乘除法的意义和各部分间的关系课件
- 格式:ppt
- 大小:464.50 KB
- 文档页数:14
乘除法的意义和各部分之间的关系
乘除法是一种数学运算法则,可以用来确定两个数字之间的乘积或商。
乘除法将一个数字乘以另一个数字或将其中一个数字除以另一个数字,从
而确定两个数字之间的关系。
乘除法的意义是确定数量的关系。
通过运用乘除法,可以轻松地计算
出两个数字之间的乘积或商,以确定它们之间的关系。
例如,如果你想知
道6乘以2等于多少,你可以使用乘除法,公式为6x2=12,这样就可以
得出答案了。
另一方面,如果想求6被2除后的余数,你可以使用乘除法,按照这个公式6÷2=3……1来求解。
乘除法由两部分组成,即乘数和被乘数。
乘数和被乘数分别是乘法标
准形式中的乘法式的第一个数和第二个数。
乘法式是乘除法的基本形式,
乘法标准形式一般可以表示为axb=c,其中a是乘数,b是被乘数,c是
乘法的结果,而乘数a乘以被乘数b就可以得到乘法的结果c。
除法也是乘除法的一部分,它的表示形式也与乘法相似,可以表示为
a÷b=c,其中a是除数,b是被除数,c是除法的结果,而除数a除以被
除数b就可以得到除法的结果c。
乘除法可以将数字的乘方、除方、指数运算和幂运算有机地结合到一起。
长沙市中(小)学教师统一备课用纸
备课人:许诗琴总第 2 课时
有的加法算式都可以写成乘法算式呢
预设生:加法算式可以写成乘法算式必须是所有的数字相同。
师:也就是加数相同的加法才能写成乘法对吧,同学们观察真仔细。
3揭示乘法的定义
师:现在,你能根据刚刚书上的例子和自己举得例子说说什么叫乘法吗
预设生:求几个相同加数的和的简便运算,叫做乘法(课件出示,学生齐读)。
师:通过之前的学习,同学们知道了加法算式各部分的名称,那么乘法算式既然是加法的简便运算,那么它的各部分名称是什么呢我们以3×4=12为例自己说一说。
预设生:3 × 4 = 12
因数因数积
师:看来同学们都是小天才!
师:请同学们把上题改编一下,把其中的一个已知条件变成问题。
学生改编后并列式计算,教师集体讲解展示:
教师概括:除法是已知两个因数的积和其中的一个因数求另一个因数的运算(课件出示,学生齐读)。
4揭示乘除法的关系
师:乘法是已知算式中的那两求另一个除法呢
预设生:乘法是已知两个因数求积,而除法是已知两个因数的积和其中一个因数,求另一个因数。
乘除法的意义和各部分之间的关系乘除法是数学中最基本且最常用的运算方法之一,它们具有重要的意义和广泛的应用。
乘法和除法之间有着密切的关系,它们可以相互转化和补充。
乘法的意义是将一个数与另一个数相乘,得到它们的乘积。
乘法可以用来实现加法、减法和除法等运算,同时还可以用来描述重复数次的运算。
例如,我们可以用乘法来表示三个苹果的价格,即每个苹果的价格乘以三、乘法还可以用来计算一个长方形的面积,即将它的长度和宽度相乘。
除法的意义是将一个数分成若干等份,得到每份的值。
除法可以用来解决分配问题、比率问题和测量问题。
例如,我们可以用除法来计算十个苹果分给五个人时每人分到的苹果数,即将十除以五、除法还可以用来计算一个矩形的宽度,即将它的面积除以它的长度。
在数学中,乘法和除法还有一些基本性质和规律。
乘法满足结合律、交换律和分配律。
结合律表示任意三个数相乘结果相同,交换律表示任意两个数相乘结果相同,分配律表示两个数相乘再相加与相加再相乘结果相同。
除法也满足结合律、交换律和分配律。
乘法还有单位元和零元,即任意数与单位元相乘结果为该数本身,任意数与零元相乘结果为零。
除法也有单位元和零元,即任意数除以单位元结果为该数本身,任意数除以零元结果为无穷大。
乘除法在现实生活中有着广泛的应用。
在商业领域,乘法和除法用于计算利润率、销售额和成本等。
在物理学中,乘法和除法用于计算速度、加速度和功率等。
在化学中,乘法和除法用于计算摩尔质量、反应速率和浓度等。
在生活中,乘法和除法用于计算购物总额、饮食热量和行程时间等。
综上所述,乘法和除法是数学中最基本且最常用的运算方法之一,它们具有重要的意义和广泛的应用。
乘法和除法之间有着密切的关系和互补的作用,它们可以相互转化和补充。
在数学中,乘法和除法还有着一些基本性质和规律,它们具有运算的通用性和规范性。
在现实生活中,乘法和除法有着广泛的应用,它们用于解决各种实际问题和计算需求。
因此,对于乘法和除法的理解和掌握对于数学学习和日常生活都具有重要意义。
乘除法的意义和各部分间的关系乘除法是数学中最基本的运算方法之一,它们在解决实际问题时有着重要的意义,并且彼此之间存在密切的关系。
乘法是指将两个或多个数字相乘,得到它们的积。
乘法的操作符为“×”,例如2×3=6、乘法有着以下的意义和应用:1.计数:乘法可以用来表示相同数量的物品的总数。
例如,如果一盒中有3行,每行有4个苹果,那么盒中的总苹果数量等于3×4=122.面积和体积:乘法可以用来计算矩形、正方形和立方体等的面积和体积。
例如,如果一个正方形的边长是3米,那么它的面积等于3×3=9平方米。
3.比率和百分比:乘法可以用来计算比率和百分比。
例如,如果一个商品的原价是100元,打了8折,那么它的折后价等于100×0.8=80元。
乘法的两个部分分别是乘数和被乘数,它们的关系如下:1.乘数:乘数是指要重复的次数或要增加的倍数。
它决定了乘法操作的重复次数或倍数大小。
2.被乘数:被乘数是指要重复的对象或要增加的增量。
它决定了乘法操作的重复对象或增量大小。
乘数和被乘数的关系可以用以下公式表示:积=乘数×被乘数。
例如,在2×3=6的乘法运算中,2是乘数,3是被乘数,6是积。
除法是指将一个数分成若干份,每份的大小相等。
除法的操作符为“÷”,例如6÷3=2、除法有着以下的意义和应用:1.平均分配和分享:除法可以用来平均分配物品和资源,或者分享利润和奖励。
例如,如果有12个苹果要平均分给4个朋友,那么每个朋友获得的苹果数等于12÷4=3个。
2.比率和比例:除法可以用来计算比率和比例。
例如,如果一个油漆桶可以涂料100平方米的墙面,那么涂料的用量等于墙面的面积除以油漆桶能涂料的面积,即面积÷面积。
3.求解未知数:除法可以用来求解未知数。
例如,如果有12个苹果要分给若干个学生,每个学生可以分得3个,那么学生的人数等于苹果的总数除以每个学生分得的苹果数,即总数÷每份数。
乘除法的意义和各部分间的关系教学目标一、知识与技能:理解乘除法的意义和各部分之间的关系,并进行混合运算二、过程与方法:以边探究边发现边运用的理念学习三、情感态度与价值观:发现数学的乐趣,结合生活实际探索教学重难点:熟练掌握四则混合运算课时安排:1课时教学过程:一、教学乘法的意义:出示例题2师:仔细读题,想想怎么列式?生1:3+3+3+3=12(个)生2:3×4=12(个)师:2种方法哪种简单?小结:求几个相同加数的和的简便运算,叫做乘法。
以后遇到求几个相同加数的和的计算,我们就用乘法来计算。
二、教学除法的意义师:我们再来看这道题,谁能把它改编成一道除法应用题。
算式是什么?生:12÷3=4(组)生:12÷4=3(个)1.板书算式,说说每个算式所表示的意思。
2.观察算式,找出他们之间的关系。
师:那这三个算式之间有什么关系吗?有怎样的关系?你从中发现了什么?把你的发现告诉同桌,也可以四人小组讨论。
师:讨论的怎么样了?哪组愿意把你们的意见向全班同学汇报一下。
①反馈讨论意见。
比如:编除法应用题②板书因数×因数=积,③寻找乘除法之间的关系。
师:通过大量的举例你发现了什么?④板书各部分关系师:通过大量的例子证明乘除法之间存在着这样的关系,乘法算式中的积相当于除法算式中的被除数,乘法算式中的两个因数相当于除法算式中的除数和商。
所以说除法是乘法的逆运算。
三、理解乘除法间的关系师:乘法是求两个因数相乘积的运算。
除法实质上就是求什么呢?(这个商相对于乘法来说他是什么?)(2)怎么求另一个因数呢?引出:一个因数=积÷另一个因数(3)小结师:我们在哪些地方已经应用到乘法的这种关系了?(可以填数、乘法验算、求乘法算式中的未知数)四、带“0”的运算12+0=12 12-0=12 12×0=0 0÷12=0师问:12÷0 可以吗? 0不能做除数。
五、巩固练习1.填空72÷8=9 8×()=72 ()÷9=822881÷263 87×263=( ) 22881÷87=( )2.计算并验算28×57 69×44 53×393.练习二第1、2、3、4、5、7题五、作业练习二第6、8、9、10六、板书设计乘除法的意义和各部分间的关系积=因数×因数商=被除数÷除数因数=积÷另一个因数除数=被除数÷商被除数=商×除数。
乘除法之间的意义和各部分之间的关系乘除法是数学中常见的运算方法,其意义在于实现数字的相乘和相除,并在实际问题中提供了一种有效的解决方案。
在数字和算术的基础上,乘除法提供了计算更复杂问题的工具。
乘法是将两个或多个数字相乘的过程。
它在数学中起着重要的作用,通过将数字相乘,我们可以解决很多实际问题,例如计算两个物体的总数量,计算长方形的面积,或者解决复杂的代数方程。
乘法是加法反复应用的快速方式,例如,我们可以将3乘以4来求得3加3加3加3的结果。
除法是将一个数字分割成适当的等分的过程。
它是一种逆运算,用于将乘法的结果分割成给定的相等部分。
除法可以帮助我们解决实际问题,例如将一块糖果平均分给孩子,或者计算每个人的平均得分。
除法还可以用于解决代数方程中的未知数,例如求解方程“8除以2等于多少”。
另外,乘法和除法还有一些重要的性质和规则,这些性质和规则使得乘法和除法更加灵活和有效。
以下是一些常见的性质和规则:1.乘法和除法的交换律:乘法和除法不受数字顺序的影响,即a*b=b*a,a/b=b/a。
这意味着交换乘法和除法的顺序不会改变结果。
2.乘法和除法的结合律:乘法和除法满足结合律,即(a*b)*c=a*(b*c),(a/b)/c=a/(b/c)。
这意味着无论将乘法和除法应用于哪些数字,最终结果不会改变。
3.乘法和除法的分配律:乘法和除法满足分配律,即a*(b+c)=a*b+a*c,a/(b+c)=a/b+a/c。
这意味着乘法和除法在分配到多个数字时可以应用于每个数字,然后再进行相加或相除。
这些性质和规则使乘法和除法成为数学中重要且强大的工具,能够处理各种复杂的问题并提供准确的答案。
通过灵活运用乘法和除法,我们可以计算形状的面积和体积,解决比例和百分比问题,以及处理各种代数和几何方程。
乘法和除法是四年级下册数学的第一单元,它们在数学中具有重要的意义和各部分之间存在紧密的关系。
下面我将详细介绍乘除法的意义和各部分之间的关系。
一、乘法的意义和作用:乘法是指将两个或多个数相乘得到一个新的数的运算。
乘法在日常生活中有很多应用,比如买两件相同的商品时,可以用两个数相乘来计算总价格;在种植农作物时,可以用乘法计算出每一块土地可以产出多少庄稼;在制作食物时,可以用乘法计算使用多少材料。
乘法的意义主要体现在以下几个方面:1.计算总量:乘法可以用来计算多个相同数量的物品的总数。
例如,班级上有30个学生,每个学生获得2本书,那么总共需要多少本书呢?可以用乘法来计算:30个学生乘以每个学生2本书,即30×2=60,所以总共需要60本书。
2.计算面积:乘法可以用来计算长方形、正方形等形状的面积。
例如,一个长方形的长为4米,宽为5米,那么它的面积是多少呢?可以用乘法来计算:4米乘以5米,即4×5=20,所以它的面积是20平米。
3.计算速度:乘法可以用来计算物体的速度。
例如,一辆汽车以每小时60公里的速度行驶,行驶3个小时,那么它行驶的距离是多少呢?可以用乘法来计算:60公里/小时乘以3小时,即60×3=180,所以它行驶的距离是180公里。
二、乘法的基本概念和性质:乘法的基本概念是指乘法的方法和原则。
在四年级下册中,孩子们将学习乘法表、乘法口诀以及乘法的相关性质。
1.乘法表:乘法表是一个方形表格,列出了从1到9的自然数相乘的结果。
通过学习乘法表,孩子们可以快速查询乘法的结果,提高计算速度和效率。
2.乘法口诀:乘法口诀是乘法的一种记忆规律,通过记忆口诀可以快速计算乘法。
例如,“九九归一法”:9×1=9,9×2=18,依次类推,最后得到结果“九九六十一”,即1,2,3,…,9与10时可根据规律得到-6.3(纯粹小技巧)。
3.乘法的交换律、结合律和分配律:在乘法中,交换律指的是两个数相乘,交换位置所得的结果是相同的;结合律指的是三个数相乘,先乘前两个数或者先乘后两个数所得的结果是相同的;分配律指的是数与两个数相乘的结果,等于数与两个数分别相乘后的结果相加。
第二课时教学内容:乘、除法的意义和各部分间的关系( P5的例2)。
教学目标:1.理解乘除法的意义,理解除法是乘法的逆运算,并会在实际中应用。
2.使学生自己总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算。
3.在分析过程中,培养学生的推理、概括能力。
4.培养学生养成良好的验算习惯。
教学重点:掌握乘、除法各部分间的关系,并对乘、除法进行验算。
教学难点:理解乘、除法的互逆关系,以及用除法意义说明一些题为什么用除法解答。
教学准备:课件。
教学过程:一、导入新课昨天咱们学习了加减混合运算,谁能说一说加减混合运算的运算顺序。
(一)回忆加减混合运算的运算顺序。
(在只有加减法的算式里,按从左往右的顺序进行计算。
)咱们来看两题,结合具体的题目咱们再来分析一下运算顺序。
(二)说说运算顺序并计算。
25+78-91 105-58+46二、理解乘除法的意义1.乘法的意义出示例1(1)用加法算:3+3+3+3=12用乘法算:3×4=12师:为什么用乘法呢?那怎样的运算叫做乘法?(小组讨论)(根据这两个算式,结合已有的知识讨论并试着用语言表示什么是乘法。
) 小结:求几个相同加数的和的简便运算,叫做乘法。
(出示乘法的意义)说明乘法各部分名称2.理解除法的意义能不能试着把这道乘法应用题改编成除法应用题呢?出示例2(2)(3)(1)问:与第(1)题相比,第(2)、(3)题分别是已知什么?求什么?怎样算?列式计算:12÷3=4 12÷4=3(2)问:怎样的运算是除法?(小组讨论)(根据这两个算式,结合已有的知识讨论并试着用语言表示)(3)小结:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
说明除法各部分名称。
(3)教学除法是乘法的逆运算.引导学生观察:第②、③与①的已知条件和问题有什么变化?明确:在乘法中是已知的,在除法中是未知的;在乘法中未知的,在除法中变成已知的.也就是乘法是知道两个因数求积,而除法与此相反,是知道积和其中一个因数求另一个因数,所以除法是乘法的逆运算.4.做一做三、总结通过这节课的学习,你觉得自己哪方面进步了?四、巩固深化(一)口算27÷3×7 3×6÷9 25÷5×845+8-23 63÷7×8 24-8+1028÷4×7 35+24-12 48÷8÷9开小火车的方式进行,每说一个,其他同学判断是对还是错,前面的同学说错了,后面的同学进行更正。
乘除法的意义和各部分间的关系乘法和除法是数学中两个非常重要的运算法则,它们在我们日常生活和各个领域都有广泛的应用。
乘法和除法的意义和关系如下:1.乘法的意义和作用:乘法是将两个数相乘得到一个数的运算法则。
它的意义和作用包括:-表示数的倍数:乘法可以用于表示数的倍数。
比如,2乘以3等于6,表示2的倍数是3,6是2与3的乘积。
-表示物体的数量:乘法也可以用于表示物体的数量,比如3箱苹果乘以每箱10个苹果,得到30个苹果的数量。
-计算面积和体积:乘法在计算面积和体积时非常常见。
例如,矩形的面积等于宽度乘以长度,圆的面积等于π乘以半径的平方,球的体积等于四分之三乘以π乘以半径的立方。
2.除法的意义和作用:除法是将一个数分成若干等分的运算法则。
它的意义和作用包括:-表示比例与比率:除法可以用于表示两个数之间的比例和比率关系。
例如,10除以2等于5,表示10比2多出了5倍。
-确定平均数:除法可以用于求一组数的平均值。
例如,15除以3等于5,表示3和5、7、13的平均数是5-分配和比较:除法也可以用于分配和比较。
比如,将100块钱分给10个人,每个人得到的钱数就是总钱数除以人数。
3.乘法和除法的关系:乘法和除法是互相关联的运算法则,它们之间存在着紧密的关系。
-乘法与除法的反运算关系:乘法和除法是一对互为反运算的运算法则。
一个数乘以另一个数再除以这个数,等于另一个数。
例如,2乘以3等于6,再除以2,结果就是3-除法与乘法的逆运算关系:除法和乘法也是一对互为逆运算的运算法则。
一个数除以另一个数再乘以这个数,等于另一个数。
例如,10除以2等于5,再乘以2,结果就是10。
乘法和除法在数学中扮演着非常重要的角色,使我们能够量化和计算各种实际问题。
在应用中,我们可以通过乘法和除法来测量、计算、比较和推理各种数值和物质,从而更好地理解并掌握世界的运行规律。
因此,熟练掌握乘法和除法的意义和关系对于我们的日常生活和学习是非常重要的。