+⎝ ⎛⎭⎪⎫1a n -1-1a n=12-a 1+1a 1-1a 2+1a 2-1a 3+…+1a n -1-1a n =12-a 1+1a 1-1a n, ∵a 1=12 018,由①可知0<a n <12, ∴2-a 1>a n ,12-a 1-1a n <0,∴12-a 1+12-a 2+…+12-a n =12-a 1+1a 1-1a n<1a 1=2 018,即12-a 1+12-a 2+…+12-a n<2 018. 10.(2017·绍兴模拟)已知数列{a n }满足:a 1=a ∈(0,1),且0<a n +1≤a 2n -a 3n ,设b n =(a n -a n+1)a n +1.(1)比较a 1-a 2和a 2a 1的大小; (2)求证:b 1b 2…b na 1a 2…a n>a n +1;(3)设T n 为数列{b n }的前n 项和,求证:T n <a 25.解:(1)因为a 1-a 2-a 2a 1=a 21-a 1a 2-a 2a 1≥a 31-a 1a 2a 1=a 21-a 2≥a 31>0,所以a 1-a 2>a 2a 1. (2)证明:因为a n >0, 所以0<a n +1a n ≤a n -a 2n =-⎝⎛⎭⎪⎫a n -122+14≤14,即a n +1≤14a n <a n .所以0<a n <a 1<1,a n +1≤a 2n -a 3n <a 2n ,所以b n =(a n -a n +1)a n +1>(a n -a 2n )a n +1≥a 2n +1a n ,即b n a n >a 2n +1a 2n,故b 1b 2…b n a 1a 2…a n >a 2a 1·a 3a 2·…·a n +1a n =a n +1a 1>a n +1.(3)证明:由a n +1≤14a n 可知,a n +1-14a n ≤0,a n +1-34a n <0,所以b n -316a 2n =(a n -a n +1)a n +1-316a 2n=-⎝ ⎛⎭⎪⎫a n +1-14a n ⎝ ⎛⎭⎪⎫a n +1-34a n ≤0, 所以b n ≤316a 2n .因此T n≤316(a21+a22+…+a2n)≤316⎝⎛⎭⎪⎫a21+116a21+…+116n-1a21≤316·a2⎝⎛⎭⎪⎫1-116n1-116<a25.。
高中数学专题复习
《数列等差等比数列综合》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.1 .(汇编年高考大纲卷(文))已知数列{}n a 满足
{}12430,,103
n n n a a a a ++==-则的前项和等于 ( ) A .()-10-61-3 B .()-1011-39 C .()-1031-3 D .()-1031+3 2.2 .(汇编年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,
n =,若11111,2b c b c a >+=,111,,22n n n n n n n n c a b a a a b c +++++==
=,则( ) A.{S n }为递减数列 B.{S n }为递增数列
C.{S 2n -1}为递增数列,{S 2n }为递减数列
D.{S 2n -1}为递减数列,{S 2n }为
递增数列 3.若数列{a n }是首项为1,公比为a -32的无穷等比数列,且{a n }各项的和为
a ,则a 的值是( )。
高考数学二轮复习提高题专题复习数列多选题练习题及解析一、数列多选题1.已知等比数列{}n a 首项11a >,公比为q ,前n 项和为n S ,前n 项积为n T ,函数()()()()127f x x x a x a x a =+++,若()01f '=,则( )A .{}lg n a 为单调递增的等差数列B .01q <<C .11n a S q ⎧⎫-⎨⎬-⎩⎭为单调递增的等比数列D .使得1n T >成立的n 的最大值为6【答案】BCD 【分析】令()()()()127g x x a x a x a =+++,利用()()127001f g a a a '===可得3411a a q ==,01q <<,B 正确;由()()111lg lg lg 1lg n n a a q a n q -==+-可得A 错误;由()111111111n n n a a a qS q q q q q --=--=⋅---可得C 正确;由11a >,01q <<,41a =可推出671T T >=,81T <可得D 正确. 【详解】令()()()()127g x x a x a x a =+++,则()()f x xg x =, ()()()f x g x xg x ''∴=+,()()127001f g a a a '∴===,因为{}n a 是等比数列,所以712741a a a a ==,即3411a a q ==,11a >,01q ∴<<,B 正确;()()111lg lg lg 1lg n n a a q a n q -==+-,{}lg n a ∴是公差为lg q 的递减等差数列,A 错误;()111111111n n n a a a q S q q q q q --=--=⋅---,11n a S q ⎧⎫∴-⎨⎬-⎩⎭是首项为101a q q <-,公比为q 的递增等比数列,C 正确;11a >,01q <<,41a =,3n ∴≤时,1n a >,5n ≥时,01n a <<,4n ∴≤时,1n T >,7712741T a a a a ===,8n ∴≥时,78971n n T T a a a T =<=,又75671T T a a =>,7671T T a =>,所以使得1n T >成立的n 的最大值为6,D 正确. 故选:BCD 【点睛】关键点点睛:利用等比数列的性质、通项公式、求和公式、数列的单调性求解是解题关键.2.设数列{}n a 的前n 项和为n S ,若存在实数A ,使得对任意*n N ∈,都有n S A <,则称数列{}n a 为“T 数列”.则以下结论正确的是( )A .若{}n a 是等差数列,且10a >,公差0d <,则数列{}n a 是“T 数列”B .若{}n a 是等比数列,且公比q 满足||1q <,则数列{}n a 是“T 数列”C .若12(1)2n n n a n n ++=+,则数列{}n a 是“T 数列”D .若2241n n a n =-,则数列{}n a 是“T 数列 【答案】BC 【分析】写出等差数列的前n 项和结合“T 数列”的定义判断A ;写出等比数列的前n 项和结合“T 数列”的定义判断B ;利用裂项相消法求和判断C ;当n 无限增大时,n S 也无限增大判断D . 【详解】在A 中,若{}n a 是等差数列,且10a >,公差0d <,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故A 错误. 在B 中,因为{}n a 是等比数列,且公比q 满足||1q <, 所以()11111112111111n nn n a q a a q a a q aS qq q q q q-==-+<------,所以数列{}n a 是“T 数列”,故B 正确. 在C 中,因为11211(1)22(1)2n n n n n a n n n n +++==-+⋅+⋅,所以122311111111111||122222322(1)22(1)22n n n n S n n n ++=-+-++-=-<⨯⨯⨯⨯⋅+⋅+⋅∣∣.所以数列{}n a 是“T 数列”,故C 正确.在D 中,因为22211141441n n a n n ⎛⎫==+ ⎪--⎝⎭,所以222111114342143141n S n n ⎛⎫=+++++⎪⨯-⨯--⎝⎭,当n 无限增大时,n S 也无限增大,所以数列{}n a 不是“T 数列”,故D 错误. 故选:BC. 【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k =; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()122121n n n +--()()()()1121212121n n n n ++---=--1112121n n +=---;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.3.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 【答案】ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.4.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项【答案】ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1n a 在1,6n n N上单调递增,1na 在7nnN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6n n N上单调递增,1na 在7n n N,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确;由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0nS <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确;【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.5.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.6.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =,所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.7.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=- C .1n n a a +> D .当400t =时,33800a >【答案】BC 【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-,因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC 【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.8.已知等差数列{}n a 中,59a a =,公差0d >,则使得前n 项和n S 取得最小值的正整数n 的值是( ) A .5 B .6C .7D .8【答案】BC 【分析】分析出数列{}n a 为单调递增数列,且70a =,由此可得出结论. 【详解】在等差数列{}n a 中,59a a =,公差0d >,则数列{}n a 为递增数列,可得59a a <,59a a ∴=-,可得5975202a a a a +==>,570a a ∴<=,所以,数列{}n a 的前6项均为负数,且70a =, 因此,当6n =或7时,n S 最小. 故选:BC. 【点睛】方法点睛:本题考查等差数列前n 项和最大值的方法如下:(1)利用n S 是关于n 的二次函数,利用二次函数的基本性质可求得结果; (2)解不等式0n a ≥,解出满足此不等式的最大的n 即可找到使得n S 最小.9.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列 【答案】AB 【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.10.(多选题)已知函数()22()()n n f n n n ⎧=⎨-⎩当为奇数时当为偶数时,且()()1n a f n f n =++,则na 等于( )A .()21n -+B .21n -C .21nD .12n -【答案】AC 【分析】对n 进行分类讨论,按照()()1n a f n f n =++写出通项即可. 【详解】当n 为奇数时,()()()()22112121n a f n f n n n n n =++=-+=--=-+; 当n 为偶数时,()()()221121n a f n f n n n n =++=-++=+,所以()()()2121nn nan n⎧-+⎪=⎨+⎪⎩当为奇数时当为偶数时.故选:AC.【点睛】易错点睛:对n进行分类讨论时,应注意当n为奇数时,1n+为偶数;当n为偶数时,1n+为奇数.。
第3讲 数列的综合问题数列不等式的证明[核心提炼]数列不等式的证明问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.与数列有关的不等式除利用数学归纳法证明外,还可以借助以下方法:若所证数列不等式能够转化为函数,可借助函数的单调性证明;若所证数列不等式两边均是整式多项式,可以借助比较法;若所证数列能够求和,且所证不等式与和式有关,可先求出其和,再借助放缩法证明.[典型例题]已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n ∈N *). 证明:当n ∈N *时, (1)0<x n +1<x n ; (2)2x n +1-x n ≤x n x n +12;(3)12n -1≤x n ≤12n -2. 【证明】 (1)用数学归纳法证明:x n >0. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若x k +1≤0时,则0<x k =x k +1+ln(1+x k +1)≤0,矛盾,故x k +1>0. 因此x n >0(n ∈N *).所以x n =x n +1+ln(1+x n +1)>x n +1. 因此0<x n +1<x n (n ∈N *). (2)由x n =x n +1+ln(1+x n +1)得,x n x n +1-4x n +1+2x n =x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1). 记函数f (x )=x 2-2x +(x +2)ln(1+x )(x ≥0), f ′(x )=2x 2+x x +1+ln(1+x )>0(x >0),函数f (x )在[0,+∞)上单调递增,所以f (x )≥f (0)=0,因此x 2n +1-2x n +1+(x n +1+2)ln(1+x n +1)=f (x n +1)≥0, 故2x n +1-x n ≤x n x n +12(n ∈N *).(3)因为x n =x n +1+ln(1+x n +1)≤x n +1+x n +1=2x n +1, 所以x n ≥12n -1.由x n x n +12≥2x n +1-x n 得1x n +1-12≥2⎝⎛⎭⎫1x n -12>0, 所以1x n -12≥2⎝ ⎛⎭⎪⎫1x n -1-12≥…≥2n -1⎝⎛⎭⎫1x 1-12=2n -2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N *).证明数列不等式常用的四种方法(1)构造函数,结合数列的单调性证明.(2)若待证不等式的两边均为关于n 的整式多项式,常用作差比较法证明数列不等式. (3)与数列前n 项和有关的不等式的证明方法主要有两种:一是若数列的通项能够直接求和,则先求和后,再根据和的性质证明不等式;二是若数列的通项不能够直接求和,则先放缩后再求和证明.(4)当待证不等式随n 的变化呈现的规律较明显,且初始值n 0易于确定时,用数学归纳法证明.[对点训练]1.设数列{a n }满足⎪⎪⎪⎪a n -a n +12≤1,n ∈N *.(1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝⎛⎭⎫32n,n ∈N *,证明:|a n |≤2,n ∈N *.证明:(1)由⎪⎪⎪⎪⎪⎪a n -a n +12≤1,得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *,所以|a 1|21-|a n |2n =⎝⎛⎭⎫|a 1|21-|a 2|a 2+⎝⎛⎭⎫|a 2|22=|a 3|23+…+⎝⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1,因此|a n |≥2n -1(|a 1|-2).(2)任取n ∈N *,由(1)知,对于任意m >n , |a n |2n -|a m |2m =⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m -1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1,故|a n |<⎝ ⎛⎭⎪⎫12n -1+|a m|2m ·2n ≤⎣⎢⎡⎦⎥⎤12n -1+12m ·⎝⎛⎭⎫32m·2n=2+⎝⎛⎭⎫34m·2n.从而对于任意m >n ,均有|a n |<2+⎝⎛⎭⎫34m·2n .① 由m 的任意性得|a n |≤2. 否则,存在n 0∈N *,有|an0|>2,取正整数m 0>log 34|an 0|-22n 0且m 0>n 0,则2n 0·⎝⎛⎭⎫34m 0<2n 0·⎝⎛⎭⎫34log 34|a n 0|-22n 0=|an 0|-2,与①式矛盾,综上,对于任意n ∈N *,均有|a n |≤2. 2.已知数列{a n }满足,a 1=1,a n =1a n +1-12. (1)求证:23≤a n ≤1;(2)求证:|a n +1-a n |≤13.证明:(1)由已知得a n +1=1a n +12,计算a 2=23,a 3=67,a 4=1419,猜想23≤a n ≤1.下面用数学归纳法证明. ①当n =1时,命题显然成立;②假设n =k 时,有23≤a n ≤1成立,则当n =k +1时,a k +1=1a k +12≤123+12<1,a k +1=1a k +12≥11+12=23,即当n =k +1时也成立, 所以对任意n ∈N *,都有23≤a n ≤1.(2)当n =1时,|a 1-a 2|=13,当n ≥2时,因为(a n +12)(a n -1+12)=(a n +12)·1a n =1+12a n ≥1+12=32,所以|a n +1-a n |=⎪⎪⎪⎪⎪⎪1a n +12-1a n -1+12 =|a n -a n -1|(a n +12)(a n -1+12)≤23|a n -a n -1|≤…≤⎝⎛⎭⎫23n -1|a 2-a 1|=13·⎝⎛⎭⎫23n -1<13.综上知,|a n +1-a n |≤13.数列中的交汇创新问题[核心提炼]数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化为特殊数列求解,一些题目常与函数、向量、三角函数、解析几何、不等式等知识交汇结合,考查数列的基本运算与应用.[典型例题](1)(2018·高考浙江卷)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则( )A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4(2)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. ①求数列{x n }的通项公式;②如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .【解】 (1)选B.法一:因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4≤-1,又a 1>1,所以等比数列的公比q <0.若q ≤-1,则a 1+a 2+a 3+a 4=a 1(1+q )(1+q 2)≤0,而a 1+a 2+a 3≥a 1>1,所以ln(a 1+a 2+a 3)>0,与ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4≤0矛盾,所以-1<q <0,所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0, 所以a 1>a 3≥a 1,a 2<a 4,故选B.法二:因为e x ≥x +1,a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),所以e a 1+a 2+a 3+a 4=a 1+a 2+a 3≥a 1+a 2+a 3+a 4+1,则a 4≤-1,又a 1>1,所以等比数列的公比q <0.若q ≤-1,则a 1+a 2+a 3+a 4=a 1(1+q )(1+q 2)≤0,而a 1+a 2+a 3≥a 1>1,所以ln(a 1+a 2+a 3)>0,与ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4≤0矛盾,所以-1<q <0,所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0, 所以a 1>a 3,a 2<a 4,故选B.(2)①设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0. 因为q >0, 所以q =2,x 1=1,因此数列{x n }的通项公式为x n =2n -1.②过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1. 由①得x n +1-x n =2n -2n -1=2n -1, 记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.(i) 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.(ii)(i)-(ii)得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1.所以T n =(2n -1)×2n +12.数列与函数的综合问题主要有两类(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题; (2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法等对式子进行化简变形.[对点训练]已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的图象经过点⎝⎛⎭⎫π12,-2,⎝⎛⎭⎫7π12,2,且在区间⎝⎛⎭⎫π12,7π12上为单调函数. (1)求ω,φ的值; (2)设a n =nf ⎝⎛⎭⎫n π3(n ∈N *),求数列{a n }的前30项和S 30.解:(1)由题可得ωπ12+φ=2k π-π2,k ∈Z ,7ωπ12+φ=2k π+π2,k ∈Z ,解得ω=2,φ=2k π-2π3,k ∈Z ,因为|φ|<π,所以φ=-2π3.(2)因为a n =2n sin ⎝ ⎛⎭⎪⎫2n π3-2π3(n ∈N *),数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫2sin ⎝ ⎛⎭⎪⎫2n π3-2π3 (n ∈N *)的周期为3,前三项依次为0,3,-3,所以a 3n -2+a 3n -1+a 3n =(3n -2)×0+(3n -1)×3+3n ×(-3)=-3(n ∈N *), 所以S 30=(a 1+a 2+a 3)+…+(a 28+a 29+a 30)=-10 3.数列中的探索性问题[核心提炼]探索性问题是指根据已知条件(或给出的结论),探求相应结论(或条件)是否存在的一类问题,主要包括结论存在型,结论探索型,条件探索型,综合探索型.[典型例题]已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.【解】 (1)设等差数列{a n }的公差为d ,依题意,2,2+d ,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n .显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0,解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.要判断在某些确定条件下的某一数学对象是否存在或某一结论是否成立,“是否存在”的问题的命题形式有两种:如果存在,找出一个来;如果不存在,需要说明理由.这类问题常用“肯定顺推”的方法.[对点训练]数列{a n }满足a 1=1,a n +1=(n 2+n -λ)a n (n =1,2,…),λ是常数. (1)当a 2=-1时,求λ及a 3的值;(2)数列{a n }是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由. 解:(1)由于a n +1=(n 2+n -λ)a n (n =1,2,…),且a 1=1, 所以当a 2=-1时,得-1=2-λ,故λ=3. 从而a 3=(22+2-3)×(-1)=-3.(2)数列{a n }不可能为等差数列,理由如下:由a 1=1,a n +1=(n 2+n -λ)a n ,得a 2=2-λ,a 3=(6-λ)·(2-λ),a 4=(12-λ)(6-λ)(2-λ). 若存在λ,使{a n }为等差数列,则a 3-a 2=a 2-a 1, 即(5-λ)(2-λ)=1-λ,解得λ=3.于是a 2-a 1=1-λ=-2,a 4-a 3=(11-λ)(6-λ)(2-λ)=-24.这与{a n }为等差数列矛盾,所以,对任意λ,{a n }都不可能是等差数列.专题强化训练1.(2019·台州市高三期末考试)在正项数列{a n }中,已知a 1=1,且满足a n +1=2a n -1a n +1(n ∈N *).(1)求a 2,a 3; (2)证明:a n ≥(32)n -1.解:(1)因为在正项数列{a n }中,a 1=1,且满足a n +1=2a n -1a n +1(n ∈N *),所以a 2=2×1-11+1=32,a 3=2×32-132+1=135.(2)证明:①当n =1时,由已知a 1=1≥(32)1-1=1,不等式成立;②假设当n =k 时,不等式成立,即a k ≥(32)k -1,因为f (x )=2x -1x +1在(0,+∞)上是增函数,所以a k +1=2a k -1a k +1≥2(32)k -1-1(32)k -1+1=(32)k +13(32)k -1(32)k -1+1 =(32)k +13(32)2k -1+13(32)k -1(32)k -1+1 =(32)k +19[(32)k +3][2×(32)k -3](32)k -1+1, 因为k ≥1,所以2×(32)k -3≥2×32-3=0,所以a k +1≥(32)k ,即当n =k +1时,不等式也成立. 根据①②知不等式对任何n ∈N *都成立.2.(2019·嘉兴调研)已知S n 为各项均为正数的数列{a n }的前n 项和,a 1∈(0,2),a 2n +3a n+2=6S n .(1)求{a n }的通项公式;(2)设b n =1a n a n +1,数列{b n }的前n 项和为T n ,若对任意的n ∈N *,t ≤4T n 恒成立,求实数t 的最大值.解:(1)当n =1时,由a 2n +3a n +2=6S n ,得a 21+3a 1+2=6a 1,即a 21-3a 1+2=0. 又a 1∈(0,2),解得a 1=1.由a 2n +3a n +2=6S n ,可知a 2n +1+3a n +1+2=6S n +1.两式相减,得a 2n +1-a 2n +3(a n +1-a n )=6a n +1,即(a n +1+a n )(a n +1-a n -3)=0.由于a n >0,可得a n +1-a n -3=0,即a n +1-a n =3,所以{a n }是首项为1,公差为3的等差数列,所以a n =1+3(n -1)=3n -2. (2)由a n =3n -2 ,可得b n =1a n a n +1=1(3n -2)(3n +1)=13⎝ ⎛⎭⎪⎫13n -2-13n +1, T n =b 1+b 2+…+b n=13⎣⎡⎝⎛⎭⎫1-14+⎝⎛⎭⎫14-17+…⎦⎥⎤+⎝ ⎛⎭⎪⎫13n -2-13n +1 =n3n +1. 因为T n =n 3n +1=13-133n +1随着n 的增大而增大,所以数列{T n }是递增数列,所以t ≤4T n ⇔t 4≤T n ⇔t 4≤T 1=14⇔t ≤1,所以实数t 的最大值是1.3.(2019·金华模拟)已知数列{a n }满足a 1=12,a n +1a n =2a n +1-1(n ∈N *),令b n =a n -1.(1)求数列{b n }的通项公式;(2)令c n =a 2n +1a 2n ,求证:c 1+c 2+…+c n <n +724.解:(1)因为a n +1a n =2a n +1-1(n ∈N *),b n =a n -1,即a n =b n +1. 所以(b n +1+1)(b n +1)=2(b n +1+1)-1,化为:1b n +1-1b n =-1,所以数列{1b n }是等差数列,首项为-2,公差为-1.所以1b n=-2-(n -1)=-1-n ,所以b n =-1n +1.(2)证明:由(1)可得:a n =b n +1=1-1n +1=nn +1.所以c n =a 2n +1a 2n =2n +12n +1+12n 2n +1=(2n +1)22n (2n +2)=1+12⎝ ⎛⎭⎪⎫12n -12n +2,因为n ≥2时,2n +2≤2n +1-1, 所以12n -12n +2<12n -1-12n +1-1,所以c 1+c 2+…+c n <n +12⎝⎛⎭⎫12-14+ 12⎝ ⎛⎭⎪⎫122-1-12n +1-1=n +724-12(2n +1-1)<n +724. 4.(2019·绍兴市高三教学质量调测)已知数列{a n }满足a n >0,a 1=2,且(n +1)a 2n +1=na 2n +a n (n ∈N *).(1)证明:a n >1;(2)证明:a 224+a 239+…+a 2nn 2<95(n ≥2).证明:(1)由题得(n +1)·a 2n +1-(n +1)=na 2n -n +a n -1,故(a n +1-1)(a n +1+1)(n +1)=(a n -1)(na n +n +1), 由a n >0,n ∈N *,可知(a n +1+1)(n +1)>0,na n +n +1>0, 所以a n +1-1与a n -1同号,又a 1-1=1>0,故a n >1.(2)由(1)知a n >1,故(n +1)a 2n +1=na 2n +a n <(n +1)a 2n ,所以a n +1<a n ,1<a n ≤2.又由题可得a n =(n +1)a 2n +1-na 2n ,所以,a 1=2a 22-a 21,a 2=3a 23-2a 22,…,a n =(n +1)·a 2n +1-na 2n ,相加得a 1+a 2+…+a n =(n +1)a 2n +1-4≤2n , 所以a 2n +1≤2n +4n +1,即a 2n ≤2n +2n (n ≥2),a 2nn 2≤2n 2+2n 3≤2⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1-2n +1n +1(n ≥2).当n =2时,a 2222=34<95.当n =3时,a 2222+a 2332≤34+232+233<34+13<95.当n ≥4时,a 224+a 239+a 2416+…+a 2nn2<2⎝⎛⎭⎫14+19+116+14+⎝⎛⎭⎫14+227+13-14 =1+29+18+14+227+112<95.从而,原命题得证.5.(2019·台州市高考一模)已知数列{a n }满足:a n >0,a n +1+1a n <2(n ∈N *).(1)求证:a n +2<a n +1<2(n ∈N *); (2)求证:a n >1(n ∈N *).证明:(1)由a n >0,a n +1+1a n <2,所以a n +1<2-1a n <2,因为2>a n +2+1a n +1≥2a n +2a n +1, 所以a n +2<a n +1<2.(2)假设存在a N ≤1(N ≥1,N ∈N *), 由(1)可得当n >N 时,a n ≤a N +1<1, 根据a n +1-1<1-1a n =a n -1a n <0,而a n <1,所以1a n +1-1>a n a n -1=1+1a n -1.于是1a N +2-1>1+1a N +1-1,…1a N +n -1>1+1a N +n -1-1.累加可得1a N +n -1>n -1+1a N +1-1(*),由(1)可得a N +n -1<0,而当n >-1a N +1-1+1时,显然有n -1+1a N +1-1>0,因此有1a N +n -1<n -1+1a N +1-1,这显然与(*)矛盾,所以a n >1(n ∈N *).6.(2019·金丽衢十二校高三联考)已知f n (x )=a 1x +a 2x 2+a 3x 3+…+a n x n ,且f n (-1)=(-1)n ·n ,n =1,2,3,….(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式;(3)当k >7且k ∈N *时,证明:对任意n ∈N *都有2a n +1+2a n +1+1+2a n +2+1+…+2a nk -1+1>32成立.解:(1)由f 1(-1)=-a 1=-1得a 1=1, 由f 2(-1)=-a 1+a 2=2,得a 2=3, 又因为f 3(-1)=-a 1+a 2-a 3=-3, 所以a 3=5.(2)由题意得:f n (-1)=-a 1+a 2-a 3+…+(-1)n a n =(-1)n ·n , f n -1(-1)=-a 1+a 2-a 3+…+(-1)n -1a n -1 =(-1)n -1·(n -1),n ≥2, 两式相减得:(-1)n a n =(-1)n ·n -(-1)n -1·(n -1)=(-1)n (2n -1),得当n ≥2时,a n =2n -1,又a 1=1符合,所以a n =2n -1(n ∈N *). (3)证明:令b n =a n +12=n ,则S =1b n +1b n +1+1b n +2+…+1b nk -1=1n +1n +1+1n +2+…+1nk -1,所以2S =⎝ ⎛⎭⎪⎫1n +1nk -1+⎝ ⎛⎭⎪⎫1n +1+1nk -2+⎝ ⎛⎭⎪⎫1n +2+1nk -3+…+⎝ ⎛⎭⎪⎫1nk -1+1n .(*)当x >0,y >0时,x +y ≥2xy ,1x +1y≥21xy,所以(x +y )⎝⎛⎭⎫1x +1y ≥4,所以1x +1y ≥4x +y ,当且仅当x =y 时等号成立,上述(*)式中,k >7,n >0,n +1,n +2,…,nk -1全为正,所以2S >4n +nk -1+4n +1+nk -2+4n +2+nk -3+…+4nk -1+n =4n (k -1)n +nk -1,所以S >2(k -1)1+k -1n>2(k -1)k +1=2⎝ ⎛⎭⎪⎫1-2k +1>2⎝ ⎛⎭⎪⎫1-27+1=32,得证. 7.(2019·宁波市诺丁汉大学附中高三期中考试)已知数列{a n }满足a 1=3,a n +1=a 2n +2a n ,n ∈N *,设b n =log 2(a n +1).(1)求{a n }的通项公式;(2)求证:1+12+13+…+1b n -1<n (n ≥2);(3)若2c n =b n ,求证:2≤(c n +1c n)n<3.解:(1)由a n +1=a 2n +2a n ,则a n +1+1=a 2n +2a n +1=(a n +1)2,由a 1=3,则a n >0,两边取对数得到log 2(a n +1+1)=log 2(a n +1)2=2 log 2(a n +1),即b n +1=2b n . 又b 1=log 2(a 1+1)=2≠0,所以{b n }是以2为公比的等比数列. 即b n =2n .又因为b n =log 2(a n +1), 所以a n =22n -1.(2)证明:用数学归纳法证明:①当n =2时,左边为1+12+13=116<2=右边,此时不等式成立;②假设当n =k (k ≥2,k ∈N *)时,不等式成立,则当n =k +1时,左边=1+12+13+…+12k -1+12k +12k +1+…+12k +1-1<k +12k +12k+1+…+12k +1-1<k +12k +12k +…+12k 2k个,<k +1=右边, 所以当n =k +1时,不等式成立.综上可得:对一切n ∈N *,n ≥2,命题成立. (3)证明:由2c n =b n 得c n =n , 所以(c n +1c n )n =(1+n n )n =(1+1n )n ,首先(1+1n )n =C 0n +C 1n 1n +C 2n 1n 2+…+ C k n 1n k +…+C n n 1n n ≥2, 其次因为C k n 1nk =n (n -1)…(n -k +1)k !n k <1k !≤1k (k -1)=1k -1-1k(k ≥2),所以(1+1n )n =C 0n +C 1n 1n +C 2n 1n 2+…+ C k n 1n k +…+C n n 1nn , <1+1+1-12+12-13+…+1n -1-1n =3-1n <3,当n =1时显然成立.所以得证.8.数列{a n }满足a 1=14,a n =a n -1(-1)n a n -1-2(n ≥2,n ∈N ).(1)试判断数列⎩⎨⎧⎭⎬⎫1a n+(-1)n 是否为等比数列,并说明理由;(2)设b n =a n sin (2n -1)π2,数列{b n }的前n 项和为T n ,求证:对任意的n ∈N *,T n <47.解:(1)a n =a n -1(-1)n a n -1-2⇒1a n =(-1)na n -1-2a n -1=(-1)n-2a n -1,所以1a n +(-1)n =2·(-1)n -2a n -1⇒所以1a n +(-1)n=(-2)·⎣⎢⎡⎦⎥⎤(-1)n -1+1a n -1, 所以⎩⎨⎧⎭⎬⎫1a n+(-1)n 为公比是-2的等比数列.(2)证明:1a 1+(-1)1=3,由(1)可得1a n+(-1)n =⎣⎡⎦⎤1a 1+(-1)1·(-2)n -1=3·(-2)n -1, 所以a n =13·(-2)n -1-(-1)n.而sin(2n -1)π2=(-1)n -1, 所以b n =a n ·sin (2n -1)π2=(-1)n -13·(-2)n -1-(-1)n =13·2n -1+1,所以b n =13·2n -1+1<13·2n -1,当n ≥3时,T n =b 1+b 2+…+b n <(b 1+b 2)+13·22+13·23+…+13·2n -1=14+17+112⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n -21-12<14+17+16=4784<47. 因为{b n }为正项数列,所以T 1<T 2<T 3<…<T n , 所以n ∈N *,T n <47.。
第2讲 数列求和及数列的综合应用(建议用时:60分钟) 一、选择题1.(2022·福建卷)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ). A .8 B .10 C .12 D .14解析 利用等差数列的通项公式和前n 项和公式求解.由题意知a 1=2,由S 3=3a 1+3×22×d =12,解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C. 答案 C2.数列{a n }的通项公式a n =1n +n +1,若{a n }的前n 项和为24,则n 为( ).A .25B .576C .624D .625解析 a n =1 n +n +1=-( n -n +1),前n 项和S n =-[(1-2)+(2-3)+…+(nn +1)]=n +1-1=24,故n =624.故选C.答案 C3.(2021·浙江卷)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则 ( ).A .a 1d >0,dS 4>0B .a 1d <0,dS 4<0C .a 1d >0,dS 4<0D .a 1d <0,dS 4>0解析 ∵a 3,a 4,a 8成等比数列,∴(a 1+3d )2=(a 1+2d )·(a 1+7d ),整理得a 1=-53d ,∴a 1d =-53d 2<0,又S 4=4a 1+4×32d =-2d 3,∴dS 4=-2d 23<0,故选B.答案 B4.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n } 的前n 项和S n = ( ). A.n 24+7n4 B.n 23+5n 3 C.n 22+3n 4D .n 2+n解析 设等差数列{a n }的公差为d ,由已知得a 23=a 1a 6,即(2+2d )2=2(2+5d ),解得d =12,故S n =2n +n (n -1)2×12=n 24+7n4. 答案 A5.(2021·北京卷)设{a n }是等差数列,下列结论中正确的是 ( ).A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析 A ,B 选项易举反例,C 中若0<a 1<a 2,∴a 3>a 2>a 1>0,∵a 1+a 3>2a 1a 3,又2a 2=a 1+a 3,∴2a 2>2a 1a 3,即a 2>a 1a 3成立. 答案 C6.S n 是等比数列{a n }的前n 项和,a 1=120,9S 3=S 6,设T n =a 1a 2a 3…a n ,则使T n 取最小值的n 值为( ).A .3B .4C .5D .6解析 设等比数列的公比为q ,故由9S 3=S 6,得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q =2,故T nT n -1=a n =120×2n -1,易得当n ≤5时,T nT n -1<1,即T n <T n -1;当n ≥6时,T n >T n -1,据此数列单。
2021年高考数学二轮复习解答题第三周星期四数列问题理在正项数列{a n }(n ∈N *)中,S n 为{a n }的前n 项和,若点(a n ,S n )在函数y =c 2-x c -1的图象上,其中c 为正常数,且c ≠1.(1)求数列{a n }的通项公式;(2)是否存在正整数M ,使得当n >M 时,a 1·a 3·a 5·…·a 2n -1>a 101恒成立?若存在,求出使结论成立的c 的取值范围和相应的M 的最小值;(3)若存在一个等差数列{b n },对任意n ∈N *,都有b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2+b n a 1=3n -53n -1成立,求{b n }的通项公式及c 的值. 解 (1)S n =c 2-a n c -1,n ≥2时, S n -S n -1=c 2-a n c -1-c 2-a n -1c -1. a n =a n -1-a n c -1,(c -1)a n =a n -1-a n ,ca n =a n -1,a n a n -1=1c, ∴{a n }是等比数列.将(a 1,S 1)代入y =c 2-x c -1中,得a 1=c , 故a n =⎝ ⎛⎭⎪⎫1c n -2. (2)由a 1·a 3·a 5·…·a 2n -1>a 101得c ·⎝ ⎛⎭⎪⎫1c 1·⎝ ⎛⎭⎪⎫1c 3·…·⎝ ⎛⎭⎪⎫1c 2n -3>⎝ ⎛⎭⎪⎫1c 99,∴⎝ ⎛⎭⎪⎫1c n (n -2)>⎝ ⎛⎭⎪⎫1c 99. 若1c>1,即0<c <1时,n (n -2)>99,得n >11或n <-9(舍去). 若1c<1,即c >1时,n (n -2)<99,得-9<n <11. 不符合n >M 时,a 1·a 3·a 5·…·a 2n -1>a 101恒成立,故舍去,∴c 的取值范围是(0,1),相应的M 的最小值为11.(3)由(1)知a n =⎝ ⎛⎭⎪⎫1c n -2.由{b n }为等差数列,设b n =b 1+(n -1)d . b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2+b n a 1=3n -53n -1(n ∈N *).① 当n =1时,b 1c =3-53-1=13.② 当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -2a 2+b n -1a 1=3n -1-53(n -1)-1.③ 注意到b 2-b 1=b 3-b 2=…=b n -b n -1=d ,① -③得b 1a n +d (a n -1+a n -2+…+a 2+a 1)=3n -3n -1-53, ② 将a n =⎝ ⎛⎭⎪⎫1c n -2代入上式, 得b 1⎝ ⎛⎭⎪⎫1c n -2+c 2d c -1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1c n -1=2×3n -1-53, 整理得⎝⎛⎭⎪⎫b 1c -c 2d c -1⎝ ⎛⎭⎪⎫1c n -1+c 2d c -1=2×3n -1-53.④∵④式对一切n (n ≥2)恒成立,则必有⎩⎪⎨⎪⎧1c =3,b 1c -c 2d c -1=2,⑤c 2d c -1=-53. 解得⎩⎪⎨⎪⎧c =13,b 1=1,d =10,故b n =10n -9,c =13.。
第2讲 数列求和及其综合应用[考情分析]数列求和常与数列的综合应用一起考查,常以解答题的形式出现,有时与函数、不等式综合在一起考查,难度中等偏上. 考点一 数列求和 核心提炼1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.常见的裂项方式有:1n (n +1)=1n -1n +1;1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ;1n2-1=12⎝⎛⎭⎫1n -1-1n +1;14n2-1=12⎝⎛⎭⎫12n -1-12n +1.2.如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用错位相减法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式. 考向1 分组转化法求和例1 已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1an+2log 2a n -1,求数列{b n }的前n 项和S n .解 (1)设等比数列{a n }的公比为q ,由a 1,a 2,a 3-2成等差数列,得2a 2=a 1+a 3-2, 即4q =2+2q 2-2,解得q =2(q =0舍去), 则a n =a 1q n -1=2n ,n ∈N *.(2)b n =1an +2log 2a n -1=12n +2log 22n -1=12n +2n -1,则数列{b n }的前n 项和S n =⎝⎛⎭⎫12+14+…+12n +(1+3+…+2n -1) =12⎝⎛⎭⎫1-12n 1-12+12n (1+2n -1)=1-12n +n 2.考向2 裂项相消法求和 例2 (2020·莆田市第一联盟体学年联考)设数列{a n }的前n 项和为S n ,且S n =n 2-2n ,{b n }为正项等比数列,且b 1=a 1+3,b 3=6a 4+2. (1)求数列{a n }和{b n }的通项公式;(2)设c n =1an +1·log2bn +1,求{c n }的前n 项和T n .解 (1)由S n =n 2-2n ,得当n =1时,a 1=S 1=-1, 当n ≥2时,S n -1=(n -1)2-2(n -1)=n 2-4n +3,所以当n ≥2时,a n =S n -S n -1=2n -3,a 1=-1也满足此式.所以a n =2n -3,n ∈N *. 又b 1=a 1+3=2,b 3=6a 4+2=32,因为{b n }为正项等比数列,设{b n }的公比为q (q >0). 所以q 2=b3b1=16,即q =4,所以b n =b 1·q n -1=2·4n -1=22n -1,n ∈N *. (2)因为a n +1=2(n +1)-3=2n -1,b n +1=22n +1. 所以c n =1an +1·log2bn +1=1(2n -1)·log 222n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.所以T n =c 1+c 2+c 3+…+c n=12⎝⎛⎭⎫1-13+13-15+15-17+…+12n -1-12n +1 =12⎝⎛⎭⎫1-12n +1=n 2n +1.所以T n =n 2n +1.考向3 错位相减法求和例3 已知数列{a n }的前n 项和为S n ,a 1=2,a n >0,且a 2n +1-2a n +1a n -3a 2n =0. (1)求数列{a n }的通项公式;(2)设b n =log 3(1+S n ),求数列{a n b n }的前n 项和T n . 解 (1)由a 2n +1-2a n +1a n -3a 2n =0及a n >0, 得⎝⎛⎭⎫an +1an 2-2×an +1an -3=0,解得an +1an =3或an +1an =-1(舍),所以{a n }是等比数列,且公比q =3, 又a 1=2,所以a n =2·3n -1,n ∈N *. (2)因为S n =2(1-3n )1-3=3n-1,所以b n =log 3(1+S n )=n ,则a n b n =2n ·3n -1,所以T n =2×30+4×31+6×32+…+(2n -2)·3n -2+2n ·3n -1,① 所以3T n =2×31+4×32+6×33+…+(2n -2)·3n -1+2n ·3n ,②①-②,得(1-3)T n =2+2×31+2×32+2×33+…+2·3n -1-2n ·3n =2(1-3n )1-3-2n ·3n =(1-2n )·3n -1,所以T n =⎝⎛⎭⎫n -12·3n +12.规律方法 (1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和差.(2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.(3)错位相减法求和,主要用于求{a n b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列.跟踪演练 1 (1)已知函数f (n )=⎩⎨⎧n2,n 为奇数,-n2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 8等于( ) A .-16 B .-8 C .8 D .16 答案 C解析 当n 为奇数时,n +1为偶数,则a n =n 2-(n +1)2=-2n -1,所以a 1+a 3+a 5+a 7=-(3+7+11+15)=-36.当n 为偶数时,n +1为奇数,则a n =-n 2+(n +1)2=2n +1,则a 2+a 4+a 6+a 8=5+9+13+17=44.所以a 1+a 2+a 3+…+a 8=-36+44=8,故选C. (2)(2020·武汉江夏一中、汉阳一中联考)若首项为23的数列{a n }满足2(2n +1)a n a n +1+a n +1=a n ,则a 1+a 2+a 3+…+a 2 020等于( ) A.8 0804 041 B.4 0784 040 C.4 0404 041 D.4 0394 040 答案 C解析 依题意得a n ≠0,由2(2n +1)a n a n +1=a n -a n +1, 等式两边同时除以a n a n +1可得1an +1-1an=4n +2,则当n ≥2时,1an -1an -1=4n -2,1an -1-1an -2=4n -6,…,1a2-1a1=6,以上式子左右两边分别相加可得 1an -1a1=(6+4n -2)(n -1)2, 即1an =2n 2-12=(2n -1)(2n +1)2, 所以a n =2(2n -1)(2n +1)=12n -1-12n +1,当n =1时,a 1=23满足上式.故a 1+a 2+a 3+…+a 2 020=1-13+13-15+…+14 039-14 041=1-14 041=4 0404 041.(3)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1nb n =b n +1-1(n ∈N *).①求数列{a n }与{b n }的通项公式; ②记数列{a n b n }的前n 项和为T n ,求T n .解 ①由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知:当n =1时,b 1=b 2-1,故b 2=2. 当n ≥2时,1n b n =b n +1-b n .整理得bn +1n +1=bn n ,又b22=b11,所以b n =n (n ∈N *). ②由①知a n b n =n ·2n ,因此T n =2+2·22+3·23+…+n ·2n , 2T n =22+2·23+3·24+…+n ·2n +1, 所以T n -2T n =2+22+23+…+2n -n ·2n +1. 故T n =(n -1)2n +1+2(n ∈N *).考点二 数列的综合问题 核心提炼数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破的关键在于通过函数关系寻找数列的递推关系,通过放缩进行等式的证明. 例4 (1)(2020·日照模拟)如图,在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 017+a 2 018+ a 2 019+a 2 020等于( )A .2 017B .2 018C .2 019D .2 020 答案 C解析 由直角坐标系可知,A (1,1),B (-1,2),C (2,3),D (-2,4),E (3,5),F (-3,6),即a 1=1,a 2=1,a 3=-1,a 4=2,a 5=2,a 6=3,a 7=-2,a 8=4,…,由此可知,数列中偶数项是从1开始逐渐递增的,且都等于其项数除以2;每四个数中有一个负数,且为每组的第三个数,每组的第一个数为其组数,每组的第一个数和第三个数是互为相反数, 因为2 020÷4=505,所以a 2 017=505,a 2 018=1 009,a 2 019=-505,a 2 020=1 010, a 2 017+a 2 018+a 2 019+a 2 020=2 019. (2)(2020·洛阳第一高级中学月考)已知数列{a n }满足a 1+12a 2+…+1na n =n 2+n (n ∈N *),设数列{b n }满足b n =2n +1anan +1,数列{b n }的前n 项和为T n ,若T n <n n +1λ(n ∈N *)恒成立,则λ的取值范围是( ) A.⎝⎛⎭⎫14,+∞ B.⎣⎡⎭⎫14,+∞ C.⎣⎡⎭⎫38,+∞ D.⎝⎛⎭⎫38,+∞ 答案 D解析 因为a 1+12a 2+…+1na n =n 2+n (n ∈N *),所以 a 1+12a 2+…+1n -1a n -1=(n -1)2+(n -1)(n ∈N *,n ≥2),故1n a n =2n ,即a n =2n 2(n ≥2). 当n =1时,a 1=12+1=2,满足上式, 故a n =2n 2(n ∈N *).b n =2n +14n2×(n +1)2=14⎣⎡⎦⎤1n2-1(n +1)2,故T n =14⎣⎡⎦⎤⎝⎛⎭⎫112-122+⎝⎛⎭⎫122-132+…+1n2-1(n +1)2 =14⎣⎡⎦⎤1-1(n +1)2=n2+2n 4(n +1)2,故T n <n n +1λ(n ∈N *)恒成立等价于n2+2n 4(n +1)2<n n +1λ,即n +24(n +1)<λ恒成立,化简,得14+14(n +1)<λ, 因为14+14(n +1)≤14+18=38,故λ>38.易错提醒 (1)公式a n =S n -S n -1适用于所有数列,但易忽略n ≥2这个前提.(2)数列和不等式的综合问题,要注意条件n ∈N *,求最值要注意等号成立的条件,放缩不等式要适度. 跟踪演练2 (1)(2020·中国人民大学附属中学模拟)在数列{a n }中,已知a n =n 2+λn ,n ∈N *,则“a 1<a 2”是“{a n }是单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 若在数列{a n }中,已知a n =n 2+λn ,n ∈N *,a 1<a 2,则1+λ<4+2λ,解得λ>-3,若数列{a n }是单调递增数列,则对任意的n ∈N *都满足a n +1-a n =(n +1)2+λ(n +1)-n 2-λn =2n +1+λ>0,∴λ>-1-2n ,即λ>(-1-2n )max =-3,因此,“a 1<a 2”是“{a n }是单调递增数列”的充要条件.(2)设曲线y =2 020x n +1(n ∈N *)在点(1,2 020)处的切线与x 轴的交点的横坐标为x n ,令a n = log 2 020x n ,则a 1+a 2+…+a 2 019的值为( ) A .2 020 B .2 019 C .1 D .-1 答案 D解析 因为y ′=2 020(n +1)x n ,所以切线方程是y -2 020=2 020(n +1)(x -1),所以x n =nn +1,所以a 1+a 2+…+a 2 019=log 2 020(x 1·x 2·…·x 2 019) =log 2 020⎝⎛⎭⎫12×23×…×2 0192 020=log 2 02012 020=-1. 专题强化练一、单项选择题 1.(2020·聊城模拟)数列1,6,15,28,45,…中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第10个六边形数为( )A .153B .190C .231D .276 答案 B解析 由题意知,数列{a n }的各项为1,6,15,28,45,…,所以a 1=1=1×1,a 2=6=2×3,a 3=15=3×5,a 4=28=4×7,a 5=45=5×9,…,a n =n (2n -1), 所以a 10=10×19=190.2.已知数列{a n }满足a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2020等于( )A .3B .2C .1D .0 答案 A解析 ∵a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,……,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 020=336×0+a 2 017+a 2 018+a 2 019+a 2 020=a 1+a 2+a 3+a 4=3.故选A. 3.已知数列{a n },{b n }满足a 1=b 1=1,a n +1-a n =bn +1bn=3,n ∈N *,则数列{ba n }的前10项和为( ) A.12×(310-1) B.18×(910-1) C.126×(279-1) D.126×(2710-1) 答案 D解析 因为a n +1-a n =bn +1bn=3,所以{a n }为等差数列,公差为3,{b n }为等比数列,公比为3, 所以a n =1+3(n -1)=3n -2,b n =1×3n -1=3n -1,所以na b =33n -3=27n -1,所以{}na b 是以1为首项,27为公比的等比数列,所以{}na b 的前10项和为1×(1-2710)1-27=126×(2710-1). 4.已知数列{a n }和{b n }的首项均为1,且a n -1≥a n (n ≥2),a n +1≥a n ,数列{b n }的前n 项和为S n ,且满足2S n S n +1+a n b n +1=0,则S 2 021等于( ) A .2 021 B.12 021 C .4 041 D.14 041答案 D解析 由a n -1≥a n (n ≥2),a n +1≥a n 可得a n +1=a n , 即数列{a n }是常数列,又数列{a n }的首项为1,所以a n =1,所以当S n S n +1≠0时,2S n S n +1+a n b n +1=0可化为2S n S n +1+b n +1=0, 因为S n 为数列{b n }的前n 项和,所以2S n S n +1+b n +1=2S n S n +1+(S n +1-S n )=0, 所以1Sn +1-1Sn=2,又1S1=1b1=1,因此数列⎩⎨⎧⎭⎬⎫1Sn 是以1为首项,2为公差的等差数列,所以1Sn =1+2(n -1)=2n -1,故S n =12n -1,即S n S n +1≠0.所以S 2 021=14 041.5.定义在[0,+∞)上的函数f (x )满足:当0≤x <2时,f (x )=2x -x 2;当x ≥2时,f (x )=3f (x -2).记函数f (x )的极大值点从小到大依次为a 1,a 2,…,a n ,…,并记相应的极大值依次为b 1,b 2,…,b n ,…,则S 20=a 1b 1+a 2b 2+…+a 20b 20的值为( ) A .19×320+1 B .19×319+1 C .20×319+1 D .20×320+1答案 A解析 当0≤x <2时,f (x )=2x -x 2=1-(x -1)2,可得a 1=1,b 1=1;当2≤x <4时,有0≤x -2<2,可得f (x )=3f (x -2)=3[1-(x -3)2],可得a 2=3,b 2=3;当4≤x <6时,有0≤x -4<2,可得f (x )=9f (x -4)=9[1-(x -5)2],可得a 3=5,b 3=9;…;a 20=39,b 20=319;….故S 20=a 1b 1+a 2b 2+…+a 20b 20=1×1+3×3+5×9+…+39×319,3S 20=1×3+3×9+5×27+…+39×320,两式相减可得-2S 20=1+2(3+9+27+…+319)-39×320=1+2×3×(1-319)1-3-39×320,化简可得S 20=1+19×320.故选A. 二、多项选择题6.若数列{a n }满足:对任意正整数n ,{a n +1-a n }为递减数列,则称数列{a n }为“差递减数列”.给出下列数列{a n }(n ∈N *),其中是“差递减数列”的有( ) A .a n =3n B .a n =n 2+1 C .a n =n D .a n =ln nn +1答案 CD解析 对于A ,若a n =3n ,则a n +1-a n =3(n +1)-3n =3,所以{a n +1-a n }不为递减数列,故数列{a n }不是“差递减数列”;对于B ,若a n =n 2+1,则a n +1-a n =(n +1)2-n 2=2n +1,所以{a n +1-a n }是递增数列,故数列{a n }不是“差递减数列”;对于C ,若a n =n ,则a n +1-a n =n +1-n =1n +1+n,所以{a n +1-a n }为递减数列,故数列{a n }是“差递减数列”;对于D ,若a n =lnn n +1,则a n +1-a n =ln n +1n +2-ln n n +1=ln ⎝ ⎛⎭⎪⎫n +1n +2·n +1n =ln ⎝⎛⎭⎫1+1n2+2n ,由于函数y =ln ⎝⎛⎭⎫1+1x2+2x 在(0,+∞)上单调递减,所以{a n +1-a n }为递减数列,故数列{a n }是“差递减数列”. 7.(2020·浙江改编)已知等差数列{a n }的前n 项和为S n ,公差d ≠0,a1d≤1.记b 1=S 2,b n +1=S 2n +2-S 2n ,n ∈N *,下列等式可能成立的是( ) A .2a 4=a 2+a 6 B .2b 4=b 2+b 6 C .a 24=a 2a 8 D .b 24=b 2b 8答案 ABC解析 由题意,知b 1=S 2=a 1+a 2, b n +1=S 2n +2-S 2n =a 2n +1+a 2n +2, 可得b n =a 2n -1+a 2n (n >1,n ∈N *). 由{a n }为等差数列,可知{b n }为等差数列.选项A 中,由a 4为a 2,a 6的等差中项,得2a 4=a 2+a 6,成立.选项B 中,由b 4为b 2,b 6的等差中项,得2b 4=b 2+b 6,成立. 选项C 中,a 2=a 1+d ,a 4=a 1+3d ,a 8=a 1+7d . 由a 24=a 2a 8,可得(a 1+3d )2=(a 1+d )(a 1+7d ), 化简得a 1d =d 2,又由d ≠0,可得a 1=d ,符合a1d≤1,成立.选项D 中,b 2=a 3+a 4=2a 1+5d ,b 4=a 7+a 8=2a 1+13d , b 8=a 15+a 16=2a 1+29d .由b 24=b 2b 8,知(2a 1+13d )2=(2a 1+5d )(2a 1+29d ), 化简得2a 1d =3d 2, 又由d ≠0,可得a1d =32.这与已知条件a1d≤1矛盾.8.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x 的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论错误的是( ) A .S n =2T n B .T n =2b n +1 C .T n >a n D .T n <b n +1答案 ABC解析 由题意可得S n +3=3×2n ,S n =3×2n -3,a n =S n -S n -1=3×2n -1(n ≥2),当n =1时,a 1=S 1=3×21-3=3,满足上式,所以数列{a n }的通项公式为a n =3×2n -1(n ∈N *).设等比数列{b n }的公比为q ,则b 1q n -1+b 1q n =3×2n -1,解得b 1=1,q =2,数列{b n }的通项公式为b n =2n -1(n ∈N *),由等比数列的求和公式有T n =2n -1.则有S n =3T n ,T n =2b n -1,T n <a n ,T n <b n +1.三、填空题9.数列{a n }的通项公式为a n =1n +n +1,若该数列的前k 项之和等于9,则k =________.答案 99 解析 a n =1n +n +1=n +1-n ,故前n 项和S n =(2-1)+(3-2)+…+(n +1-n)=n +1-1,令S k =k +1-1=9,解得k =99. 10.设数列{a n }满足a 1=1,且an +1an=n +2n +1(n ∈N *),则数列{a n }的通项公式a n =________,数列⎩⎨⎧⎭⎬⎫1anan +1的前10项和为________. 答案n +12 53解析 因为an +1an =n +2n +1,所以a2a1=32,a3a2=43,a4a3=54,…,anan -1=n +1n (n ≥2),把它们左右两边分别相乘,得a n =n +12(n ≥2),当n =1时,a 1=1也符合上式,所以a n =n +12(n ∈N *).所以1anan +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所以数列⎩⎨⎧⎭⎬⎫1anan +1的前10项和为4×⎝⎛⎭⎫12-13+13-14+…+111-112=4×⎝⎛⎭⎫12-112=53. 11.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则a 5=________,b 10=________. 答案 4 64解析 因为a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,所以a n ,a n +1是方程x 2-b n x +2n =0的两个根, 根据根与系数的关系,可得a n ·a n +1=2n , a n +a n +1=b n ,由a n ·a n +1=2n ,可得a n +1·a n +2=2n +1, 两式相除可得an +2an=2,所以a 1,a 3,a 5,…成公比为2的等比数列,a 2,a 4,a 6,…成公比为2的等比数列, 又由a 1=1,得a 2=2,所以a 5=1×22=4,a 10=2×24=32,a 11=1×25=32, 所以b 10=a 10+a 11=32+32=64. 12.在数列{a n }中,a 1+a22+a33+…+an n=2n -1(n ∈N *),且a 1=1,若存在n ∈N *使得a n ≤n (n +1)λ成立,则实数λ的最小值为________. 答案12解析 依题意得,数列⎩⎨⎧⎭⎬⎫an n 的前n 项和为2n -1,当n ≥2时,an n =(2n -1)-(2n -1-1)=2n -1,且a11=21-1=21-1,因此an n =2n -1(n ∈N *),an n (n +1)=2n -1n +1,记b n =2n -1n +1,则b n >0,bn +1bn =2(n +1)n +2=(n +2)+n n +2>n +2n +2=1,b n +1>b n ,数列{b n }是递增数列,数列{b n }的最小项是b 1=12.依题意得,存在n ∈N *使得λ≥an n (n +1)=b n 成立,即有λ≥b 1=12,λ的最小值是12.四、解答题13.(2020·新高考全国Ⅰ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. (1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m ](m ∈N *)中的项的个数,求数列{b m }的前100项和S 100. 解 (1)由于数列{a n }是公比大于1的等比数列, 设首项为a 1,公比为q ,依题意有⎩⎪⎨⎪⎧ a1q +a1q3=20,a1q2=8,解得⎩⎪⎨⎪⎧a1=2,q =2,或⎩⎪⎨⎪⎧a1=32,q =12(舍)所以{a n }的通项公式为a n =2n ,n ∈N *.(2)由于21=2,22=4,23=8,24=16,25=32,26=64,27=128, 所以b 1对应的区间为(0,1],则b 1=0; b 2,b 3对应的区间分别为(0,2],(0,3], 则b 2=b 3=1,即有2个1; b 4,b 5,b 6,b 7对应的区间分别为 (0,4],(0,5],(0,6],(0,7], 则b 4=b 5=b 6=b 7=2, 即有22个2;b 8,b 9,…,b 15对应的区间分别为(0,8],(0,9],…,(0,15],则b 8=b 9=…=b 15=3, 即有23个3;b 16,b 17,…,b 31对应的区间分别为(0,16],(0,17],…,(0,31], 则b 16=b 17=…=b 31=4,即有24个4;b 32,b 33,…,b 63对应的区间分别为(0,32],(0,33],…,(0,63], 则b 32=b 33=…=b 63=5,即有25个5;b 64,b 65,…,b 100对应的区间分别为(0,64],(0,65],…,(0,100], 则b 64=b 65=…=b 100=6,即有37个6.所以S 100=1×2+2×22+3×23+4×24+5×25+6×37=480.14.已知数列{a n }的前n 项和为S n ,满足S n =2a n -1(n ∈N *),数列{b n }满足nb n +1-(n +1)b n =n (n +1)(n ∈N *),且b 1=1.(1)证明数列⎩⎨⎧⎭⎬⎫bn n 为等差数列,并求数列{a n }和{b n }的通项公式;(2)若c n =(-1)n -1·4(n +1)(3+2log 2a n )(3+2log 2a n +1),求数列{c n }的前2n 项和T 2n ;(3)若d n =a n ·bn ,数列{d n }的前n 项和为D n ,对任意的n ∈N *,都有D n ≤nS n -a ,求实数a 的取值范围.解 (1)由nb n +1-(n +1)b n =n (n +1),两边同除以n (n +1),得bn +1n +1-bnn=1,从而数列⎩⎨⎧⎭⎬⎫bn n 为首项b11=1,公差d =1的等差数列,所以bnn=n (n ∈N *),数列{b n }的通项公式为b n =n 2(n ∈N *). 当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1, 又a 1=1≠0,所以anan -1=2,从而数列{a n }为首项a 1=1,公比q =2的等比数列, 从而数列{a n }的通项公式为a n =2n -1(n ∈N *). (2)c n =(-1)n -1·⎣⎢⎡⎦⎥⎤4(n +1)(2n +1)(2n +3) =(-1)n -1⎝⎛⎭⎫12n +1+12n +3,T 2n =c 1+c 2+c 3+…+c 2n -1+c 2n =13+15-15-17+…-14n +1-14n +3 =13-14n +3(n ∈N *).(3)由(1)得d n=a n·bn=n·2n-1,D n=1×1+2×21+3×22+…+(n-1)·2n-2+n·2n-1,①2D n=1×21+2×22+3×23+…+(n-1)·2n-1+n·2n.②①-②得,-D n=1+2+22+…+2n-1-n·2n=1-2n1-2-n·2n=2n-1-n·2n,所以D n=(n-1)·2n+1,由(1)得S n=2a n-1=2n-1,因为任意n∈N*,都有D n≤nS n-a,即(n-1)·2n+1≤n(2n-1)-a恒成立,所以a≤2n-n-1恒成立,记e n=2n-n-1,所以a≤(e n)min,因为e n+1-e n=[2n+1-(n+1)-1]-(2n-n-1) =2n-1>0,从而数列{e n}为递增数列,所以当n=1时,e n取最小值e1=0,于是a≤0. 所以a的取值范围为(-∞,0].。
高三数列专题练习30道带答案高三数列专题训练二学校:___________姓名:___________班级:___________考号:___________一、解答题1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,记292n nb S =,求数列{}n b 的前n 项和n T .2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎭⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .3.设等比数列{}n a 的前n 项和为n S ,218a =,且1116S +,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式;(2)设n n n c a b =⋅,若对任意*n N ∈,不等式121212n n c c c S λ+++≥+-…恒成立,求λ的取值范围.4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =,24b a =,313b a =.(Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列{1nS }的前n 项和为n T ,求n T . 5.设数列(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T . 6.已知差数列等{}n a 的前n 项和n S ,且对于任意的正整数n满足1n a =+.(1)求数列{}n a的通项公式;(2)设11n n n b a a +=, 求数列{}n b 的前n 项和n B .7.对于数列}{n a 、}{n b ,n S 为数列}{n a 的前n 项和,且n a S n S n n n ++=+-+)1(1,111==b a ,231+=+n n b b ,*∈N n .(1)求数列}{n a 、}{n b 的通项公式; (2)令)1()(2++=n n n b n n a c ,求数列}{n c 的前n 项和n T .8.已知{}n a 是各项均为正数的等比数列,且1212112()a a a a +=+, 34534511164()a a a a a a ++=++. (1)求{}n a 的通项公式; (2)设21()n n nb a a =+,求数列{}n b 的前n 项和n T . 9.已知数列{}n a 的首项11a =,前n 项和为nS ,且1210n n S S n +---=(*n ∈N ).(Ⅰ) 求证:数列{1}n a +为等比数列; (Ⅱ) 令n n b na =,求数列{}n b 的前n 项和n T .10.已知各项都为正数的等比数列{}n a 满足312a 是13a 与22a 的等差中项,且123a a a =.(Ⅱ)设3log n n b a =,且n S 为数列{}n b 的前n 项和,求数列12{}nnS S +的前n 项和n T .11.已知数列{}n a 的前n 项和为n S ,2121,2n n n a S a a ==+. (1)求数列{}n a的通项公式;(2)若2n a n b =,求13521...n b b b b +++++.12.设公差不为0的等差数列{}n a 的首项为1,且2514,,a a a 构成等比数列. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足*121211,2n n n b b b n N a a a +++=-∈,求{}n b 的前n 项和n T .13.已知数列{}n a 是等比数列,满足143,24a a ==,数列{}n b 满足144,22b b ==,且{}n n b a -是等差数列.(I )求数列{}n a 和{}n b 的通项公式; (II )求数列{}n b 的前n 项和。
训练 数列的综合应用问题 一、选择题(每小题5分,共25分) 1.设{an}是等比数列,则“a1<a2<a3是递增数列”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 2.在等差数列{an}中,若a1,a2 011为方程x2-10x+16=0的两根,则a2+a1 006+a2 010=( ). A.10 B.15 C.20 D.40 3.已知正项组成的等差数列{an}的前20项的和为100,那么a6·a15的最大值为( ). A.25 B.50 C.100 D.不存在 4.已知数列{an}的前n项和为Sn,过点P(n,Sn)和Q(n+1,Sn+1)(nN*)的直线的斜率为3n-2,则a2+a4+a5+a9的值等于( ). A.52 B.40 C.26 D.20 5.已知各项都是正数的等比数列{an}中,存在两项am,an(m,nN*)使得=4a1,且a7=a6+2a5,则+的最小值是( ). A. B. C. D. 二、填空题(每小题5分,共15分) 6.为了解某校高三学生的视力情况,随机地抽查了该校200名高三学生的视力情况,得到频率分布直方图,如图.由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到4.9之间的学生数为b,则a,b的值分别为________. 7.在等比数列{an}中,首项a1=,a4=(1+2x)dx,则公比q为________. 8.已知数列{an}中,a1=1,且P(an,an+1)(nN*)在直线x-y+1=0上,若函数f(n)=+++…+(nN*,且n≥2),函数f(n)的最小值是________. 三、解答题(本题共3小题,共35分) 9.(11分)已知数列{an}是等差数列,满足a2=5,a4=13.数列{bn}的前n项和是Tn,且Tn+bn=3. (1)求数列{an}及数列{bn}的通项公式; (2)若cn=an·bn,试比较cn与cn+1的大小. 10.(12分)首项为正数的数列{an}满足an+1=(a+3),nN*. (1)证明:若a1为奇数,则对一切n≥2,an都是奇数; (2)若对一切nN*都有an+1>an,求a1的取值范围. 11.(12分)等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列. 第一列第二列第三列第一行3 2 10第二行6 4 14第三行9 8 18(1)求数列{an}的通项公式; (2)若数列{bn}满足:bn=an+(-1)nln an,求数列{bn}的前n项和Sn.参考答案 1.C [“a1<a2<a3”“数列{an}是递增数列”.] 2.B [由题意,知a1+a2 011=a2+a2 010=2a1006=10,所以a2+a1 006+a2 010=15,故选B.] 3.A [S20==10(a1+a20)=100,故a6+a15=a1+a20=10,a6·a15≤)2=25.] 4.B [由题意得,=3n-2,Sn+1-Sn=3n-2,即an+1=3n-2,an=3n-5,因此数列{an}是等差数列,a5=10,而a2+a4+a5+a9=2(a3+a7)=4a5=40,故选B.] 5.A [记等比数列{an}的公比为q(q>0),依题意有a5q2=a5q+2a5,由a5≠0,得q2-q-2=0,解得q=2, 又(a1·2m-1)·(a1·2n-1)=16a, 即2m+n-2=24,m+n-2=4,m+n=6, +=(+)(m+n)=[5++)]≥ (5+4)=.] 6.解析 第一组的频数为:0.1×0.1×200=2, 第二组的频数为:0.3×0.1×200=6,故第三组的频数为:18,第四组的频数为:54. a==0.27.后五组的频数共有:200-80=120. 又后六组成等差数列,所以第七组的频数为24,第五、六组的频数共为78,故b=54+78=132. 答案 0.27,132 7.解析 a4==(4+42)-(1+12)=18,∴q3==27,∴q=3. 答案 3 8.解析 由题意知,an-an+1+1=0,即an+1-an=1,数列{an}是等差数列,公差d=1,an=n,当n≥2时,f(n)=+++…+,∵f(n+1)-f(n)=+++…+-+++…+=+-=->0,∴f(2)<f(3)<…,∴[f(n)]min =f(2)=+=. 答案 9.解 (1)a2=5,a4=13,a4=a2+2d,即13=5+2d. d=4,a1=1,an=4n-3. 又Tn+bn=3,Tn+1+bn+1=3, 2bn+1-bn=0,即bn+1=bn. b1+b1=3,b1=, 数列{bn}为首项是,公比是的等比数列, bn=)n-1=. (2)cn=anbn=,cn+1=, cn+1-cn=-=. 当n=1时,cn+1-cn>0,cn+1>cn;当n≥2(nN*)时,cn+1-cn<0,cn+1<cn. 10.(1)证明 已知a1是奇数,假设ak=2m-1是奇数,其中m为正整数,则由递推关系得ak+1==m(m-1)+1是奇数. 根据数学归纳法,对任何nN*,an都是奇数. (2)解 法一 由an+1-an=(an-1)·(an-3)知,an+1>an当且仅当an<1或an>3. 另一方面,若0<ak<1,则0<ak+1<=1; 若ak>3,则ak+1>=3. 根据数学归纳法,0<a1<10<an<1,n∈N*,a1>3an>3,n∈N*. 综上所述,对一切nN*都有an+1>an的充要条件是0<a1<1或a1>3. 法二 由a2=>a1,得a-4a1+3>0,于是0<a1<1或a1>3.an+1-an=-=, 因为a1>0,an+1=,所以所有的an均大于0,因此an+1-an与an-an-1同号. 根据数学归纳法,n∈N*,an+1-an与a2-a1同号. 因此,对一切nN*都有an+1>an的充要条件是0<a1<1或a1>3. 11.解 (1)当a1=3时,不合题意; 当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意.因此a1=2,a2=6,a3=18. 所以公比q=3.故an=2·3n-1. (2)因为bn=an+(-1)nln an=2·3n-1+(-1)nln(2·3n-1) =2·3n-1+(-1)n[ln 2+(n-1)ln 3]=2·3n-1+(-1)n(ln 2-ln 3)+(-1)nnln 3, 所以Sn=2(1+3+…+3n-1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn]ln 3. 所以当n为偶数时, Sn=2×+ln 3=3n+ln 3-1; 当n为奇数时, Sn=2×-(ln 2-ln 3)+·ln 3 =3n-ln 3-ln 2-1. 综上所述,Sn=。
高考数学二轮复习提高题专题复习数列多选题练习题含答案一、数列多选题1.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=⋅=∈,则下列结论正确的是( )A .101a << B.11b <<C .22n n S T <D .22n n S T ≥【答案】ABC 【分析】利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】因为数列{}n a 为递增数列, 所以123a a a <<,所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确; 因为{}n b 为递增数列, 所以123b b b <<,所以21122b b b <=,即1b <又22234b b b <=,即2122b b =<, 所以11b >,即11b <<,故B 正确;{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++⋅⋅⋅++= 22(121)2[13(21)]22n n n n +-++⋅⋅⋅+-==,因为12n n n b b +⋅=,则1122n n n b b +++⋅=,所以22n n b b +=,则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++⋅⋅⋅++++⋅⋅⋅+=1101101122(222)(222)()(21)n n nb b b b --++⋅⋅⋅++++⋅⋅⋅+=+-1)1)n n>-=-,当n =1时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时假设当n=k时,21)2k k ->21)k k ->, 则当n=k +11121)21)21)2k k k k k ++-=+-=->2221(1)k k k >++=+所以对于任意*n N ∈,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题.2.设n S 是公差为()d d ≠0的无穷等差数列{}n a 的前n 项和,则下列命题正确的是( ) A .若0d <,则数列{}n S 有最大项 B .若数列{}n S 有最大项,则0d <C .若对任意*n N ∈,均有0n S >,则数列{}n S 是递增数列D .若数列{}n S 是递增数列,则对任意*n N ∈,均有0n S > 【答案】ABC 【分析】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭,可看作关于n 的二次函数,由二次函数的性质逐个选项验证可得. 【详解】由等差数列的求和公式可得()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭, 选项A ,若0d <,由二次函数的性质可得数列{}n S 有最大项,故正确; 选项B ,若数列{}n S 有最大项,则对应抛物线开口向下,则有0d <,故正确; 选项C ,若对任意*n ∈N ,均有0n S >,对应抛物线开口向上,0d >, 可得数列{}n S 是递增数列,故正确;选项D ,若数列{}n S 是递增数列,则对应抛物线开口向上, 但不一定有任意*n ∈N ,均有0n S >,故错误. 故选:ABC . 【点睛】本题考查等差数列的求和公式的应用,()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭可看成是二次函数,然后利用二次函数的性质解决问题,考查分析和转化能力,属于常考题.3.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( ) A .若21,n S n =-则{}n a 是等差数列B .若21,nn S =-则{}n a 是等比数列C .若{}n a 是等差数列,则995099S a =D .若{}n a 是等比数列,且10,0,a q >>则221212n n n S S S -+⋅>【答案】BC 【分析】由n S 求n a ,根据通项公式可判断AB 是否正确,由等差数列的性质可判断C ,取1n =时,结合等比数列求和公式作差比较13S S ⋅与22S 大小即可判断D. 【详解】对于A 选项,若21n S n =-,当2n ≥时,21n a n =-,10a =不满足21n a n =-,故A错误;对于B 选项,若21nn S =-,则1112,21,1n n n n S S n a S n --⎧-=≥=⎨==⎩,由于11a =满足12n n a -=,所以{}n a 是等比数列,故B 正确;对于C 选项,若{}n a 是等差数列,则()199995099992a a S a +==,故C 正确. 对于D 选项,当1n =时,()()222222132111110S S S a q qa q a q ⋅-=++-+=-<,故当1n =时不等式不等式,故221212n n n S S S -+⋅>不成立,所以D 错误.故选:BC 【点睛】本题考查数列的前n 项和为n S 与n a 之间的关系,等差数列的性质,等比数列的前n 项和为n S 的公式等,考查运算求解能力.本题D 选项解题的关键将问题特殊化,讨论1n =时,13S S ⋅与22S 大小情况.此外还需注意一下公式:11,2,1n n n S S n a S n --≥⎧=⎨=⎩;若{}n a 是等差数列,则()2121n n S n a -=-.4.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,且112n n n S a a +=⋅-,则( )A .12d =B .11a =C .数列{}n a 中可以取出无穷多项构成等比数列D .设(1)nn n b a =-⋅,数列{}n b 的前n 项和为n T ,则2n T n =【答案】AC 【分析】利用已知条件可得11212n n n S a a +++=-与已知条件两式相减,结合{}n a 是等差数列,可求d的值即可判断选项A ,令1n =即可求1a 的值,可判断选项B ,分别计算{}n a 的通项即可判断选项C ,分别讨论两种情况下21212n n b b -+=,即可求2n T 可判断选项D. 【详解】 因为112n n n S a a +=-,所以11212n n n S a a +++=-, 两式相减,得()11212n n n n n a a a a da ++++=-=, 因为0d ≠,所以21d =,12d =,故选项 A 正确; 当1n =时,1111122a a a ⎛⎫=+- ⎪⎝⎭,易解得11a =或112a =-,故选项B 不正确;由选项A 、B 可知,当112a =-,12d =时,()1111222n na n =-+-⨯=-,{}n a 可取遍所有正整数,所以可取出无穷多项成等比数列,同理当()()1111122n a n n =+-⨯=+时也可以取出无穷多项成等比数列,故选项C 正确; 当()112n a n =+时,()221212n n b a n ==+,()212112112n n b a n n --=-=--+=-, 因为21221212n n n n b b a a --+=-+=,所以()()()212342122n n n n T b b b b b b -=++++++=, 当12n n a =-时,2212112n n b a n n ==⨯-=-,2121213122n n n b a n ---⎛⎫=-=--=-⎪⎝⎭, 所以22131122n n b b n n -+=-+-=, 此时()()()22212223212n n n n n nT b b b b b b ---=++++++=, 所以2n T n ≠,故选项D 不正确. 故选:AC. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.5.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++,化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.6.在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【分析】 计算可得2q,故选项A 正确;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 【详解】{}n a 为递增的等比数列,由142332,12,a a a a =⎧⎨+=⎩得23142332,12,a a a a a a ==⎧⎨+=⎩ 解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 正确; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项B 正确;所以122n n S +=-,则9822510S =-=,故选项C 正确.又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:ABC. 【点睛】方法点睛:证明数列为等差(等比)数列常用的方法有: (1)定义法; (2)通项公式法 (3)等差(等比)中项法(4)等差(等比)的前n 项和的公式法.要根据已知灵活选择方法证明.7.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( )A .11111n n n a a a +=-+ B .{}n a 是单调递增数列C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a aa a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确; 对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+,所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n nn n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a a a a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确. 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.8.将()23nn ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a 31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221nS n n =+-【答案】ACD 【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D. 【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确;()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确;()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n nn n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD. 【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.9.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式n nn a ⎡⎤⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.10.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( )A .24a =B .2nn S =C .38n T ≥D .12n T <【答案】ACD 【分析】在1+14,()n n a S a n N *==∈中,令1n =,则A 易判断;由32122S a a =+=,B 易判断;令12(1)n n n b n n a ++=+,138b =,2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,裂项求和3182n T ≤<,则CD 可判断.【详解】 解:由1+14,()n n a S a n N *==∈,所以2114a S a ===,故A 正确;32212822S a a =+==≠,故B 错误;+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,12n na a +=, 所以2n ≥时,2422n n n a -=⋅=, 令12(1)n n nb n n a ++=+,12123(11)8b a +==+, 2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅, 1138T b ==,2n ≥时,()()23341131111111118223232422122122n n n n T n n n ++=+-+-++-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,3182n T ≤<,故CD 正确; 故选:ACD.【点睛】方法点睛:已知n a 与n S 之间的关系,一般用()11,12n nn a n a S S n -=⎧=⎨-≥⎩递推数列的通项,注意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和.。