2011届高考数学三角函数综合复习题
- 格式:doc
- 大小:144.00 KB
- 文档页数:11
一、选择题(共29小题)1、(2011•重庆)若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A、B、C、1D、2、(2011•天津)已知函数f(x)=2sin(ωx+φ),x∈R,其中ω>0,﹣π<φ≤π.若函数f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则()A、f(x)在区间[﹣2π,0]上是增函数B、f(x)在区间[﹣3π,﹣π]上是增函数C、f(x)在区间[3π,5π]上是减函数D、f(x)在区间[4π,6π]上是减函数3、(2011•天津)如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=BD,BC=2BD,则sinC的值为()A、B、C、D、4、(2011•浙江)在△ABC中,角A,B,C,所对的边分别为a,b,c.若acosA=bsinB,则sinAcosA+cos2B=()A、﹣B、C、﹣1D、15、(2011•上海)若三角方程sinx=0 与sin2x=0 的解集分别为E,F,则()A、E⊊FB、E⊋FC、E=FD、E∩F=∅6、(2011•陕西)方程|x|=cosx在(﹣∞,+∞)内()A、没有根B、有且仅有一个根C、有且仅有两个根D、有无穷多个根7、(2011•山东)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A、B、C、2D、38、(2011•山东)若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=()A、8B、2C、D、9、(2011•辽宁)已知函数,y=f(x)的部分图象如图,则=()A、B、C、D、10、(2011•湖北)已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为()A、{x|kπ+≤x≤kπ+π,k∈Z}B、{x|2kπ+≤x≤2kπ+π,k∈Z}C、{x|kπ+≤x≤kπ+,k∈Z}D、{x|2kπ+≤x≤2kπ+,k∈Z}11、(2011•安徽)已知函数f(x)=sin(2x+ϕ),其中ϕ为实数,若对x∈R恒成立,且,则f(x)的单调递增区间是()A、B、C、D、12、(2010•重庆)下列函数中,周期为π,且在上为减函数的是()A、B、C、D、13、(2010•重庆)已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A、ω=1,φ=B、ω=1,φ=﹣C、ω=2,φ=D、ω=2,φ=﹣14、(2010•天津)如为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点()A、向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B、向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C、向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D、向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变15、(2010•天津)在△ABC中,内角A,B,C的对边分别是a,b,c,若,,则A=()A、30°B、60°C、120°D、150°16、(2010•上海)若△ABC的三个内角满足sinA:sinB:sinC=5:11:13,则△ABC()A、一定是锐角三角形B、一定是直角三角形C、一定是钝角三角形D、可能是锐角三角形,也可能是钝角三角形17、(2010•上海)(上海卷理18)某人要制作一个三角形,要求它的三条高的长度分别为,则此人能()A、不能作出这样的三角形B、作出一个锐角三角形C、作出一个直角三角形D、作出一个钝角三角形18、(2010•辽宁)设ω>0,函数y=sin(ωx+)+2的图象向右平移个单位后与原图象重合,则ω的最小值是()A、B、C、D、319、(2010•江西)E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=()A、B、C、D、20、(2011•重庆)若△ABC的内角A,B,C满足6sinA=4sinB=3sinC,则cosB=()A、B、C、D、21、(2011•浙江)若0<a<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A、B、﹣C、D、﹣22、(2011•上城区)已知0<α<π,满足3sin2α=sinα,则cos(π﹣α)等于()A、B、﹣C、D、﹣23、(2011•辽宁)设sin(+θ)=,则sin2θ=()A、﹣B、﹣C、D、24、(2011•福建)若α∈(0,),且sin2α+cos2α=,则tanα的值等于()A、B、C、D、25、(2011•福建)若tanα=3,则的值等于()A、2B、3C、4D、626、(2010•陕西)对于函数f(x)=2sinxcosx,下列选项中正确的是()A、f(x)在(,)上是递增的B、f(x)的图象关于原点对称C、f(x)的最小正周期为2πD、f(x)的最大值为227、(2010•陕西)函数f(x)=2sinxcosx是()A、最小正周期为2π的奇函数B、最小正周期为2π的偶函数C、最小正周期为π的奇函数D、最小正周期为π的偶函数28、(2010•福建)计算1﹣2sin222.5°的结果等于()A、B、C、D、29、(2008•海南)=()A、B、C、2D、答案与评分标准一、选择题(共29小题)1、(2011•重庆)若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2﹣c2=4,且C=60°,则ab的值为()A、B、C、1D、考点:余弦定理的应用。
单元检测(四) 三角函数(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.函数)34cos(π+=x y 的图象的两条相邻对称轴间的距离为( )A.8π B.4π C.2πD.π 解析:242ππ==T ,42π=T ,故两相邻的对称轴间的距离为4π.答案:B2.函数y=Asin(ωx+φ)(ω>0)(|φ|<2π,x ∈R )的部分图象如图所示,则函数表达式为( )A.)48sin(4ππ--=x y B.)48sin(4ππ+-=x yC.)48sin(4ππ-=x y D.)48sin(4ππ+=x y 解析:观察题图,将(-2,0)代入各选项中,可排除A 、C,将x=0代入B 、D 选项中,D 选项不符合要求,故选B. 答案:B3.下列函数中最小正周期不为π的是( )A.f(x)=sinx·cosxB.)2tan()(π+=x x gC.f(x)=sin 2x-cos 2xD.φ(x)=sinx+cosx 解析:A 中,f(x)=21sin2x ⇒T=π;B 中,T=π;C 中,f(x)=-cos2x ⇒T=π.故选D. 答案:D4.要得到函数y=sin2x 的图象,可由函数y=cos2x 的图象( )A.向左平移2π个单位 B.向右平移2π个单位 C.向左平移4π个单位 D.向右平移4π个单位解析:)]4(2cos[)22cos(2sin ππ-=-==x x x y .答案:D5.使)2cos(3)2sin()(ϕϕ+++=x x x f 为奇函数,且在区间[0,4π]上为减函数的φ的一个值为( ) A.34π B.3πC.35πD.32π 解析:)32sin(2)(πϕ++=x x f ,要使f(x)是奇函数,必须ππϕk =+3(k ∈Z ),因此应排除A 、B.当35πϕ=时,f(x)=2sin2x 在[0,4π]上为增函数,故C 不对. 当32πϕ=时,f(x)=-2sin2x 在[0,4π]上为减函数.答案:D6.已知函数y=Asin(ωx+φ)在同一周期内,当9π=x 时,取得最大值21,当94π=x 时,取得最小值21-,则该函数的解析式为( ) A.)63sin(2π-=x y B.)63sin(21π+=x yC.)63sin(21π-=x yD.)63sin(21π-=x y解析:由题意,知21=A ,32π=T ,32==T πω,易知第一个零点为(18π-,0),则)]18(3sin[21π+=x y ,即)63sin(21π+=x y .答案:B7.若a=sin(cosπx),b=cos(sinπx)且x ∈[23-,-1],则( ) A.a 2+b 2=1 B.a <b C.a >b D.a=b 解析:∵x ∈[23-,-1], ∴πx ∈[23π-,-π],cosπx ∈[-1,0],sinπx ∈[0,1]. ∴a≤0<b. 答案:B8.函数2cos2cos )(22xx x f -=的一个单调增区间是( ) A.(3π,32π) B.(6π,2π) C.(0,3π) D.(6π-,6π)解析:∵21cos 2cos 21cos 122cos 1)(--=--+=x x x x x f , 令f′(x)=sinx -sin2x >0,得sinx(1-2cosx)>0,∴⎪⎩⎪⎨⎧<>21cos ,0sin x x 或⎪⎩⎪⎨⎧><.21cos ,0sin x x由函数图象,知答案为A. 答案:A 9.若0<x <2π,则下列命题中正确的是( ) A.sinx <x π3B.sinx >x π3C.sinx <224x πD.sinx >224x π解析:分别取6π=x 、3π、4π,排除A 、B 、C.答案:D10.若函数f(x)=2sin(ωx+φ),x ∈R (其中ω>0,|φ|<2π)的最小正周期是π,且3)0(=f ,则( ) A.21=ω,6πϕ= B.21=ω,3πϕ= C.ω=2,6πϕ=D.ω=2,3πϕ=解析:∵πωπ==2T ,∴ω=2.又∵3sin 2)0(==ϕf ,|φ|<2π, ∴3πϕ=.答案:D11.若函数f(x)=sinωx+3cosωx,x ∈R ,又f(α)=-2,f(β)=0,且|α-β|的最小值等于43π,则正数ω的值为( ) A.31 B.32 C.34 D.23 解析:由于)3sin(2cos 3sin )(πωωω+=+=x x x x f ,又f(α)=-2,f(β)=0,所以x=α是函数图象的一条对称轴,(β,0)是函数图象的一个对称中心. 故|α-β|的最小值应等于4T , 其中T 是函数的最小正周期, 于是有43241πωπ=•,故32=ω. 答案:B12.定义新运算例如则函数的值域为( ) A.[-1,22] B.[0,22] C.[-1,2] D.[22-,22] 解析:方法一:当sinx≤cosx,即432ππ-k ≤x≤42ππ+k (k ∈Z )时,f(x)=sinx ∈[-1,22];当sinx >cosx,即42ππ+k <x <432ππ+k (k ∈Z )时,f(x)=cosx ∈[-1,22].∴函数f(x)的值域为[-1,22]. 方法二:作出y=sinx,y=cosx 的图象观察便知. 答案:A二、填空题(本大题共4小题,每小题5分,共20分) 13.已知函数y=f(x)的反函数为)cos 2006(log )(2sin 1θθ-=-x x f ,其中0<θ<2π,则x=2 006时,f -1(x)=____________. 解析:由题意得)cos 1(log )cos 20062006(log )2006(2sin 2sin 1θθθθ-=-=-f=log sinθsin 2θ=2. 答案:214.给出下列5个命题:①函数f(x)=-sin(kπ+x)(k ∈Z )是奇函数; ②函数f(x)=tanx 的图象关于点(2ππ+k ,0)(k ∈Z )对称;③函数f(x)=sin|x|是最小正周期为π的周期函数; ④设θ是第二象限角,则2tanθ>2cotθ,且2sinθ>2cos θ;⑤函数y=cos 2x+sinx 的最小值是-1.其中正确的命题是___________. 解析:∵y=-sin(kπ+x)⎩⎨⎧+==-=,12sin,,2,sin n k n k x (n ∈Z ),故f(x)是奇函数, ∴①正确;对f(x)=tanx,(kπ,0)、(2ππ+k ,0)都是对称中心(前者在曲线上,后者不在),∴②正确;f(x)=sin|x|不是周期函数, ∴③不正确; 对④,2θ必满足2tan θ>2cot θ,但2θ是第三象限角时,2sin θ<2cos θ, ∴④不正确; ∵y=cos 2x+sinx =1-sin 2x+sinx45)21(sin 2+--=x ,当sinx=-1时,y min =-1,∴⑤正确. 答案:①②⑤15.如果圆x 2+y 2=2k 2至少覆盖函数kxx f 2sin3)(π=的一个极大值点和一个极小值点,则k的取值范围是______________. 解析:函数kxx f 2sin3)(π=的极大值点和极小值点分别为(k,3),(-k,3-),∴k 2+3≤2k 2. ∴k≤3-或k≥3.答案:(-∞,3-]∪[3,+∞)16.函数y=f(x)的图象与直线x=a 、x=b 及x 轴所围成图形的面积称为函数f(x)在[a,b ]上的面积.已知函数y=sinnx 在[0,nπ]上的面积为n 2(n ∈N *),则(1)函数y=sin3x 在[0,32π]上的面积为____________; (2)函数y=sin(3x-π)+1在[3π,34π]上的面积为________.解析:(1)令n=3,则y=sin3x 在[0,3π]上的面积为32.又∵y=sin3x 在[0,3π]和[3π,32π]上的面积相等,∴y=sin3x 在[0,32π]上的面积为34322=⨯.(2)由y=sin(3x-π)+1,设3φ=3x -π,∴y=sin3φ+1.又∵x ∈[3π,34π], ∴3φ∈[0,3π]. ∴φ∈[0,π].由(1)y=sin3φ在[0,3π]上的面积为32,y=sin3φ在[0,π]上的面积为S 1+S 2+S 3-S 4333232322S S +=+-⨯=,∵πππ=-⨯=)334(13S ,∴y=sin(3x-π)+1在[3π,34π]上的面积为32+π.答案:(1) 34 (2)32+π三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知函数)4sin()4sin(2)32cos()(πππ+-+-=x x x x f .(1)求函数f(x)的最小正周期; (2)求函数f(x)在区间[12π-,2π]上的值域.解:(1))4sin()4sin(2)32cos()(πππ+-+-=x x x x f)cos )(sin cos (sin 2sin 232cos 21x x x x x x +-++=)62sin(2cos 2sin 232cos 21π-=-+=x x x x . ∴最小正周期为==22πT π. (2)∵x ∈[12π-,2π],∴62π-x ∈[3π-,65π].∵)62sin()(π-=x x f 在区间[12π-,3π]上单调递增,在区间[3π,2π]上单调递减,∴当3π=x 时,f(x)取得最大值1.又∵21)2(23)12(=<-=-ππf f , ∴当12π-=x 时,f(x)取得最小值23-. ∴函数f(x)在[12π-,2π]上的值域为[23-,1]. 18.(本小题满分12分)已知2π-<x <0,51cos sin =+x x . (1)求sinx-cosx 的值;(2)求xx xx x x cot tan 2cos 2cos 2sin 22sin 322++-的值. 解法一:(1)由51cos sin =+x x ,平方得sin 2x+2sinxcosx+cos 2x=251,得2524cos sin 2-=x x .∵2549cos sin 21)cos (sin 2=-=-x x x x ,又∵2π-<x <0,∴sinx <0,cosx >0,sinx-cosx <0.故57cos sin -=-x x . (2)x x x x x x cot tan 2cos 2cos 2sin 22sin 322++- xxx x x xsin cos cos sin 1sin 2sin 22++-==sinxcosx(2-cosx-sinx)125108)512()2512(-=-⨯-=. 解法二:(1)联立方程⎪⎩⎪⎨⎧=+=+②x x ①x x .1cos sin ,51cos sin 22由①得x x cos 51sin -=, 将其代入②,整理得25cos 2x-5cosx-12=0, ∴53cos -=x 或54cos =x . ∵2π-<x <0, ∴⎪⎪⎩⎪⎪⎨⎧=-=.54cos ,53sin x 故57cos sin -=-x x . (2)x x x x x x cot tan 2cos 2cos 2sin 22sin 322++- xxx x x xsin cos cos sin 1sin 2sin 22++-==sinxcosx(2-cosx-sinx)125108)53542(54)53(-=+-⨯⨯-=. 19.(本小题满分12分)已知向量a =(3,-1),b =(sin2x,cos2x),函数f(x)=a ·b . (1)若f(x)=0且0<x <π,求x 的值;(2)求函数f(x)的单调增区间以及函数取得最大值时,向量a 与b 的夹角. 解:(1)∵f(x)=a ·b =3sin2x-cos2x, 由f(x)=0,得3sin2x-cos2x=0,即332tan =x . ∵0<x <π, ∴0<2x <2π. ∴62π=x 或672π=x . ∴12π=x 或127π. (2)∵)2cos 212sin 23(22cos 2sin 3)(x x x x x f -=-=)62sin(2)6sin 2cos 6cos2(sin 2πππ-=-=x x x , 由22ππ-k ≤62π-x ≤22ππ+k ,k ∈Z ,得6ππ-k ≤x≤3ππ+k ,k ∈Z .∴f(x)的单调增区间为[6ππ-k ,3ππ+k ],k ∈Z .由上可得f(x)max =2,当f(x)=2时,由a ·b =|a ||b |cos 〈a ,b 〉=2,得cos 〈a ,b 〉1||||=•=b a ba ,∵0≤〈a ,b 〉≤π,∴〈a ,b 〉=0.20.(本小题满分12分)设0≤θ≤π,P=sin2θ+sinθ-cosθ. (1)若t=sinθ-cosθ,用含t 的式子表示P;(2)确定t 的取值范围,并求出P 的最大值和最小值. 解:(1)由t=sinθ-cosθ,有t 2=1-2sinθcosθ=1-sin2θ, ∴sin2θ=1-t 2.∴P=1-t 2+t=-t 2+t+1. (2))4sin(2cos sin πθθθ-=-=t .∵0≤θ≤π, ∴4π-≤4πθ-≤43π. ∴21-≤)4sin(πθ-≤1,即t 的取值范围是-1≤t≤2.45)21(1)(22+--=++-=t t t t P ,从而P(t)在[-1,21]上是增函数,在[21,2]上是减函数.又P(-1)=-1,45)21(=P ,12)2(-=P , ∴P(-1)<P(2)<P(21).∴P 的最大值是45,最小值是-1.21.(本小题满分12分)已知函数f(x)=sin2x,)62cos()(π+=x x g ,直线x=t(t ∈R )与函数f(x)、g(x)的图象分别交于M 、N 两点. (1)当4π=t 时,求|MN|的值;(2)求|MN|在t ∈[0,2π]时的最大值. 解:(1)23|32cos 1||)642cos()42sin(|||=-=+⨯-⨯=ππππMN .(2)|)62sin(|3|2cos 232sin 23||)62cos(2sin |||ππ-=-=+-=t t t t t MN . ∵t ∈[0,2π],62π-t ∈[6π-,6ππ-],∴|MN|的最大值为3.22.(本小题满分12分)已知函数2cos 2)6sin()6sin()(2xx x x f ωπωπω--++=,x ∈R (其中ω>0).(1)求函数f(x)的值域;(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为2π,求函数y=f(x)的单调增区间.解:(1)x x x x x x f ωωωωωcos 1cos 21sin 23cos 21sin 23)(---++=1)6sin(21)cos 21sin 23(2--=--=πωωωx x x , 由-1≤)6sin(πω-x ≤1,得-3≤1)6sin(2--πωx ≤1.可知函数f(x)的值域为[-3,1].(2)由题设条件及三角函数的图象和性质,可知y=f(x)的周期为π. 又∵ω>0, ∴πωπ=2.∴ω=2.于是1)62sin(2)(--=πx x f .再由22ππ-k ≤62π-x ≤22ππ+k ,k ∈Z .解得6ππ-k ≤x≤3ππ+k ,k ∈Z ,∴y=f(x)的单调增区间为[6ππ-k ,3ππ+k ](k ∈Z ).。
三角函数函数检测试题命题人赵洪福 审核人李玉斌一 选择题1. 【2010•上海文数】若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC( )A.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形2. 【2010•湖南文数】在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C= 120°,a ,则( )A.a >bB.a <bC. a =bD.a 与b 的大小关系不能确定3. 【2010•浙江理数】设02x π<<,则“2sin 1x x <”是“sin 1x x <”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 4. 【2010•四川理数】将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) A.sin(2)10y x π=-B.sin(2)5y x π=-C.1sin()210y x π=-D.1sin()220y x π=-5. 【2010•陕西文数】函数f (x )=2sin x cos x 是 ( )A.最小正周期为2π的奇函数B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数 6. 【2010•辽宁文数】设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( )A.23 B. 43 C. 32D. 3 7. 【2010•全国卷2文数】已知2sin 3α=,则cos(2)x α-=A. B.19- C.198. 【2010•江西理数】E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( )A. 1627B. 23C. 3D. 349. 【2010•重庆文数】下列函数中,周期为π,且在[,]42ππ上为减函数的是( ) A.sin(2)2y x π=+ B.cos(2)2y x π=+ C.sin()2y x π=+ D.cos()2y x π=+ 10.【2010•重庆理数】已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则( )A.ω=1 ϕ=6π B. ω=1 ϕ=- 6π C. ω=2 ϕ= 6π D. ω=2 ϕ= -6π11【2010•山东文数】观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )A.()f xB.()f x - C .()g x D.()g x -12. 【2010•北京文数】某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为α的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A.2sin 2cos 2αα-+;B.sin 3αα+C.3sin 1αα+;D.2sin cos 1αα-+二 填空题13 【2010•重庆文数】如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311coscossinsin3333αααααα++-=____________ .14 【2010•山东文数】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,2b =,sin cos B B +则角A 的大小为 .15【2010•福建文数】观察下列等式: ① cos2a=22cos a -1;② cos4a=84cos a - 82cos a + 1;③ cos6a=326cos a - 484cos a + 182cos a - 1;④ cos8a=1288cos a - 2566cos a + 1604cos a - 322cos a + 1;⑤ cos10a= m 10cos a - 12808cos a + 11206cos a + n 4cos a + p 2cos a - 1. 可以推测,m – n + p = . 16. 【2010•江苏卷】定义在区间⎪⎭⎫⎝⎛20π,上的函数y=6cosx 的图像与y=5tanx 的图像的交点为P ,过点P 作PP 1⊥x 轴于点P 1,直线PP 1与y=sinx 的图像交于点P 2,则线段P 1P 2的长为____________。
2011-2013高考真题分类汇编三角函数一、选择题1. (2011年高考山东卷理科3)若点(a,9)在函数3xy =的图象上,则tan=6a π的值为(A )0 (B)(C) 1 (D)2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=(A )3 (B )2 (C )32 (D )233.(2011年高考安徽卷理科9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 4.(2011年高考辽宁卷理科4)ABC ∆的三个内角C B A 、、所对的边分别为a Ab A ac b a 2cos sin ,,,2=+,则=ab(A) (B) (C)5.(2011年高考辽宁卷理科7)设sin 1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)796.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=,则cos()2βα+=(A )33 (B )33- (C )539 (D )69-7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( ) A 54-B 53-C 32D 43 8.(2011年高考全国新课标理11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 9. (2011年高考天津卷理科6)如图,在△ABC 中,D 是边AC 上的点,且,23,2AB AD AB BD BC BD ===,则sin C 的值为( )A .33 B .36C .63D .6610.(2011年高考湖北卷理科3)已知函数()3sin cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为A.{|,}3x k x k k z ππππ+≤≤+∈ B.{|22,}3x k k k z ππππ+≤+∈C.5{|,}66x k x k k z ππππ+≤≤+∈ D. 5{|22,}66x k x k k z ππππ+≤≤+∈ 11.(2011年高考陕西卷理科6)函数()cos f x x x =-在[0,)+∞内(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两一个零点(D )有无穷个零点12.(2011年高考重庆卷理科6)若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则ab 的值为(A )43(B) 8- (C)1 (D) 2313. (2011年高考四川卷理科6)在∆ABC 中.222sin sin sin sin sin B C B C ≤+-.则A 的取值范围是( ) (A)(0,6π] (B)[ 6π,π) (c)(0,3π] (D) [ 3π,π) 14.(2011年高考全国卷理科5)(5)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 (A )13(B )3 (C )6 (D )9 15.(2011年高考福建卷理科3)若tan α=3,则2sin 2cos aα的值等于A .2B .3C .4D .616.(2011年高考福建卷理科10)已知函数f (x )=e+x ,对于曲线y=f (x )上横坐标成等差数列的三个点A,B,C ,给出以下判断: ①△ABC 一定是钝角三角形②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是A .①③B .①④C . ②③D .②④17. 【2012高考真题重庆理5】设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )318. 【2012高考真题浙江理4】把函数12cos +=x y 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是19. 【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππω的取值范围是( )()A 15[,]24 ()B 13[,]24 ()C 1(0,]2()D (0,2]20. 【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010 B 、1010 C 、510 D 、51521. 【2012高考真题陕西理9】在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( ) A.32B. 22C. 12D. 12-22. 【2012高考真题山东理7】若42ππθ⎡⎤∈⎢⎥⎣⎦,,37sin 2=8θ,则sin θ=(A )35 (B )45 (C 7 (D )3423. 【2012高考真题辽宁理7】已知sin cos 2αα-=,α∈(0,π),则tan α=(A) -1 (B) 2 (C) 2(D) 1 24. 【2012高考真题江西理4】若tan θ+1tan θ=4,则sin2θ=A .15 B. 14 C. 13 D. 1225. 【2012高考真题湖南理6】函数()⎪⎭⎫⎝⎛+-=6cos sin πx x x f 的值域为 A . [ -2 ,2]C.[-1,1 ], ] 26. 【2012高考真题上海理16】在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 27. 【2012高考真题天津理2】设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件28. 【2012高考真题天津理6】在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )252429. 【2012高考真题全国卷理7】已知α为第二象限角,33cos sin =+αα,则=α2cos(A) (B)(C)30. (2013年浙江数学理)已知210cos 2sin ,=+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34-31.(2013年高考陕西卷理)设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 不确定32 .(2013年山东数学理)将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为(A) 34π (B) 4π(C)0 (D) 4π-33.(2013年辽宁数学理)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠=633634.(2013年大纲版数学理)已知函数()=cos sin 2f x x x ,下列结论中错误的是(A)()y f x =的图像关于(),0π中心对称 (B)()y f x =的图像关于直线2x π=对称(C)()f x 的最大值为32(D)()f x 既奇函数,又是周期函数 35.(2013年山东数学理)函数cos sin y x x x =+的图象大致为36.(2013年高考四川卷理)函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A)2,3π-(B)2,6π-(C)4,6π-(D)4,3π37.(2013年上海市)既是偶函数又在区间(0 )π,上单调递减的函数是( )(A)sin y x = (B)cos y x = (C)sin 2y x = (D)cos 2y x =38.(2013年重庆数学理)04cos50tan 40-= ( )2 23+ 3 D.221 39.(2013年高考湖南卷理)在锐角中ABC ∆,角,A B 所对的边长分别为,a b .若2sin 3,a B b A =则角等于1264340.(2013年高考湖北卷理)将函数()3cos sin yx x x R =+∈的图像向左平移()0m m >个长度单位后,所得到的图像关于y 轴对称,则m 的最小值是( ) A.12πB.6πC.3π D. 56π二、填空题1.(2011年高考辽宁卷理科16)已知函数()()ϕω+=x A x f tan (ω>0,2π<ω),()x f y =的部分图像如下图,则=⎪⎭⎫⎝⎛24πf ____________.2.(2011年高考安徽卷理科14)已知ABC ∆ 的一个内角为120o,并且三边长构成公差为4的等差数列,则ABC ∆的面积为_______________3. (2011年高考全国新课标卷理科16)在ABC ∆中,60,3B AC ==则2AB BC +的最大值为 。
2011年高考试题数学(理科)三角函数一、选择题:1. (2011年高考山东卷理科3)若点(a,9)在函数3x y =的图象上,则tan=6a π的值为(A )【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D. 2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.3.(2011年高考安徽卷理科9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 【答案】C.【命题意图】本题考查正弦函数的有界性,考查正弦函数的单调性.属中等偏难题. 【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知(A) 答案: D解析:由正弦定理得,sin 2AsinB+sinBcos 2,即sinB (sin 2A+cos 2A ),故,所以ba= 5.(2011年高考辽宁卷理科7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79答案: A解析:217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 6.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=cos()2βα+=(A )3 (B )3- (C )9 (D )9-【答案】 C 【解析】:()()2442βππβαα+=+-- cos()cos[()()]2442βππβαα∴+=+--cos()cos()442ππβα=+-sin()sin()442ππβα+++1333399=⨯+== 故选C 7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( )A 54-B 53-C 32D 43 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B8.(2011年高考全国新课标理11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:()2s i n ()4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A9. (2011年高考天津卷理科6)如图,在△ABC 中,D 是边AC上的点,且,2,2AB AD AB BC BD ==,则sin C 的值为( )ABCD【答案】D【解析】设BD a =,则由题意可得:2,BC a =AB AD ==,在ABD ∆中,由余弦定理得:222cos 2AB AD BD A AB AD +-==⋅2232a a ⨯-13,所以sin A=3,在△ABC 中,由正弦定理得,sin sin AB BC C A =,所以2sin C =,解得sin CD.10.(2011年高考湖北卷理科3)已知函数()cos ,f x x x x R -∈,若()1f x ≥,则x 的取值范围为A.{|,}3x k x k k z ππππ+≤≤+∈ B.{|22,}3x k k k z ππππ+≤+∈C.5{|,}66x k x k k z ππππ+≤≤+∈ D. 5{|22,}66x k x k k z ππππ+≤≤+∈ 答案:Bcos 1x x -≥,即1sin()62x π-≥,解得522,666πππππ+≤-≤+∈k x k k z ,即22,3k x k k z ππππ+≤≤+∈,所以选B.11.(2011年高考陕西卷理科6)函数()cos f x x =在[0,)+∞内(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两一个零点(D )有无穷个零点 【答案】B 【解析】:令1y =2cos y x =,则它们的图像如图故选B12.(2011年高考重庆卷理科6)若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则ab 的值为(A )43(B) 8-(C)1 (D) 23解析:选A 。
2011年高考数学试题汇编-三角函数一, 角的定义、诱导公式与三角恒等变换1.(辽宁7)设sin 1+=43πθ(),则sin 2θ= (A )79-(B )19-(C )19 (D )79【答案】A2.(福建3)若tan α=3,则2sin 2cos a α的值等于( ) A .2B .3C .4D .6【答案】D3.(全国新课标5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=( ) (A )45-(B )35-(C )35 (D )45【答案】B4.(浙江6)若02πα<<,02πβ-<<,1cos()43πα+=,3cos()423πβ-=,则cos()2βα+=( ) A .33 B .33-C.539D .69-【答案】C5.(重庆14)已知1s i n c o s 2α=+α,且0,2π⎛⎫α∈ ⎪⎝⎭,则c o s 2s i n 4πα⎛⎫α- ⎪⎝⎭的值为__________【答案】142-6.(全国大纲理14)已知a ∈(2π,π),sinα=55,则tan2α=__________【答案】43-7.(江苏7)已知,2)4tan(=+πx 则x x2tan tan 的值为__________【答案】948.(上海理6)在相距2千米的A .B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是_______千米。
【答案】6二, 三角函数的性质1.(山东6)若函数()sin f x x ω=(ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= ( ) A .3 B .2 C .3/2D .2/3 【答案】C2.(湖北3)已知函数()3sin cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为 A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5{|,}66x k x k k Z ππππ+≤≤+∈D .5{|22,}66x k x k k Z ππππ+≤≤+∈【答案】B3.(全国新课标11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增【答案】A4.(安徽9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭(B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭(D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭【答案】C 5.(上海8)函数sin()cos()26y x x ππ=+-的最大值为_______ 。
2011年高考题汇总(三角函数部分)第一部分 选择题1(2011安徽理数)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()6f x f π⎛⎫≤⎪⎝⎭对x R ∈ 恒成立,且()2f f ππ⎛⎫>⎪⎝⎭,则()f x 的单调递增区间是 ( ) A ,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦C 2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ D ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦2(2011福建理数)若tan 3α=,则2sin 2cos αα的值等于 ( )A 2B 3C 4D 6 3(2011福建文数)若0,2πα⎛⎫∈ ⎪⎝⎭,且21sin cos 24αα+=,则tan α= ( )A2B3C D4(2011湖北理数)已知函数()cos f x x x =-,x R ∈,若()1f x ≥,则x 的取值范围为 ( ) A ,3x k x k k Zππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B 22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C 5,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ D 522,66x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ 5(2011湖南理数)由直线3x π=-,3x π=,0y =与曲线cos y x =所围成的封闭图形的面积为 ( )A12B 1 C2D6(2011湖南文数)曲线sin 1sin cos 2x y x x=-+在点(,0)4M π处的切线的斜率为 ( )A 12- B 12C 2-D27(2011辽宁理数)△ABC 的三个内角,,A B C 所对的边分别为,,a b c ,2sin sin cos a A B b A +=,则b a= ( )A B C D 8(2011辽宁文数)已知函数()tan()(0,)2f x A x πωϕωϕ=+><,()y f x =的部分图像如图,则()24f π= ( )A 2+B C2D 2-9(2011全国卷I 理数)已知角θ的顶点与原点重合,始边与x 轴重合,终边在直线2y x =上,则cos 2θ= ( ) A 45-B 35-C35D4510(2011全国卷I 理数)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -= ( )A ()f x 在0,2π⎛⎫⎪⎝⎭单调递减 B ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减C ()f x 在0,2π⎛⎫⎪⎝⎭单调递增 D ()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 11(2011全国卷I 文数)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ,角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为 ( )A BC D12(2011全国卷I 文数)若4sin 5a =-,a 是第三象限角,则sin 4a π⎛⎫+= ⎪⎝⎭( )A 10-B10C 10-D1013(2011全国卷II 理数)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于 ( ) A13B 3C 6D 914(2011山东理数)若点(,9)a 在函数3x y =的图像上,则tan6a π的值为 ( )A 0B 3C 1D 15(2011山东理数)若函数()sin (0)f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= ( ) A 3 B 2 C32D2316(2011陕西理数)函数()cos f x x =在[)0,+∞内 ( )A 没有零点B 有且仅有一个零点C 有且仅有两个零点D 有无穷多个零点 17(2011陕西理数)设集合{}22cos sin ,M y y x x x R==-∈,1N x x x R i ⎧⎫=-<∈⎨⎬⎩⎭i 为虚数单位,则M N 为 ( )A ()0,1B (]0,1C [)0,1D []0,1 18(2011陕西文数)方程cos x x =在(),-∞+∞内 ( )A 没有根B 有且仅有一个根C 有且仅有两个根D 有无穷多个根 19(2011上海文数)若三角方程sin 0x =与sin 20x =的解集分别为,EF ,则 ( ) A E F ∅ B E ÙF C E F = D E F =∅20(2011四川理数)在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是 ( ) A 0,6π⎛⎤⎥⎝⎦ B ,6ππ⎡⎫⎪⎢⎣⎭ C 0,3π⎛⎤ ⎥⎝⎦ D ,3ππ⎡⎫⎪⎢⎣⎭21(2011天津理数)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,若22a b -=,sin C B =,则A = ( )A 30︒B 60︒C 120︒D 150︒22(2011天津文数)如图是函数sin()()y A x x R ωϕ=+∈在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图像,为了得到这个函数的图像,只要将sin ()y x x R =∈的图像上的所有的点 ( )A 向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变B 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 C 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变D 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变23(2011浙江理数)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不存在零点的是 ( )A []4,2--B []2,0-C []0,2D []2,4 24(2011浙江文数)在△ABC 中,角,,A B C 所对的边分别为,,a b c ,若c o s s i n a A b B =,则2sin cos cos A A B += ( ) A 12-B12C 1-D 125(2011重庆理数)若△ABC 的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且60C =︒,则a b 的值为 ( )A 43B 8-C 1D 2326(2011重庆文数)若△ABC 的内角,,A B C 满足6sin 4sin 3sin A B C ==,则cos B = ( )A4B34C16D1116第二部分 填空题27(2011安徽理数)已知△ABC 的一个内角为120︒,并且三边长构成公差为4的等差数列,则△ABC 的面积为_____________。
专题二 三角函数、解三角形、平面向量一、选择题1.(2011年高考湖北卷)已知函数f ()x =3sin x -cos x ,x ∈R .若f ()x ≥1,则x 的取值范围为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π+π3≤x ≤2k π+π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x ≤k π+π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π+π6≤x ≤2k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x ≤k π+5π6,k ∈Z 2.(2011年高考重庆卷)已知向量a =()1,k ,b =()2,2,且a +b 与a 共线,那么a ·b 的值为( )A .1B .2C .3D .43.(2011年高考四川卷)在集合{1,2,3,4,5}中任取一个偶数a 和一个奇数b 构成以原点为起点的向量α=()a ,b .从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积等于2的平行四边形的个数为m ,则mn=( )A.215B.15C.415D.134.(2011年高考山东卷)若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=( ) A.23 B.32 C .2 D .35.(2011年高考浙江卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12 B.12C .-1D .16.(2011年高考辽宁卷)已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6 D .127.(2011年高考陕西卷)设集合M ={y |y =|cos 2x -sin 2x |,x ∈R },N =⎩⎨⎧⎭⎬⎫x ⎪⎪x i <1,i 为虚数单位,x ∈R ,则M ∩N 为( ) A .(0,1) B .(0,1] C .[0,1) D .[0,1]8.(2011年高考大纲全国卷)设向量a ,b 满足|a |=|b |=1,a ·b =-12,则|a +2b |=( )A. 2B. 3C. 5D.79.(2011年高考大纲全国卷)设函数f ()x =cos ωx ()ω>0,将y =f ()x 的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9 10.(2011年高考湖北卷)若向量a =()1,2,b =()1,-1,则2a +b 与a -b 的夹角等于( )A .-π4 B.π6C.π4D.3π4 11.(2011年高考重庆卷)若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B =( )A.154B.34C.31516D.111612.(2011年高考课标全国卷)设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4 ,则( ) A .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图象关于直线x =π4对称 B .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图象关于直线x =π2对称 C .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图象关于直线x =π4对称 D .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图象关于直线x =π2对称 二、填空题13.(2011年高考大纲全国卷)已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=__________. 14.(2011年高考课标全国卷)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k =________.15.(2011年高考江苏卷)已知tan ⎝⎛⎭⎫x +π4=2,则tan x tan 2x的值为________. 16.(2011年高考天津卷)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.17.(2011年高考安徽卷)设f (x )=a sin 2x +b cos 2x ,其中a ,b ∈R ,ab ≠0.若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对一切x ∈R 恒成立,则①f ⎝⎛⎭⎫11π12=0;②⎪⎪⎪⎪f ⎝⎛⎭⎫7π10<⎪⎪⎪⎪f ⎝⎛⎭⎫π5;③f (x )既不是奇函数也不是偶函数;④f (x )的单调递增区间是⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z );⑤存在经过点(a ,b )的直线与函数f (x )的图象不相交.以上结论正确的是________(写出所有正确结论的编号).18.(2011年高考江西卷)已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________.19.(2011年高考上海卷)在正三角形ABC 中,D 是边BC 上的点,AB =3,BD =1,则AB →·AD →=________.20.(2011年高考重庆卷)若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=__________. 21.(2011年高考福建卷)若向量a =(1,1),b =(-1,2),则a ·b 等于________. 22.(2011年高考安徽卷)已知向量a ,b 满足(a +2b )·(a -b )=-6,且|a |=1,|b |=2,则a 与b 的夹角为________.23.(2011年高考北京卷)在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.三、解答题24.(2011年高考四川卷)已知函数f ()x =sin ⎝⎛⎭⎫x +7π4+cos ⎝⎛⎭⎫x -3π4,x ∈R . ()1求f ()x 的最小正周期和最小值;()2已知cos ()β-α=45,cos ()β+α=-45,0<a <β≤π2,求证:[]f ()β2-2=0.25.(2011年高考山东卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos Ccos B=2c -a b .(1)求sin C sin A的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.26.(2011年高考湖南卷)在△ABC 中,角A ,B ,C 所对的边分别为 ,a ,b ,c 满足c sin A =a cos C .(1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小.27.(2011年高考湖北卷)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a =1,b=2,cos C =14.()1求△ABC 的周长; ()2求cos ()A -C 的值.28.(2011年高考重庆卷)设函数f ()x =sin x cos x -3cos ()π+x cos x ()x ∈R . ()1求f ()x 的最小正周期;()2若函数y =f ()x 的图象按b =⎝⎛⎭⎫π4,32平移后得到函数y =g ()x 的图象,求y =g ()x 在⎣⎡⎦⎤0,π4上的最大值.29.(2011年高考天津卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知B =C,2b =3a .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A +π4的值.专题二 三角函数、解三角形、平面向量一、选择题1.【解析】选B.∵f ()x =3sin x -cos x =2sin ⎝⎛⎭⎫x -π6, ∴f ()x ≥1,即2sin ⎝⎛⎭⎫x -π6≥1, ∴sin ⎝⎛⎭⎫x -π6≥12, ∴π6+2k π≤x -π6≤5π6+2k π,k ∈Z . 解得π3+2k π≤x ≤π+2k π,k ∈Z .2.【解析】选D.a +b =()1,k +()2,2=()3,k +2. ∵a +b 与a 共线,∴k +2-3k =0,解得k =1.∴a ·b =()1,1·()2,2=4. 3.【解析】选B.向量α的坐标有()2,1,()2,3,()2,5,()4,1,()4,3,()4,5,共6种情况,以原点为起点的向量中任取两个向量为邻边作平行四边形共有C 26=15个. 以a ,b 为邻边所作平行四边形的面积为 S =|a ||b |sin 〈a ,b 〉=|a ||b |1-cos 2〈a ,b 〉=|a ||b | 1-()a ·b 2|a |2|b |2=|a |2|b |2-()a ·b 2. 分别以a =()2,1,b =()4,1;a =()2,1,b =()4,3;a =()4,5,b =()2,3为邻边的平行四边形面积为2,故m =3,所以m n =315=15.4.【解析】选B.∵y =sin ωx (ω>0)过原点,∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时, y =sin ωx 是减函数.由y =sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3,∴ω=32. 5.【解析】选D.∵a cos A =b sin B , ∴sin A cos A =sin B sin B , 即sin A cos A -sin 2B =0,∴sin A cos A -(1-cos 2B )=0, ∴sin A cos A +cos 2B =1. 6.【解析】选D.由已知得a ·(2a -b )=2a 2-a ·b =2(4+1)-(-2+k )=0,∴k =12.7.【解析】选C.M ={y |y =|cos 2x |,x ∈R }={y |0≤y ≤1},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪⎪⎪x i <1={x ||-x i|<1}={x |-1<x <1},则M ∩N =[0,1).8.【解析】选B.∵|a |=|b |=1,a ·b =-12,∴|a +2b |2=a 2+4b 2+4a ·b =1+4+4×⎝⎛⎭⎫-12=5-2=3. ∴|a +2b |= 3.9.【解析】选C.由题意可知,nT =π3(n ∈N *),∴n ·2πω=π3(n ∈N *),∴ω=6n (n ∈N *),∴当n =1时,ω取得最小值6. 10.【解析】选C.2a +b =2()1,2+()1,-1=()3,3, a -b =()1,2-()1,-1=()0,3, ()2a +b ·()a -b =9.|2a +b |=32,|a -b |=3. 设所求两向量夹角为α,则cos α=932×3=22,∴α=π4.11.【解析】选D.由6sin A =4sin B =3 sin C 得sin A ∶sin B ∶sin C =2∶3∶4.设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c , 则由正弦定理知a ∶b ∶c =2∶3∶4, 不妨设a =2k ,b =3k ,c =4k ()k >0,则cos B =a 2+c 2-b 22ac=()22+42-32k 22×2k ×4k=1116.12.【解析】选D.∵f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4 =2sin ⎝⎛⎭⎫2x +π4+π4=2cos 2x , 当0<x <π2时,0<2x <π,故f (x )=2cos 2x 在⎝⎛⎭⎫0,π2单调递减. 又当x =π2时,2cos ⎝⎛⎭⎫2×π2=-2,因此x =π2是y =f (x )的一条对称轴. 二、填空题13.【解析】∵tan α=2,∴sin αcos α=2,∴sin α=2cos α.又sin 2α+cos 2α=1,∴()2cos α2+cos 2α=1,∴cos 2α=15.又∵α∈⎝⎛⎭⎫π,3π2,∴cos α=-55. 【答案】-5514.【解析】∵a 与b 是不共线的单位向量,∴|a |=|b |=1. 又k a -b 与a +b 垂直,∴(a +b )·(k a -b )=0,即k a 2+k a ·b -a ·b -b 2=0. ∴k -1+k a ·b -a ·b =0,即k -1+k cos θ-cos θ=0.(θ为a 与b 的夹角) ∴(k -1)(1+cos θ)=0.又a 与b 不共线, ∴cos θ≠-1,∴k =1. 【答案】115.【解析】由tan ⎝⎛⎭⎫x +π4=1+tan x 1-tan x =2得tan x =13,tan x tan 2x =tan x 2tan x 1-tan 2x=12(1-tan 2x )=12⎣⎡⎦⎤1-⎝⎛⎭⎫132=49. 【答案】4916.【解】法一:以D 为原点,分别以DA 、DC 所在直线为x 、y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x .∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ), P A →=(2,-x ),PB →=(1,a -x ), ∴P A →+3PB →=(5,3a -4x ), |P A →+3PB →|2=25+(3a -4x )2≥25, ∴|P A →+3PB →|的最小值为5.法二:设DP →=xDC →(0<x <1), ∴PC →=(1-x )DC →, P A →=DA →-DP →=DA →-xDC →, PB →=PC →+CB →=(1-x )DC →+12DA →,∴P A →+3PB →=52DA →+(3-4x )DC →,|P A →+3PB →|2=254DA →2+2×52×(3-4x )DA →·DC →+(3-4x )2·DC →2=25+(3-4x )2DC →2≥25,∴|P A →+3PB →|的最小值为5. 【答案】517.【解析】由f (x )≤⎪⎪⎪⎪f (π6)对一切x ∈R 恒成立知,直线x =π6是f (x )的对称轴. 又f (x )=a 2+b 2sin(2x +φ)⎝⎛⎭⎫其中tan φ=ba 的周期为π, ∴f ⎝⎛⎭⎫11π12=f ⎝⎛⎭⎫π6+3π4可看作x =π6的值加了34个周期, ∴f ⎝⎛⎭⎫11π12=0.故①正确. ∵7π10-2π3=π30,π5-π6=π30, ∴7π10和π5与对称轴的距离相等. ∴⎪⎪⎪⎪f ⎝⎛⎭⎫7π10=⎪⎪⎪⎪f ⎝⎛⎭⎫π5,故②不正确. ∵x =π6是对称轴,∴sin ⎝⎛⎭⎫2×π6+φ=±1, ∴π3+φ=±π2+2kx ,k ∈Z . ∴φ=π6+2k π或φ=-5π6+2k π,k ∈Z ,tan φ=b a =13,∴a =3b .∴f (x )=2|b |sin ⎝⎛⎭⎫2x +π6或f (x )=2|b |sin ⎝⎛⎭⎫2x -5π6. ∴f (x )既不是奇函数也不是偶函数,故③正确.由以上知f (x )=2|b |sin ⎝⎛⎭⎫2x +π6的单调递增区间为 ⎣⎡⎦⎤-π3+k π,π6+k π,k ∈Z .f (x )=2|b |sin ⎝⎛⎭⎫2x -5π6的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π,k ∈Z . 由于f (x )的解析式不确定,∴单调递增区间不确定,故④不正确. ∵f (x )=a sin 2x +b cos 2x =a 2+b 2sin(2x +φ) ⎝⎛⎭⎫其中tan φ=b a ,∴-a 2+b 2≤f (x )≤a 2+b 2.又∵ab ≠0,∴a ≠0,b ≠0. ∴-a 2+b 2<b <a 2+b 2,∴过点(a ,b )的直线必与函数f (x )的图象相交.故⑤不正确. 【答案】①③ 18.【解析】b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=(e 1-2e 2)·(3e 1+4e 2)=3e 21-2e 1·e 2-8e 22.又因为e 1,e 2为单位向量,〈e 1,e 2〉=π3,所以b 1·b 2=3-2×12-8=3-1-8=-6.【答案】-6 19.【解析】法一:如图,在△ABD 中,由余弦定理得AD 2=32+12-2×3×1×cos 60°=7,∴AD =7,cos ∠BAD =32+(7)2-122×3×7=5714,∴AB →·AD →=|AB →|·|AD →|·cos ∠BAD =3×7×5714=152.法二:∵AD →=AB →+BD →,∴AB →·AD →=AB →·(AB →+BD →)=AB →2+AB →·BD →=|AB →|2+|AB →||BD →|·cos 120°=9+3×1×⎝⎛⎭⎫-12=152. 【答案】15220.【解析】∵cos α=-35且α∈⎝⎛⎭⎫π,3π2, ∴sin α=-45,∴tan α=43.【答案】4321.【解析】a =(1,1),b =(-1,2),a ·b =1×(-1)+1×2=-1+2=1. 【答案】1 22.【解析】由(a +2b )·(a -b )=-6得a 2-2b 2+a ·b =-6. ∵|a |=1,|b |=2,∴12-2×22+1×2×cos 〈a ,b 〉=-6,∴cos 〈a ,b 〉=12.∵〈a ,b 〉∈[0,π],∴〈a ,b 〉=π3.【答案】π323.【解析】根据正弦定理应有a sin A =b sin B ,∴a =b sin Asin B =5×1322=523.【答案】523三、解答题24.【解】(1)∵f (x )=sin ⎝⎛⎭⎫x +7π4-2π+cos ⎝⎛⎭⎫x -π4-π2=sin ⎝⎛⎭⎫x -π4 +sin ⎝⎛⎭⎫x -π4=2sin ⎝⎛⎭⎫x -π4, ∴T =2π,f (x )的最小值为-2.()2证明:由已知得cos βcos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加得2cos βcos α=0,∵0<α<β≤π2,∴β=π2.∴[]f ()β2-2=4sin 2π4-2=0.25.【解】(1)由正弦定理,可设a sin A =b sin B =csin C=k ,则2c -a b =2k sin C -k sin A k sin B=2sin C -sin A sin B,所以cos A -2cos C cos B =2sin C -sin A sin B,即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ).又A +B +C =π,所以sin C =2sin A .因此sin Csin A=2.(2)由sin C sin A=2,得c =2a .由余弦定理及cos B =14,得b 2=a 2+c 2-2ac cos B =a 2+4a 2-4a 2×14=4a 2.所以b =2a .又a +b +c =5,所以a =1,因此b =2. 26.【解】(1)由正弦定理,得sin C sin A =sin A cos C . 因为0<A <π,所以sin A >0.从而sin C =cos C .又cos C ≠0,所以tan C =1,故C =π4.(2)由(1)知,B =3π4-A ,于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A )=3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. 因为0<A <3π4,所以π6<A +π6<11π12,所以当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2.综上所述,3sin A -cos ⎝⎛⎭⎫B +π4的最大值为2,此时A =π3,B =5π12. 27.【解】()1∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4,∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5.()2∵cos C =14,∴sin C =1-cos 2C = 1-⎝⎛⎭⎫142=154. ∴sin A =a sin C c =1542=158.∵a <c ,∴A <C ,故A 为锐角, ∴cos A =1-sin 2A= 1-⎝⎛⎭⎫1582=78,∴cos ()A -C =cos A cos C +sin A sin C =78×14+158×154=1116.28.【解】()1f ()x =12sin 2x +3cos 2x=12sin 2x +32()1+cos 2x =12sin 2x +32cos 2x +32=sin ⎝⎛⎭⎫2x +π3+32. 故f ()x 的最小正周期为T =2π2=π.()2依题意g ()x =f ⎝⎛⎭⎫x -π4+32=sin ⎣⎡⎤2⎝⎛⎭⎫x -π4+π3+32+32 =sin ⎝⎛⎭⎫2x -π6+ 3. 当x ∈⎣⎡⎦⎤0,π4时,2x -π6∈⎣⎡⎦⎤-π6,π3,g ()x 为增函数, 所以g ()x 在⎣⎡⎦⎤0,π4上的最大值为g ⎝⎛⎭⎫π4=332.29.【解】(1)由B =C,2b =3a ,可得c =b =32a ,所以cos A =b 2+c 2-a 22bc =34a 2+34a 2-a 22×32a ×32a=13.(2)因为cos A =13,A ∈(0,π),所以sin A =1-cos 2A =223,cos 2A =2cos 2A -1=-79.故sin2A =2sin A cos A =429.所以cos ⎝⎛⎫2A +π4=cos 2A cos π4-sin 2A sin π4=⎝⎛⎭⎫-79×22-429×22=-8+7218.。
高考三角函数问题专题复习一、三角函数基础题1、已知角α的终边通过点P(-3,4),则sinα+cosα+tan α= ( )A.1523-B.1517-C.151-D.15172、π617sin = ( ) A.21 B.23- C.21- D.23-3、x y 2sin 21=的最小正周期是 ( ) A.2π B.π C.2π D. 4π 4、设tan α=2,且sin α<0,则cos α的值等于 ( ) A.55 B.51- C.55- D.51 5、y=cos 2(2x)的最小正周期是 ( )A .2π B. π C.4π D.8π 6、命题甲:sin x=1,命题乙:x=2π,则 ( ) A.甲是乙充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件C.甲是乙的充分必要条件D.甲不是乙的必要条件也不是乙的充分条件7、命题甲:A=B ,命题乙:sinA=sinB,则 ( )A.甲不是乙的必要条件也不是乙的充分条件B.甲是乙的充分必要条件C.甲是乙的必要条件但不是充分条件D.甲是乙的充分条件但不是必要条件8、函数y=sin x 在区间________上是增函数. ( )A.[0,π]B.[π,2π]C.]25,23[ππ D .]87,85[ππ 9、函数)43tan(π+=x y 的最小正周期为 ( )A.3πB.πC.32π D.3π 10、设角α的终边通过点P (-5,12),则cot α+sin α等于 ( ) A.137 B.-137 C.15679 D.- 1567911、函数y=cos3x -3sin3x 的最小正周期和最大值分别是 ( )A.32π, 1B.32π, 2 C.2π, 2 D.2π, 1 12、若23cos ],2,[-=∈x x ππ ,则x 等于 ( ) A.67πB.34πC.35πD.611π13、已知57cos sin ,51cos sin =-=+αααα,则tan α等于( ) A.34- B.-43C.1D.- 114、 150cos =( ) A.21 B.23 C.﹣21D. ﹣2315、在△ABC 中,AB=3,AC=2,BC=1,则sin A 等于 ( ) A.0 B.1 C.23 D.2116、在]2,0[π上满足sinx≤-0.5的x 的取值范围是区间 ( )A.[0,6π] B.[6π,65π] C.]67,65[ππD .]611,67[ππ17、使等式cosx=a -2有意义的a 的取值范围是区间( ) A .[0,2] B.[1,3] C.[0,1] D.[2,3]18、=-+-)690sin(495tan )585cos( ( ) A .22 B.32C.32- D.219、如果51cos sin =+x x ,且0≤x<π,那么tanx= ( ) A .34- B.43- C.43 D.34。
三角函数必修4 第1章三角函数§1.1任意角的概念、弧度制重难点:理解任意角的概念,掌握角的概念的推广方法,能在直角坐标系讨论任意角,判断象限角、轴线角,掌握终边相同角的集合.掌握弧长公式、扇形面积公式并能灵活运用.考纲要求:①了解任意角的概念.②了解弧度制概念,能进行弧度与角度的互化.经典例题:写出与下列各角终边相同的角的集合S,并把S中适合不等式-3600≤β<7200的元素β写出来:(1)600;(2)-210;(3)363014,当堂练习:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.A C D.A=B=C2 下列各组角中,终边相同的角是()A.与B.C.D.3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B.C.D.4.设角的终边上一点P的坐标是,则等于()A.B.C.D.5.将分针拨慢10分钟,则分钟转过的弧度数是()A.B.-C.D.-6.设角和的终边关于轴对称,则有()A.B.C.D.7.集合A={ ,B={ ,则A、B之间关系为()A.B.C.B A D.A B8.某扇形的面积为1 ,它的周长为4 ,那么该扇形圆心角的度数为()A.2°B.2 C.4°D.49.下列说法正确的是()A.1弧度角的大小与圆的半径无关B.大圆中1弧度角比小圆中1弧度角大C.圆心角为1弧度的扇形的弧长都相等D.用弧度表示的角都是正角10.中心角为60°的扇形,它的弧长为2 ,则它的内切圆半径为()A.2 B.C.1 D.11.一个半径为R的扇形,它的周长为4R,则这个扇形所含弓形的面积为()A.B.C.D.12.若角的终边落在第三或第四象限,则的终边落在()A.第一或第三象限B.第二或第四象限C.第一或第四象限D.第三或第四象限13.,且是第二象限角,则是第象限角.14.已知的取值范围是.15.已知是第二象限角,且则的范围是.16.已知扇形的半径为R,所对圆心角为,该扇形的周长为定值c,则该扇形最大面积为.17.写出角的终边在下图中阴影区域内角的集合(这括边界)(1)(2)(318.一个视力正常的人,欲看清一定距离的文字,其视角不得小于5′.试问:(1)离人10米处能阅读的方形文字的大小如何?(2)欲看清长、宽约0.4米的方形文字,人离开字牌的最大距离为多少?19.一扇形周长为20cm,当扇形的圆心角等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?20.绳子绕在半径为50cm的轮圈上,绳子的下端B处悬挂着物体W,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W的位置向上提升100cm? 21.已知集合A={求与A∩B中角终边相同角的集合S.必修4 第1章三角函数考纲总要求:①理解任意角三角函数(正弦、余弦、正切)的定义.②能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式,能画出,,的图像,了解三角函数的周期性.③理解正弦函数、余弦函数在区间的性质(单调性、最大和最小值与轴交点等),理解正切函数在区间的单调性.④理解同角三角函数的基本关系式.⑤了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.§1.2.1-2任意角的三角函数值、同角三角函数的关系重难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式;能利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来;掌握同角三角函数的基本关系式,三角函数值的符号的确定,同角三角函数的基本关系式的变式应用以及对三角式进行化简和证明.经典例题:已知为第三象限角,问是否存在这样的实数m,使得、是关于的方程的两个根,若存在,求出实数m,若不存在,请说明理由.当堂练习:1.已知的正弦线与余弦线相等,且符号相同,那么的值为()A.B.C.D.2.若为第二象限角,那么的值为()A.正值B.负值C.零D.为能确定3.已知的值为()A.-2 B.2 C.D.-4.函数的值域是()A.{-1,1,3} B.{-1,1,-3} C.{-1,3} D.{-3,1}5.已知锐角终边上一点的坐标为(则=()A.B.3 C.3-D.-36.已知角的终边在函数的图象上,则的值为()A.B.-C.或-D.7.若那么2 的终边所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限8.、、的大小关系为()A.B.C.D.9.已知是三角形的一个内角,且,那么这个三角形的形状为()A.锐角三角形B.钝角三角形C.不等腰的直角三角形D.等腰直角三角形10.若是第一象限角,则中能确定为正值的有()A.0个B.1个C.2个D.2个以上11.化简(是第三象限角)的值等于()A.0 B.-1 C.2 D.-212.已知,那么的值为()A.B.-C.或-D.以上全错13.已知则.14.函数的定义域是_________.15.已知,则=______.16.化简.17.已知求证:.18.若,求角的取值范围.19.角的终边上的点P和点A()关于轴对称()角的终边上的点Q与A关于直线对称. 求的值.20.已知是恒等式. 求a、b、c的值.21.已知、是方程的两根,且、终边互相垂直. 求的值.必修4 第1章三角函数§1.2.3三角函数的诱导公式重难点:能借助于单位圆,推导出正弦、余弦的诱导公式;能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决求值、化简和恒等式证明问题;能通过公式的运用,了解未知到已知、复杂到简单的转化过程.经典例题:已知数列的通项公式为记求当堂练习:1.若那么的值为()A.0 B.1 C.-1 D.2.已知那么()A.B.C.D.3.已知函数,满足则的值为()A.5 B.-5 C.6 D.-64.设角的值等于()A.B.-C.D.-5.在△ABC中,若,则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角形6.当时,的值为()A.-1 B.1 C.±1 D.与取值有关7.设为常数),且那么()A.1 B.3 C.5 D.78.如果则的取值范围是()A.B.C.D.9.在△ABC中,下列各表达式中为常数的是()A.B.C.D.10.下列不等式上正确的是()A.B.C.D.11.设那么的值为()A.B.-C.D.12.若,则的取值集合为()A.B.C.D.13.已知则.14.已知则.15.若则.16.设,其中m、n、、都是非零实数,若则.17.设和求的值.18.已知求证:19.已知、是关于的方程的两实根,且求的值. 20.已知(1)求的表达式;(2)求的值.21.设满足,(1)求的表达式;(2)求的最大值.必修4 第1章三角函数§1.3.1-2三角函数的周期性、三角函数的图象和性质重难点:理解周期函数的概念.能利用单位圆中的正弦线作正弦函数的图象;对正、余弦函数奇、偶性和单调性的理解与应用,能灵活应用正切函数的性质解决相关问题.经典例题:设(1)令表示P;(2)求t的取值范围,并分别求出P的最大值、最小值.当堂练习:1.若,则()A.α<βB.α>βC.α+β>3πD.α+β<2π2.函数的单调减区间为()A.B.C.D.3.已知有意义的角x等于()A.B.C.D.4.函数的图象的一条对称轴方程是()A.B.C.D.5.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C.D.与a有关的值6.下列函数中,以π为周期的偶函数是()A.B.C.D.7.在区间(-,)内,函数y=tanx与函数y=sinx图象交点的个数为()A.1 B.2 C.3 D.48.下列四个函数中为周期函数的是()A.y=3 B.C.D.9.在△ABC中,A>B是tanA>tanB的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.函数的定义域是()A.B.C.D.11.方程的解集为()A.B.C.D.12.函数上为减函数,则函数上()A.可以取得最大值M B.是减函数C.是增函数D.可以取得最小值-M13..14.若= .15.函数y=2arccos(x-2)的反函数是. 16.函数的定义域为.17.求函数上的反函数.18.如图,某地一天从6时到11时的温度变化曲线近似满足函数(1) 求这段时间最大温差;(2) 写出这段曲线的函数解析式.19.若,求函数的最值及相应的x值.20.已知函数的最大值为1,最小值为-3,试确定的单调区间.21.设函数当在任意两个连续整数间(包括整数本身)变化时至少有两次失去意义,求k 的最小正整数值.必修4 第1章三角函数§1.3.3函数的图象和性质重难点:函数的图像的画法和设图像与函数y=sinx图像的关系,以及对各种变换内在联系的揭示.经典例题:如图,表示电流强度I与时间t的关系式在一个周期内的图象.(1)试根据图象写出的解析式;(2)为了使中t在任意一段秒的时间内I能同时取最大值|A|和最小值-|A|,那么正整数的最小值为多少?当堂练习:1.函数的图象()A.关于原点对称B.关于点(-,0)对称C.关于y轴对称D.关于直线x= 对称2.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位3.如图,曲线对应的函数是()A.y=|sinx|B.y=sin|x|C.y=-sin|x|D.y=-|sinx|4.已知f(1+cosx)=cos2x,则f(x)的图象是下图中的()5.如果函数y=sin2x+αcos2x的图象关于直线x=-对称,那么α的值为()A.B.-C.1 D.-16.已知函数在同一周期内,时取得最大值,时取得最小值-,则该函数解析式为()A.B.C.D.7.方程的解的个数为()A.0 B.无数个C.不超过3 D.大于38.已知函数那么函数y=y1+y2振幅的值为()A.5 B.7 C.13 D.9.已知的图象可以看做是把的图象上所有点的横坐标压缩到原来的1/3倍(纵坐标不变)得到的,则= ()A.B.2 C.3 D.10.函数y=-x•cosx的部分图象是()11.函数的单调减区间是()A.B.C.D.12.函数的最小正周期为()A.πB.C.2πD.4π13.若函数的周期在内,则k的一切可取的正整数值是. 14.函数的最小值是.15.振动量的初相和频率分别为,则它的相位是.16.函数的最大值为.17.已知函数(1)求的最小正周期;(2)求的单调区间;(3)求图象的对称轴,对称中心.18.函数的最小值为-2,其图象相邻的最高点与最低点横坐标差是3π,又图象过点(0,1)求这个函数的解析式.19.已知函数=sin2x+acos2x在下列条件下分别求a的值.(1)函数图象关于原点对称;(2)函数图象关于对称.20.已知函数的定义域为,值域为[-5,1]求常数a、b的值.21.已知α、β为关于x的二次方程的实根,且,求θ的范围.必修4 第1章三角函数§1.3.4三角函数的应用重难点:掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象;(3)将实际问题抽象为与三角函数有关的简单函数模型;利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.经典例题:已知某海滨浴场的海浪高度是时间( ,单位:小时)的函数,记作.下表是某日各时的浪高数据:经长期观察, 的曲线可近似地看成是函数的图象.(1)根据以上数据,求出函数的最小正周期,振幅及函数表达式;(2)依据规定,当海浪高度高于时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午到晚上之间,有多少时间可供冲浪者进行活动?当堂练习:1.若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2004北京西城一模)设0<|α|<,则下列不等式中一定成立的是( )A.sin2α>sinαB.cos2α<cosαC.tan2α>tanαD.cot2α<cotα3.已知实数x、y、m、n满足m2+n2=a,x2+y2=b(a≠b),则mx+ny的最大值为( )A. B. C. D.4. 初速度v0,发射角为,则炮弹上升的高度y与v0之间的关系式为()A. B. C. D.5. 当两人提重为的书包时,夹角为,用力为,则为____时,最小()A. B. C. D.6.某人向正东方向走x千米后向右转,然后朝新的方向走3千米,结果他离出发点恰好千米,那么x的值为()A. B. C. D.7. 甲、乙两楼相距60米,从乙楼底望甲楼顶仰角为,从甲楼顶望乙楼顶俯角为,则甲、乙两楼的高度分别为____________________.8.一树干被台风吹断折成角,树干底部与树尖着地处相距20米,树干原来的高度是________.9.(2006北京海淀模拟)在△ABC中,∠A=60°,BC=2,则△ABC的面积的最大值为_________.10.在高出地面30 m的小山顶上建造一座电视塔CD(如右图),今在距离B点60 m的地面上取一点A,若测得C、D所张的角为45°,则这个电视塔的高度为_______________.11.已知函数的最小正周期为,最小值为,图象经过点,求该函数的解析式.12.如图,某地一天从时到时的温度变化曲线近似满足函数,(I)求这段时间的最大温差;(II)写出这段曲线的函数解析式.13.若x满足,为使满足条件的的值(1)存在;(2)有且只有一个;(3)有两个不同的值;(4)有三个不同的值,分别求的取值范围.14.如图,化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面1.2米)必修4 第1章三角函数§1.4三角函数单元测试1. 化简等于()A. B. C. 3 D. 12. 在ABCD中,设, ,, ,则下列等式中不正确的是()A.B.C.D.3. 在中,①sin(A+B)+sinC;②cos(B+C)+cosA;③;④,其中恒为定值的是()A、①②B、②③C、②④D、③④4. 已知函数f(x)=sin(x+ ),g(x)=cos(x-),则下列结论中正确的是()A.函数y=f(x)•g(x)的最小正周期为2B.函数y=f(x)•g(x)的最大值为1C.将函数y=f(x)的图象向左平移单位后得g(x)的图象D.将函数y=f(x)的图象向右平移单位后得g(x)的图象5. 下列函数中,最小正周期为,且图象关于直线对称的是()A.B.C.D.6. 函数的值域是()A、B、C、D、7. 设则有()A. B. C. D.8. 已知sin , 是第二象限的角,且tan( )=1,则tan 的值为()A.-7 B.7 C.-D.9. 定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为()A. B C D10. 函数的周期是()A.B.C.D.11. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是的值等于()A.1 B.C.D.12. 使函数f(x)=sin(2x+ )+ 是奇函数,且在[0,上是减函数的的一()A.B.C.D.13、函数的最大值是3,则它的最小值______________________14、若,则、的关系是____________________15、若函数f(χ)是偶函数,且当χ<0时,有f(χ)=cos3χ+sin2χ,则当χ>0时,f(χ)的表达式为.16、给出下列命题:(1)存在实数x,使sinx+cosx=; (2)若是锐角△的内角,则> ; (3)函数y=sin( x- )是偶函数;(4)函数y=sin2x的图象向右平移个单位,得到y=sin(2x+ )的图象.其中正确的命题的序号是.17、求值:18、已知π2 <α<π,0<β<π2 ,tanα=-34 ,cos(β-α)= 513 ,求sinβ的值.19、已知函数(1)求它的定义域、值域以及在什么区间上是增函数;(2)判断它的奇偶性;(3)判断它的周期性。
训练11 三角函数(一)一、选择题(方法:直接选择法、特殊化法、估算选择法、特征选择法、数形结合法、结论选择法) 1.(2009海南宁夏理,5).有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =122p : ∃x 、y ∈R, sin(x-y)=sinx-siny3p : ∀x ∈[]0,π=sinx 4p : sinx=cosy ⇒x+y=2π其中假命题的是A .1p ,4p B.2p ,4p C.1p ,3p D.2p ,4p 2.(2010浙江理)(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 3.(2009北京理)“2()6k k Z παπ=+∈”是“1cos 22α=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.(2010福建理)1.cos13计算sin43cos 43-sin13的值等于( )A .12B C D 5.(2010全国卷2文)(3)已知2sin 3α=,则()cos -2πα=(A )(B )19-(C )19(D 6.(2008海南、宁夏)23sin 702cos 10-=-( )A .12B .2C .2D .27.(2010全国卷1理)(2)记cos(80)k -︒=,那么tan100︒=A.kB. -k8.(2010届昆明一中三次月考理)已知tan 2α=,则cos sin cos sin αααα+=-A .-3B .3C .2D .-29.(2009辽宁文,8)已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=( )A.43-B.54C.34-D.4510.(2009全国II 文,4) 已知ABC ∆中,12cot 5A =-, 则cos A =A. 1213B.513C.513-D. 1213-11.(2006年湖北)若△ABC 的内角A 满足322sin =A ,则sin cos A A +=( )A.315 B. 315- C. 35 D. 35-12.(2005全国I )在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断: ①1cot tan =⋅B A②2sin sin 0≤+<B A③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是( )A.①③B.②④C.①④D.②③二、填空题(策略:快--运算要快;稳--变形要稳;全--答案要全;细--审题要细。
2011年《新高考全案》高考总复习配套测评卷单元检测卷(八)三角函数及解三角形时间:90分钟,满分150分一、选择题(共8小题,每小题7分,满分56分) 1.若sin θ·cos θ>0,则θ在( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限⎩⎪⎨⎪⎧ sin θ>0cos θ>0或⎩⎪⎨⎪⎧sin θ<0cos θ<0. B2.设sin α=35,α∈(π2,π),则tan α的值为( )A.34B .-34C.43D .-43sin α=35,∴cos α=-45,tan α=sin αcos α=-34.B3.sin163°sin223°+sin253°sin313°等于( )A .-12B.12 C .-32D.32原式=sin163°·sin223°+cos163°cos223°=cos(163°-223°)=cos(-60°)=12.B4.函数y =sin(2x -π4)的图象向左平移π8个单位,所得的图形对应的函数是( )A .偶函数,但不是奇函数B .奇函数,但不是偶函数C .既是奇函数,又是偶函数D .既不是奇函数,又不是偶函数y =sin(2x -π4)――→左移π8y =sin =sin2x . ∴函数为奇函数,故选B. B5.已知cos(α-π4)=14,则sin2α的值为( )A.3132B .-3132C .-78D.78cos =2cos 2(α-π4)-1=2×(14)2-1=-78=cos(2α-π2)=sin2α.C6.在△ABC 中,A =105°,C =45°,AB =2,则AC 等于( )A .1B .2 C.2 D .2 2由题意可知B =180°-105°-45°=30°,在△ABC 中,由正弦定理得AB sin C =ACsin B,∴2sin45°=AC sin30°,解得AC =1. A7.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a kmB.3a kmC.2a kmD .2a km利用余弦定理解△ABC .易知∠ACB =120°,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×⎝⎛⎭⎫-12=3a 2,∴AB =3a . B8.(2006·山东)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,已知A =π3,a =3,b =1,则c =( )A .1B .2 C.3-1 D. 3解法一:(余弦定理)由a 2=b 2+c 2-2bc cos A 得:3=1+c 2-2c ×1×cos π3=1+c 2-c ,∴c 2-c -2=0,∴c =2或-1(舍).解法二:(正弦定理)由a sin A =b sin B ,得:3sin π3=1sin B,∴sin B =12,∵b <a ,∴B =π6,从而C =π2,∴c 2=a 2+b 2=4,∴c =2.B二、填空题(共6小题,每小题7分,满分42分)9.如果tan α、tan β是方程x 2-3x -3=0的两根,则tan(α+β)=________. 由韦达定理得tan α+tan β=3. tan α·tan β=-3,∴tan(α+β)=31+3=34.3410.函数y =sin x +3cos x 的最小值是________.∵y =2sin(x +π3),∴y 的最小值是-2.-211.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若(3b -c )cos A =a cos C ,则cos A =________.依题由正弦定理得:(3sin B -sin C )·cos A =sin A ·cos C ,即3sin B ·cos A =sin(A +C )=sin B ,∴cos A =33. 3312.cos π5cos 2π5的值是________.原式=2sin π5cos π5·cos 2π52sin π5=sin 2π5·cos2π52sinπ5=sin 4π54sin π5=sin π54sinπ5=14.1413.在△ABC 中,∠C =60°,a ,b ,c 分别为∠A 、∠B 、∠C 的对边,则a b +c +bc +a=________.因为∠C =60°,所以a 2+b 2=c 2+ab ,所以(a 2+ac )+(b 2+bc )=(b +c )(c +a ),所以ab +c+b c +a =1,故填1. 114.若x =π12,则sin 4x -cos 4x =________.sin 4x -cos 4x =sin 2x -cos 2x =-cos2x=-cos π6=-32.-32三、解答题(共4小题,满分52分)15.(本小题满分12分)已知α的始边为x 轴非负半轴,终边在直线y =kx 上,若sin α=25,且cos α<0,求实数k . 由sin α=25>0,cos α<0,知α位于第二象限,故k <0,设P (x ,kx )(x <0)是终边上一点,则sin α=kxk 2x 2+x 2=-k1+k 2=25⇒k =-2. 16.(本小题满分12分)已知3sin θ-sin(π2-2θ)cos(π+θ)·cos θ=1,θ∈(0,π),求θ的值.由已知3sin θ+cos2θ=1,∴3sin θ-2sin 2θ=0, ∴sin θ(sin θ-32)=0. ∵0<θ<π,∴sin θ=32,θ=π3,或θ=2π3.17.(2009·北京)(本小题满分14分)已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π2上的最大值和最小值. (1)∵f (x )=2sin(π-x )cos x =2sin x cos x =sin2x , ∴函数f (x )的最小正周期为π.(2)由-π6≤x ≤π2⇒-π3≤2x ≤π,∴-32≤sin2x ≤1,∴f (x )在区间⎣⎡⎦⎤-π6,π2上的最大值为1,最小值为-32. 18.(2009·湖南卷)(本小题满分14分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2). (1)若a ∥b ,求tan θ的值;(2)若|a |=|b |,0<θ<π,求θ的值.(1)因为a ∥b ,所以2sin θ=cos θ-2sin θ,于是4sin θ=cos θ,故tan θ=14.(2)由|a |=|b |知,sin 2θ+(cos θ-2sin θ)2=5,所以1-2sin2θ+4sin 2θ=5.从而-2sin2θ+2(1-cos2θ)=4,即sin2θ+cos2θ=-1,于是sin(2θ+π4)=-22.又由0<θ<π知,π4<2θ+π4<9π4,所以2θ+π4=5π4,或2θ+π4=7π4.因此θ=π2,或θ=3π4.。
2011届高三数学专题复习(三角函数部分)一、选择题: 1.已知3sin 5α=,且(,)2παπ∈,则2sin 2cos αα的值等于( ) A .34- B .32- C .34 D .322.设,,(0,)2παβγ∈,且s i n s i n s i n αγβ+=,cos cos cos γβα+=,则βα-=( ) A. 3π- B. 6π C. 3π或3π- D. 3π3.函数22cos ()4y x x π=++的振幅为( )A. 2B.12C.3 D.213 4.若方程212cos sin 0x x a --+=有实数解,则实数a 的取值范围是( ) A. 9(,]8-∞ B. 9[2,]8- C. 9[0,]8 D. 9[1,]8-5.设sin cos t αα=+,且33sin cos 0αα+<,则t 的取值范围是( )A. [B. ()+∞C. (1,0)(1-D. [6.函数())sin(3)f x x x θθ---是奇函数,则θ等于(以下∈k Z )( ) A. k π B. 6k ππ+ C. 3k ππ+D. 3k ππ-7.将函数1sin()23y x π=+的图象作如下的变换便得到函数1sin2y x =的图象( )A. 向右平移3πB. 向左平移3πC. 向右平移23πD. 向左平移23π8.函数22(sin 1)(cos 3)y x x =++的最大值是( )高三_____班 姓名_________A. 4B. 214C. 6D.2549.如果对于任意一个整数n ,函数(21)tan5k y x π+=在区间[,1]n n +内至少有4次失去意义,则k 的最小正整数值是( )A. 7B. 8C. 9D. 1010.函数()2)f x x π=≤≤的值域是( )A. 11[,]22-B. 11[,]33-C. 11[,]44-D. 22[,]33-二、填空题:11.已知tan()4αβ+=,tan()2αβ-=,则sin 4α= ___________________.12.在△ABC 中,,,A B C 是三个内角,30C ∠=︒,那么22sin sin 2sin A B A +-sin cos B C ⋅⋅的值是_____________.13.设(0)2x π∈,,则函数22sin 1sin 2x y x+=的最小值为 .14.x 为实数,()f x 为sin x 与cos x 中的较大者,设()a f x b ≤≤,则a b + .15.已知()sin()(0)3f x x ωωπ=+>,()()63f f ππ=且()f x 在区间()63ππ,有最小值,无最大值,则ω= .16.设函数()sin()(0,)22f x x ππωϕωϕ=+>-<<,给出以下四个论断:①它的图象关于直线12x π=对称; ②它的图象关于点(,0)3π对称; ③它的周期是π; ④在区间[,0)6π-上是增函数。
(一)选择题1、若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A)23 (B)32(C) 2 (D)3 2、在△ABC 中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是 (A )(0,]6π(B )[,)6ππ(C )(0,]3π(D )[,)3ππ3、在ABC ∆中,角,,A B C 所对的边分,,a b c .若cos sin a A b B =,则2sin cos cos A A B += (A)-12 (B) 12(C) -1 (D) 1 4.若a ∈(0, 2π),且sin 2a+cos2a=14,则tana 的值等于A .22B .33C .2D .35、已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数6、曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12C .22-D .22(二)填空题7、 ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为________.答案:4315 8.已知a ∈(3,2ππ),t a n 2,c o s αα=则=答案:55-9.函数2sin cos y x x =-的最大值为 。
答案:510.在相距2千米的A .B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是 千米。
2011年高考试题数学(理科)三角函数一、选择题:1. (2011年高考山东卷理科3)若点(a,9)在函数3x y =的图象上,则tan=6a π的值为(A )【答案】D【解析】由题意知:9=3a,解得a =2,所以2tantan tan 663a πππ===故选D. 2. (2011年高考山东卷理科6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= (A )3 (B )2 (C )32 (D )23【答案】C【解析】由题意知,函数在3x π=处取得最大值1,所以1=sin3ωπ,故选C.3.(2011年高考安徽卷理科9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R ∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ (B ),()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ (C )2,()63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(D ),()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦ 【答案】C.【命题意图】本题考查正弦函数的有界性,考查正弦函数的单调性.属中等偏难题. 【解析】若()()6f x f π≤对x R ∈恒成立,则()sin()163f ππϕ=+=,所以,32k k Z ππϕπ+=+∈,,6k k Z πϕπ=+∈.由()()2f f ππ>,(k Z ∈),可知(A) 答案: D解析:由正弦定理得,sin 2AsinB+sinBcos 2,即sinB (sin 2A+cos 2A ),故,所以ba= 5.(2011年高考辽宁卷理科7)设sin1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79答案: A解析:217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 6.(2011年高考浙江卷理科6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=cos()2βα+=(A )3 (B )3- (C )9 (D )9-【答案】 C 【解析】:()()2442βππβαα+=+-- cos()cos[()()]2442βππβαα∴+=+--cos()cos()442ππβα=+-sin()sin()442ππβα+++1333399=⨯+== 故选C 7. (2011年高考全国新课标卷理科5)已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线x y 2=上,则,=θ2cos ( )A 54-B 53-C 32D 43 解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B8.(2011年高考全国新课标理11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 解析:()2s i n ()4f x x πωϕ=++,所以2ω=,又f(x)为偶函数,,424k k k z πππϕπϕπ∴+=+⇒=+∈,())2f x x x π∴=+=,选A9. (2011年高考天津卷理科6)如图,在△ABC 中,D 是边AC上的点,且,2,2AB AD AB BC BD ==,则sin C 的值为( )ABCD【答案】D【解析】设BD a =,则由题意可得:2,BC a =AB AD ==,在ABD ∆中,由余弦定理得:222cos 2AB AD BD A AB AD +-==⋅2232a a ⨯-13,所以sin A=3,在△ABC 中,由正弦定理得,sin sin AB BC C A =,所以2sin C =,解得sin CD.10.(2011年高考湖北卷理科3)已知函数()cos ,f x x x x R -∈,若()1f x ≥,则x 的取值范围为A.{|,}3x k x k k z ππππ+≤≤+∈ B.{|22,}3x k k k z ππππ+≤+∈C.5{|,}66x k x k k z ππππ+≤≤+∈ D. 5{|22,}66x k x k k z ππππ+≤≤+∈ 答案:Bcos 1x x -≥,即1sin()62x π-≥,解得522,666πππππ+≤-≤+∈k x k k z ,即22,3k x k k z ππππ+≤≤+∈,所以选B.11.(2011年高考陕西卷理科6)函数()cos f x x =在[0,)+∞内(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两一个零点(D )有无穷个零点 【答案】B 【解析】:令1y =2cos y x =,则它们的图像如图故选B12.(2011年高考重庆卷理科6)若ABC ∆的内角,,A B C 所对的边,,a b c 满足22()4a b c +-=,且060C =,则ab 的值为(A )43(B) 8-(C)1 (D) 23解析:选A 。
三角函数必修4 第1章三角函数§1.1任意角的概念、弧度制重难点:理解任意角的概念,掌握角的概念的推广方法,能在直角坐标系讨论任意角,判断象限角、轴线角,掌握终边相同角的集合.掌握弧长公式、扇形面积公式并能灵活运用.考纲要求:①了解任意角的概念.②了解弧度制概念,能进行弧度与角度的互化.经典例题:写出与下列各角终边相同的角的集合S,并把S中适合不等式-3600≤β<7200的元素β写出来:(1)600;(2)-210;(3),当堂练习:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.A C D.A=B=C2 下列各组角中,终边相同的角是()A.与B.C.D.3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B.C.D.4.设角的终边上一点P的坐标是,则等于()A.B.C.D.5.将分针拨慢10分钟,则分钟转过的弧度数是()A.B.-C.D.-6.设角和的终边关于轴对称,则有()A.B.C.D.7.集合A={ ,B={ ,则A、B之间关系为()A.B.C.B A D.A B8.某扇形的面积为1 ,它的周长为4 ,那么该扇形圆心角的度数为()A.2°B.2 C.4°D.49.下列说法正确的是()A.1弧度角的大小与圆的半径无关B.大圆中1弧度角比小圆中1弧度角大C.圆心角为1弧度的扇形的弧长都相等D.用弧度表示的角都是正角10.中心角为60°的扇形,它的弧长为2 ,则它的内切圆半径为()A.2 B.C.1 D.11.一个半径为R的扇形,它的周长为4R,则这个扇形所含弓形的面积为()A.B.C.D.12.若角的终边落在第三或第四象限,则的终边落在()A.第一或第三象限B.第二或第四象限C.第一或第四象限D.第三或第四象限13.,且是第二象限角,则是第象限角.14.已知的取值范围是.15.已知是第二象限角,且则的范围是.16.已知扇形的半径为R,所对圆心角为,该扇形的周长为定值c,则该扇形最大面积为.17.写出角的终边在下图中阴影区域内角的集合(这括边界)(1)(2)(318.一个视力正常的人,欲看清一定距离的文字,其视角不得小于5′.试问:(1)离人10米处能阅读的方形文字的大小如何?(2)欲看清长、宽约0.4米的方形文字,人离开字牌的最大距离为多少?19.一扇形周长为20cm,当扇形的圆心角等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?20.绳子绕在半径为50cm的轮圈上,绳子的下端B处悬挂着物体W,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W的位置向上提升100cm? 21.已知集合A={求与A∩B中角终边相同角的集合S.必修4 第1章三角函数考纲总要求:①理解任意角三角函数(正弦、余弦、正切)的定义.②能利用单位圆中的三角函数线推导出,的正弦、余弦、正切的诱导公式,能画出,,的图像,了解三角函数的周期性.③理解正弦函数、余弦函数在区间的性质(单调性、最大和最小值与轴交点等),理解正切函数在区间的单调性.④理解同角三角函数的基本关系式.⑤了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.⑥了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.§1.2.1-2任意角的三角函数值、同角三角函数的关系重难点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式;能利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来;掌握同角三角函数的基本关系式,三角函数值的符号的确定,同角三角函数的基本关系式的变式应用以及对三角式进行化简和证明.经典例题:已知为第三象限角,问是否存在这样的实数m,使得、是关于的方程的两个根,若存在,求出实数m,若不存在,请说明理由.当堂练习:1.已知的正弦线与余弦线相等,且符号相同,那么的值为()A.B.C.D.2.若为第二象限角,那么的值为()A.正值B.负值C.零D.为能确定3.已知的值为()A.-2 B.2 C.D.-4.函数的值域是()A.{-1,1,3} B.{-1,1,-3} C.{-1,3} D.{-3,1}5.已知锐角终边上一点的坐标为(则=()A.B.3 C.3-D.-36.已知角的终边在函数的图象上,则的值为()A.B.-C.或-D.7.若那么2 的终边所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限8.、、的大小关系为()A.B.C.D.9.已知是三角形的一个内角,且,那么这个三角形的形状为()一切为了学生的发展一切为了家长的心愿A.锐角三角形B.钝角三角形C.不等腰的直角三角形D.等腰直角三角形10.若是第一象限角,则中能确定为正值的有()A.0个B.1个C.2个D.2个以上11.化简(是第三象限角)的值等于()A.0 B.-1 C.2 D.-212.已知,那么的值为()A.B.-C.或-D.以上全错13.已知则.14.函数的定义域是_________.15.已知,则=______.16.化简.17.已知求证:.18.若,求角的取值范围.19.角的终边上的点P和点A()关于轴对称()角的终边上的点Q与A关于直线对称. 求的值.20.已知是恒等式. 求a、b、c的值.21.已知、是方程的两根,且、终边互相垂直. 求的值.必修4 第1章三角函数§1.2.3三角函数的诱导公式重难点:能借助于单位圆,推导出正弦、余弦的诱导公式;能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决求值、化简和恒等式证明问题;能通过公式的运用,了解未知到已知、复杂到简单的转化过程.经典例题:已知数列的通项公式为记求当堂练习:1.若那么的值为()A.0 B.1 C.-1 D.2.已知那么()一切为了学生的发展一切为了家长的心愿A.B.C.D.3.已知函数,满足则的值为()A.5 B.-5 C.6 D.-64.设角的值等于()A.B.-C.D.-5.在△ABC中,若,则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角形6.当时,的值为()A.-1 B.1 C.±1 D.与取值有关7.设为常数),且那么()A.1 B.3 C.5 D.78.如果则的取值范围是()A.B.C.D.9.在△ABC中,下列各表达式中为常数的是()A.B.C.D.10.下列不等式上正确的是()A.B.C.D.11.设那么的值为()A.B.-C.D.12.若,则的取值集合为()A.B.C.D.13.已知则.14.已知则.15.若则.16.设,其中m、n、、都是非零实数,若则.17.设和求的值.18.已知求证:19.已知、是关于的方程的两实根,且求的值.20.已知(1)求的表达式;(2)求的值.21.设满足,(1)求的表达式;(2)求的最大值.一切为了学生的发展一切为了家长的心愿必修4 第1章三角函数§1.3.1-2三角函数的周期性、三角函数的图象和性质重难点:理解周期函数的概念.能利用单位圆中的正弦线作正弦函数的图象;对正、余弦函数奇、偶性和单调性的理解与应用,能灵活应用正切函数的性质解决相关问题.经典例题:设(1)令表示P;(2)求t的取值范围,并分别求出P的最大值、最小值.当堂练习:1.若,则()A.α<βB.α>βC.α+β>3πD.α+β<2π2.函数的单调减区间为()A.B.C.D.3.已知有意义的角x等于()A.B.C.D.4.函数的图象的一条对称轴方程是()A.B.C.D.5.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C.D.与a有关的值6.下列函数中,以π为周期的偶函数是()A.B.C.D.7.在区间(-,)内,函数y=tanx与函数y=sinx图象交点的个数为()A.1 B.2 C.3 D.48.下列四个函数中为周期函数的是()A.y=3 B.C.D.9.在△ABC中,A>B是tanA>tanB的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.函数的定义域是()A.B.C.D.11.方程的解集为()A.B.C.D.12.函数上为减函数,则函数上()A.可以取得最大值M B.是减函数C.是增函数D.可以取得最小值-M13..14.若= .15.函数y=2arccos(x-2)的反函数是. 16.函数的定义域为.17.求函数上的反函数.18.如图,某地一天从6时到11时的温度变化曲线近似满足函数(1) 求这段时间最大温差;(2) 写出这段曲线的函数解析式.19.若,求函数的最值及相应的x值.20.已知函数的最大值为1,最小值为-3,试确定的单调区间.一切为了学生的发展一切为了家长的心愿21.设函数当在任意两个连续整数间(包括整数本身)变化时至少有两次失去意义,求k 的最小正整数值.必修4 第1章三角函数§1.3.3函数的图象和性质重难点:函数的图像的画法和设图像与函数y=sinx图像的关系,以及对各种变换内在联系的揭示.经典例题:如图,表示电流强度I与时间t的关系式在一个周期内的图象.(1)试根据图象写出的解析式;(2)为了使中t在任意一段秒的时间内I能同时取最大值|A|和最小值-|A|,那么正整数的最小值为多少?当堂练习:1.函数的图象()A.关于原点对称B.关于点(-,0)对称C.关于y轴对称D.关于直线x= 对称2.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位3.如图,曲线对应的函数是()A.y=|sinx|B.y=sin|x|C.y=-sin|x|D.y=-|sinx|4.已知f(1+cosx)=cos2x,则f(x)的图象是下图中的()5.如果函数y=sin2x+αcos2x的图象关于直线x=-对称,那么α的值为()A.B.-C.1 D.-16.已知函数在同一周期内,时取得最大值,时取得最小值-,则该函数解析式为()A.B.C.D.7.方程的解的个数为()A.0 B.无数个C.不超过3 D.大于38.已知函数那么函数y=y1+y2振幅的值为()A.5 B.7 C.13 D.9.已知的图象可以看做是把的图象上所有点的横坐标压缩到原来的1/3倍(纵坐标不变)得到的,则= ()A.B.2 C.3 D.10.函数y=-x•cosx的部分图象是()11.函数的单调减区间是()A.B.C.D.一切为了学生的发展一切为了家长的心愿12.函数的最小正周期为()A.πB.C.2πD.4π13.若函数的周期在内,则k的一切可取的正整数值是. 14.函数的最小值是.15.振动量的初相和频率分别为,则它的相位是.16.函数的最大值为.17.已知函数(1)求的最小正周期;(2)求的单调区间;(3)求图象的对称轴,对称中心.18.函数的最小值为-2,其图象相邻的最高点与最低点横坐标差是3π,又图象过点(0,1)求这个函数的解析式.19.已知函数=sin2x+acos2x在下列条件下分别求a的值.(1)函数图象关于原点对称;(2)函数图象关于对称.20.已知函数的定义域为,值域为[-5,1]求常数a、b的值.21.已知α、β为关于x的二次方程的实根,且,求θ的范围.必修4 第1章三角函数§1.3.4三角函数的应用重难点:掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象;(3)将实际问题抽象为与三角函数有关的简单函数模型;利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.经典例题:已知某海滨浴场的海浪高度是时间( ,单位:小时)的函数,记作.下表是某日各时的浪高数据:经长期观察, 的曲线可近似地看成是函数的图象.(1)根据以上数据,求出函数的最小正周期,振幅及函数表达式;(2)依据规定,当海浪高度高于时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午到晚上之间,有多少时间可供冲浪者进行活动?当堂练习:1.若A、B是锐角△ABC的两个内角,则点P(cosB-sinA,sinB-cosA)在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2004北京西城一模)设0<|α|<,则下列不等式中一定成立的是( )A.sin2α>sinαB.cos2α<cosαC.tan2α>tanαD.cot2α<cotα3.已知实数x、y、m、n满足m2+n2=a,x2+y2=b(a≠b),则mx+ny的最大值为( )A. B. C. D.4. 初速度v0,发射角为,则炮弹上升的高度y与v0之间的关系式为()A. B. C. D.5. 当两人提重为的书包时,夹角为,用力为,则为____时,最小()A. B. C. D.6.某人向正东方向走x千米后向右转,然后朝新的方向走3千米,结果他离出发点恰好千米,那么x的值为()A. B. C. D.7. 甲、乙两楼相距60米,从乙楼底望甲楼顶仰角为,从甲楼顶望乙楼顶俯角为,则甲、乙两楼的高度分别为____________________.8.一树干被台风吹断折成角,树干底部与树尖着地处相距20米,树干原来的高度是________.9.(2006北京海淀模拟)在△ABC中,∠A=60°,BC=2,则△ABC的面积的最大值为_________.10.在高出地面30 m的小山顶上建造一座电视塔CD(如右图),今在距离B点60 m的地面上取一切为了学生的发展一切为了家长的心愿一点A,若测得C、D所张的角为45°,则这个电视塔的高度为_______________.11.已知函数的最小正周期为,最小值为,图象经过点,求该函数的解析式.12.如图,某地一天从时到时的温度变化曲线近似满足函数,(I)求这段时间的最大温差;(II)写出这段曲线的函数解析式.13.若x满足,为使满足条件的的值(1)存在;(2)有且只有一个;(3)有两个不同的值;(4)有三个不同的值,分别求的取值范围.14.如图,化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面1.2米)必修4 第1章三角函数§1.4三角函数单元测试1. 化简等于()A. B. C. 3 D. 12. 在ABCD中,设, ,, ,则下列等式中不正确的是()A.B.C.D.3. 在中,①sin(A+B)+sinC;②cos(B+C)+cosA;③;④,其中恒为定值的是()A、①②B、②③C、②④D、③④4. 已知函数f(x)=sin(x+ ),g(x)=cos(x-),则下列结论中正确的是()A.函数y=f(x)•g(x)的最小正周期为2B.函数y=f(x)•g(x)的最大值为1C.将函数y=f(x)的图象向左平移单位后得g(x)的图象D.将函数y=f(x)的图象向右平移单位后得g(x)的图象5. 下列函数中,最小正周期为,且图象关于直线对称的是()A.B.C.D.6. 函数的值域是()A、B、C、D、7. 设则有()A. B. C. D.8. 已知sin , 是第二象限的角,且tan( )=1,则tan 的值为()A.-7 B.7 C.-D.9. 定义在R上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为()一切为了学生的发展一切为了家长的心愿A. B C D10. 函数的周期是()A.B.C.D.11. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是的值等于()A.1 B.C.D.12. 使函数f(x)=sin(2x+ )+ 是奇函数,且在[0,上是减函数的的一()A.B.C.D.13、函数的最大值是3,则它的最小值______________________14、若,则、的关系是____________________15、若函数f(χ)是偶函数,且当χ<0时,有f(χ)=cos3χ+sin2χ,则当χ>0时,f(χ)的表达式为.16、给出下列命题:(1)存在实数x,使sinx+cosx=; (2)若是锐角△的内角,则> ; (3)函数y=sin( x- )是偶函数;(4)函数y=sin2x的图象向右平移个单位,得到y=sin(2x+ )的图象.其中正确的命题的序号是.17、求值:18、已知π2 <α<π,0<β<π2 ,tanα=-34 ,cos(β-α)= 513 ,求sinβ的值.19、已知函数(1)求它的定义域、值域以及在什么区间上是增函数;(2)判断它的奇偶性;(3)判断它的周期性。
第四章 三角函数综合能力测试
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
1.则tan α的值为 )
A C 2 )
A C 所以cos α∴α3.(2009·山西大同)已知cos A +sin A =-7
13
,A 为第二象限角,则tan A = ( )
A.125
B.512 C .-125 D .-512 答案:D
解析:由题意可得:(sin A +cos A )2=1+2sin A cos A =(-713)2,∴sin A cos A =-60
169
.
又∵sin A +cos A =-7
13
,A 为第二象限角,
可解得:sin A =513,cos A =-12
13,
∴tan A =sin A cos A =-5
12
.
4.(2009·辽宁,8)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=
( )
A .-43 B.54 C .-34 D.45
答案:D
解析:sin 2θ+sin θcos θ-2cos 2θ
225 )
6 )
答案:D
解析:由tan45°=2tan22.5°
1-tan 222.5°
,知选D.
7.(2009·重庆,6)下列关系中正确的是 ( )
A .sin11°<cos10°<sin168°
B .sin168°<sin11°<cos10°
C .sin11°<sin168°<cos10°
D .sin168°<cos10°<sin11° 答案:C
解析:∵sin11°=cos79°,sin168°=cos78°,又∵y =cos x 在[0,π
2
]上单调递减,79°>78°
>10°,∴cos10°>sin168°>sin11°,故选C.
8.(2009·天津,7)已知函数f (x )=sin(w x +π
4
)(x ∈R ,w >0)的最小正周期为π,为了得到函
数g (x )=cos w x 的图象,只要将y =f (x )的图象 ( )
A .向左平移π
个单位长度
B C D 答案:解析:∴2πw =错误!g 9.则点(w ,φ) )
A .(2
B .(4,π
3)
C .(2
D .(4,2π
3
)
答案:D
解析:由图象可知:函数的半个周期为5π24+π24=π4,所以w =2πT =2π
π/2
=4.
又因为函数图象过点(-π
24,2),
所以2=2sin[4×(-π
24
)+φ].
∵0<φ<π,
解得:φ=2π3,所以(w ,φ)=(4,2π
3
).
10.(2009·安徽,8)已知函数f (x )=3sin w x +cos w x (w >0),y =f (x )的图象与直线y =2的两个相邻交点的距离等于π,则f (x )的单调递增区间是 ( )
A .[kπ-π12,k π+5π
12],k ∈Z
B .[kπ+5π12,kπ+11π
12],,k ∈Z
C .[kπ-π,kπ+π
],k ∈Z
D .[=∵f (x ) ∴2π
w =f (x )=11的一个
值为 )
A.π3 当φ故C 当φ=2π3时,f (x )=-2sin2x 在[0,π
4
]上为减函数.故选D.
12.(2010·福建师大附中期中考试)函数y =sin x 和y =tan x 的图象在[-2π,2π]上交点的个数为 ( )
A .3
B .5
C .7
D .9 答案:B
解析:方法一:图象法,在同一坐标系内画y =sin x 与y =tan x 在[0,2π]上的图象.,由图知共有5个交点,故选B.
2π,2π],∴x=0,±
) 13.θ=________.
sinθ=
14.
________
15,w=________.
答案:π6
2
解析:由图知T =1112π-(-π
12
)=π,
∴w =2πT =2π
π=2,∴y =sin(2x +φ).
又点(-π12,0)在图象上,∴sin(-π
6+φ)=0,
∴-π6+φ=0,φ=π6
.
16①存在②y =③x =π8是④y =e ⑤若α⑥函数答案:解析:∴sin α②y =③对y k =1
得x =π8
.
④y =⑤y =⑥y =3sin(2x +π3)=3sin2(x +π6),可由y =3sin2x 的图象向左平移π
6
个单位得到.
三、解答题(本大题共6小题,共70分,解答应写出文字说明、演算步骤或证明过程。
)
17.(本小题满分10分)已知α∈(0,π2),β∈(π2,π)且sin(α+β)=3365,cos β=-5
13
.求sin α.
解析:∵β∈(π2,π),cos β=-513,∴sin β=12
13.
又∵0<α<π2,π
2
<β<π,
∴π2<α+β<3π2,又sin(α+β)=3365, ∴π
2
<α+β<π, cos(α+β)=-1-sin 2(α+β)
=-1-(3365)2=-56
65
,
∴sin α=sin[(α+β)-β]
=sin(α+β)cos β-cos(α+β)sin β =3365·18.0,|φ|<π
2
,x ∈R)
(1)的解析式;
(2)当时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的
=2,T =8,
∵T .
又∵1,0),
∴∵|φ|∴f (x )=2sin(π4x +π
4
).
(2)y =f (x )+f (x +2)
=2sin(π4x +π4)+2sin(π4x +π2+π4)
=22sin(π4x +π
2)
=22cos π
4
x ,
∵x ∈[-6,23],∴-3π2≤x ≤π
6
.
∴当π
4
x =0,即x =0时,
y =f (x )+f (x +2)的最大值为22, 当π
4
x =-π,即x =-4时,最小值为-2 2. 19.(2009·福州质检)(本小题满分12分)已知f (x )=sin 2w x +
32sin2w x -1
2
(x ∈R ,w >0),若f (x )
(1)求(2)求w x -
1
2
cos2w x =又由⇒f (x 2kπ即f ([2kπ(2)由sin(-
π3)≤sin(x 故f (20.(1)(2)在给定的坐标系中,用“五点法”作出函数f (x )在一个周期上的函数.
π3=
=
=sin
=1
2sin2
=1
2sin2
=∴T (2)
本小题满分12分)已知tan α、tan β是方程x 2
-4x -2=0的两个实根,求:2(α+β)+、B (0,3),
C (cos ∵|AC →|=|BC →|,∴|AC →|2=|BC →|2,
即(cos α-3)2+sin 2α=cos 2α+(sin α-3)2, 化简得sin α=cos α. ∵π2<α<3π2,∴α=5π4
. (2)-1=AC →·BC →
=cos α(cos α-3)+sin α(sin α-3)=1-3(sin α+cos α),
∴sin α+cos α=2
3
.
3eud 教育网 百万教学资源,完全免费,无须注册,天天更新!
3eud 教育网 教学资源集散地。
可能是最大的免费教育资源网! 于是2sin α·cos α=(sin α+cos α)2-1=-59
, 故2sin 2α+sin2α1+tan α=2sin α(sin α+cos α)cos α+sin α
cos α
=2sin α·cos α=-59.。