06气体动理论习题解答课件
- 格式:doc
- 大小:290.00 KB
- 文档页数:9
第七章气体动理论答案(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一. 选择题1、(基础训练1)[ C ]温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等.【解】:分子的平均动能kT i2=ε,与分子的自由度及理想气体的温度有关,由于氦气为单原子分子,自由度为3;氧气为双原子分子,其自由度为5,所以温度、压强相同的氦气和氧气,它们分子的平均动能ε不相等;分子的平均平动动能kT w 23=,仅与温度有关,所以温度、压强相同的氦气和氧气,它们分子的平均平动动能w 相等。
2、(基础训练3)[ C ]三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()()2/122/122/12::C B A v v v =1∶2∶4,则其压强之比A p ∶B p ∶C p 为:(A) 1∶2∶4. (B) 1∶4∶8. (C) 1∶4∶16. (D) 4∶2∶1.【解】:气体分子的方均根速率:MRTv 32=,同种理想气体,摩尔质量相同,因方均根速率之比为1∶2∶4,则温度之比应为:1:4:16,又因为理想气体压强nkT p =,分子数密度n 相同,则其压强之比等于温度之比,即:1:4:16。
3、(基础训练8)[ C ]设某种气体的分子速率分布函数为f (v ),则速率分布在v 1~v 2区间内的分子的平均速率为 (A) ⎰21d )(v v v v v f . (B) 21()d v v v vf v v ⎰.(C) ⎰21d )(v v v v v f /⎰21d )(v v v v f . (D) ⎰21d )(v v v v v f /0()d f v v ∞⎰ .【解】:因为速率分布函数f (v )表示速率分布在v 附近单位速率间隔内的分子数占总分子数的百分率,所以⎰21d )(v v v v v f N 表示速率分布在v 1~v 2区间内的分子的速率总和,而21()d v v Nf v v ⎰表示速率分布在v 1~v 2区间内的分子数总和,因此⎰21d )(v v v v v f /⎰21d )(v v v v f 表示速率分布在v 1~v 2区间内的分子的平均速率。
气体动理论练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。
A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。
3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。
二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。
2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。
练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是( )A. p1>p2;B. p1<p2;C. p1=p2;D. 不能确定。
2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n,单位体积内的气体分子的总平动动能为E kV⁄,单位体积内的气体质量为ρ,分别有如下关系( )A. n不同,E kV⁄不同,ρ不同;B. n不同,E kV⁄不同,ρ相同;C. n相同,E kV⁄相同,ρ不同;D. n相同,E kV⁄相同,ρ相同。
3. 有容积不同的A、B两个容器,A中装有刚体单原子分子理想气体,B中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A和E B的关系( )A. E A<E B;B. E A>E B;C. E A=E B;D.不能确定。
第6章习题解答6-1 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子数为[ B ]A. /pV m .B. /pV kT . C . /pV RT . D. /pV mT .6-2 两容器内分别盛有氢气和氦气,若在平衡态时,它们的温度和质量分别相等,则[ A ] A. 两种气体分子的平均平动动能相等. B. 两种气体分子的平均动能相等. C . 两种气体分子的平均速率相等. D. 两种气体的内能相等.6-3 两瓶不同类别的理想气体,设分子平均平动动能相等,但其分子数密度不相等,则[ B ]A .压强相等,温度相等.B .温度相等,压强不相等.C .压强相等,温度不相等.D .压强不相等,温度不相等.6-4 温度,压强相同的氦气和氧气,它们的分子平均动能ε和平均平动动能k ε有如下关系 [ A ] A. k ε相等,而ε不相等. B. ε相等,而k ε不相等. C .ε和k ε都相等.D.ε和k ε都不相等.6-5 一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,在x 方向分子速度的分量平方的平均值为[ D ]A. 2x =v B. 2x =v C . 23x kT m =v . D. 2x kT m =v .6-6 若()f v 为气体分子速率分布函数,N 为气体分子总数,m 为分子质量,则2121()d 2m Nf υυ⎰v v v 的物理意义是[ A ] A. 速率处在速率间隔12~v v 之间的分子平动动能之和. B. 速率处在速率间隔12~v v 间的分子平均平动动能.C . 速率为2v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之和. D. 速率为2v 的各分子的总平动动能与速率1v 为的各分子的总平动动能之差.6-7在A 、B 、C 三个容器中装有同种理想气体,其分子数密度n 相同,方均根速率之比为1:2:4=,则其压强之比::A B C p p p 为[ C ]A. 1:2:4B. 4:2:1 C . 1:4:16 D. 1:4:86-8 题6-8图所示的两条曲线,分别表示在相同温度下氧气和氢气分子的速率分布曲线;令()2O p v 和()2H pv 分别表示氧气和氢气的最概然速率,则[ B ]A .图中a表示氧气分子的速率分布曲线,()()22O H/4p p =v v .B .图中a表示氧气分子的速率分布曲线,()()22O H1/4p p =v v . 题6-8图 C .图中b表示氧气分子的速率分布曲线,()()22O H1/4pp =v v . D .图中b表示氧气分子的速率分布曲线,()()22O H/4pp =v v .6-9 题6-9图是在一定的温度下,理想气体分子速率分布函数曲线。
气体动理论一、填空题1.(本题3分)某气体在温度为T = 273 K时,压强为p=1.0×10-2atm,密度ρ = 1.24×10-2 kg/m3,则该气体分子的方均根速率为____________。
(1 atm = 1.013×105 Pa)答案:495m/s2.(本题5分)某容器内分子密度为1026m-3,每个分子的质量为3×10-27kg,设其中1/6分子数以速率v=200m/s垂直向容器的一壁运动,而其余5/6分子或者离开此壁、或者平行此壁方向运动,且分子与容器壁的碰撞为完全弹性的。
则(1)每个分子作用于器壁的冲量ΔP=_____________;(2)每秒碰在器壁单位面积上的分子数n0=___________;(3)作用在器壁上的压强p=_____________;答案:1.2×10-24kgm/s×1028m-2s-14×103Pa3.(本题4分)储有氢气的容器以某速度v作定向运动,假设该容器突然停止,气体的全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升0.7K,则容器作定向运动的速度v=____________m/s,容器中气体分子的平均动能增加了_____________J。
(普适气体常量R=8.31J·mol-1·K-1,波尔兹曼常k=1.38×10-23J·K-1,氢气分子可视为刚性分子。
)答案::1212.4×10-234.(本题3分)体积和压强都相同的氦气和氢气(均视为刚性分子理想气体),在某一温度T下混合,所有氢分子所具有的热运动动能在系统总热运动动能中所占的百分比为________。
答案:62.5%5.(本题4分)根据能量按自由度均分原理,设气体分子为刚性分子,分子自由度为i,则当温度为T时,(1)一个分子的平均动能为_______。
第六章 气体动理论一 选择题1. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻耳兹曼常量,R 为摩尔气体常量,则该理想气体的分子总数为( )。
A. pV /mB. pV /(kT )C. pV /(RT )D. pV /(mT )解 理想气体的物态方程可写成NkT kT N RT pV ===A νν,式中N =ν N A 为气体的分子总数,由此得到理想气体的分子总数kTpVN =。
故本题答案为B 。
2. 在一密闭容器中,储有A 、B 、C 三种理想气体,处于平衡状态。
A 种气体的分子数密度为n 1,它产生的压强为p 1,B 种气体的分子数密度为2n 1,C 种气体的分子数密度为3 n 1,则混合气体的压强p 为 ( )A. 3p 1B. 4p 1C. 5p 1D. 6p 1 解 根据nkT p =,321n n n n ++=,得到1132166)(p kT n kT n n n p ==++=故本题答案为D 。
3. 刚性三原子分子理想气体的压强为p ,体积为V ,则它的内能为 ( ) A. 2pV B.25pV C. 3pV D.27pV解 理想气体的内能RT iU ν2=,物态方程RT pV ν=,刚性三原子分子自由度i =6,因此pV pV RT i U 3262===ν。
因此答案选C 。
4. 一小瓶氮气和一大瓶氦气,它们的压强、温度相同,则正确的说法为:( ) A. 单位体积内的原子数不同 B. 单位体积内的气体质量相同 C. 单位体积内的气体分子数不同 D. 气体的内能相同解:单位体积内的气体质量即为密度,气体密度RTMpV m ==ρ(式中m 是气体分子质量,M 是气体的摩尔质量),故两种气体的密度不等。
单位体积内的气体分子数即为分子数密度kTpn =,故两种气体的分子数密度相等。
氮气是双原子分子,氦气是单原子分子,故两种气体的单位体积内的原子数不同。
根据理想气体的内能公式RT iU 2ν=,两种气体的内能不等。
所以答案选A 。
5. 麦克斯韦速率分布曲线如题图所示,图中A 、B 两部分的面积相等,则该图表示( )A. v 0为最可几速率B. v 0为平方速率C. v 0方均根速率D. 速率大于v 0和速率小于v 0的分子各占一半解:根据速率分布曲线的意义可知,分子速率大于v 0和小于v 0的概率相等。
所以答案选D 。
6. 在一定温度下分子速率出现在v p 、v 和2v 三值附近d v 区间内的概率( ) A. 出现在2v 附近的概率最大,出现在v p 附近的概率最小 B. 出现在v 附近的概率最大,出现在2v 附近的概率最小 C. 出现在v p 附近的概率最大,出现在v 附近的概率最小 D. 出现在v p 附近的概率最大,出现在2v 附近的概率最小解:v p 是最概然速率,2v 值最大,根据麦克斯韦速率分布可知,分子速率出现在v p 值的概率最大,出现在2v 值的概率最小。
所以答案选D 。
7. 在容积不变的封闭容器内理想气体分子的平均速率若提高为原来的2倍,则 ( )A. 温度和压强都为原来的2倍B. 温度为原来的2倍, 压强为原来的4倍C. 温度为原来的4倍, 压强为原来的2倍D. 温度和压强都为原来的4倍 解:根据分子的平均速率M RT π8=v ,及理想气体公式VRTp ν=,若分子的平均速率若提高为原来的2倍,则温度和压强都为原来的4倍。
所以答案选D 。
选择题5图8. 三个容器A 、B 、C 装有同种理想气体,其分子数密度n 相同,而方均根速率之比为212121)( :)( :)( 2C 2B 2A v v v =1:2:3,则其压强之比p A :p B :p C 为 ( ) A. 1:2:4 B. 4:2:1 C 1:4:16 D. 1:4:9解:方均根速率与T 成正比,因此三个容器的温度之比为T A : T B : T C =1:4:9,而压强nkT p =,故p A :p B :p C =1:4:9。
所以答案选D 。
9. 一定量的理想气体贮于某一容器内,温度为T ,气体分子的质量为m 。
根据理想气体分子模型和统计假设,分子速度在x 方向分量的平均值为( )0 D. π38 . C π831 B. π8 A.==⋅==x x x x mkTm kT m kT v v v v 解:在热平衡时,分子在x 正反两个方向上的运动是等概率的,故分子速度在x 方向分量的平均值为零。
所以答案选D 。
10. 气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z 和平均自由程λ的变化情况为 ( )A. Z 和λ都增大一倍。
B. Z 和λ都减为原来的一半。
C. Z 增大一倍而λ减为原来的一半。
D. Z 减为原来的一半而λ增大一倍解:温度不变,分子的平均速率不变,而压强增大一倍时,根据公式nkT p =,气体的分子数密度也增大一倍。
而Z 与n 成正比,λ与n 成反比,故Z 增大一倍而λ减为原来的一半。
所以答案选C 。
二 填空题1. 氢分子的质量为3.3×10-24g ,如果每秒有1023个氢分子沿着与容器器壁的法线成对45︒角的方向以10 3 m ⋅ s -1的速率撞击在2.0cm 2面积上(碰撞是完全弹性的),则此氢气的压强为 。
解:tS mv N t S I N t S t Nf S Nf p x ∆∆=∆∆=∆∆==)(,取∆t =1s ,将题中数据代入可计算出压强 343327231033.21100.2)]45cos 10(45cos 10[103.310⨯=⨯⨯︒⨯--︒⨯⨯⨯⨯=--p 帕。
2. 在常温常压下,摩尔数相同的氢气和氮气,当温度相同时,下述量是否相同,分子每个自由度的能量 ;分子的平均平动动能 ;分子的平均动能 ;气体的内能 。
解:分子每个自由度的能量与具体分子无关,故分子每个自由度的能量相同;分子的平均平动动能都是kT 23t =ε,故相同;氢和氮都是双原子分子,分子的平均动能kT 25k =ε,故相同;内能RT U ν25=,故摩尔数相同、温度相同的气体内能也相同。
3. 储有氢气的容器以某速度v 作定向运动,假设该容器突然停止,全部定向运动动能都变为气体分子热运动的动能,此时容器中气体的温度上升0.7K ,求容器作定向运动的速度 m ⋅ s –1,容器中气体分子的平均动能增加了 J 。
解:氢气是双原子分子,其分子自由度等于5。
设容器内的气体有ν 摩尔,则气体的内能为RT U ν25=,内能的增量T R U ∆=∆ν25。
所有分子的定向运动动能为)21(2H A 2v m N ν。
若此动能全部变为气体分子热运动的动能,使容器中气体的温度上升,则有)21(252H A 2v m N T R νν=∆ 整理上式得到容器作定向运动的速度 3.1201067.127.01038.1552723H 2=⨯⨯⨯⨯⨯=∆=--m T k v m/s 因分子的平均动能kT 25k =ε,所以气体分子的平均动能增加了 2323k 1042.27.01038.12525--⨯=⨯⨯⨯=∆=∆T k εJ4. 1mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27℃,这瓶氧气的内能为 J ;分子的平均平动动能为 J ;分子的平均动能为 J 。
解:1mol 氧气的内能5.623230031.812525=⨯⨯⨯==RT U νJ分子的平均平动动能2123t 1021.63001038.12323--⨯=⨯⨯⨯==kT εJ分子的平均动能2023k 10035.13001038.12525--⨯=⨯⨯⨯==kT εJ5. 若用f (v )表示麦克斯韦速率分布函数,则某个分子速率在v →v +d v 区间内的概率为 ,某个分子速率在0→v p 之间的概率为 ,某个分子速率在0→∞之间的概率为 。
解: d )(v v f ;⎰pd )(v v v f ;1d )(0=⎰∞f v v 6. 假设某种气体的分子速率分布函数f (v )与速率v 的关系如图所示,分子总数为N ,则()=⎰0230d v v v f ;而()⎰d v v v Nf 的意义是 。
填空题6图0v解:根据分子速率分布函数的物理意义,()1d 0230=⎰v v v f ;()⎰d v v v Nf 的意义是速率在0~ v 0区间内的分子数。
7. 一密度为ρ,摩尔质量为M 的理想气体的分子数密度为 。
若该气体分子的最概然速率为v p ,则此气体的压强为 。
解:MN V m M N V M mN VN n A A Aρ====; 2p2p A A 2p 2122v v v ρρ=⨯⨯===k N M k M N R M nknkT p 8. 密闭容器中贮有一定量的理想气体,若加热使气体的温度升高为原来的4倍,则气体分子的平均速率变为原来的 倍,气体分子的平均自由程变为原来的 倍。
解:因MRTπ8=v ,则气体分子的平均速率变为原来的2倍。
nd 2π21=λ,因为密闭容器中气体分子数密度n 不变,故平均自由程不变,即变为原来的1倍。
三 计算题1. 在一具有活塞的容器中盛有一定量的气体,如果压缩气体并对它加热,使它的温度从27℃升至177℃,体积减少一半,求气体压强是原来的多少倍?解 已知T 1=273+27=300K ,T 2=273+177=450K ,V 2= V 1/2。
由理想气体物态方程222111T V p T V p = 得到1111221233004502p p p T V T V p =⨯==即气体压强是原来的3倍。
2. 目前好的真空设备的真空度可达到10-15大气压,求此压力下,温度为27℃时,1m 3体积中有多少气体分子?解 1m 3体积中的气体分子数就是分子数密度n 。
根据公式nkT p =,得到31023155m /102.45= 3001038.11010013.1个×××××--=RT p n=3. 已知某种理想气体的物态方程为pV = cT ,试求该气体的分子总数N 。
解 将本题中的理想气体的物态方程pV = cT 与公式pV =νRT 对比,得到νR =c 。
因此气体的分子总数kcR cN N N ===A A ν。
4. 1 mol 的氢气在温度为27℃时,它的平动动能和转动动能各为多少?解 氢分子为双原子分子,平动自由度为3,转动自由度为2,所以1mol 的氢气的平均平动动能为31074.330031.82323⨯=⨯⨯=RT J ;,转动动能为310493.230031.822⨯=⨯=RT J 。