第2章2.2第1课时
- 格式:ppt
- 大小:3.98 MB
- 文档页数:51
2.2 不等式2.2.1 不等式及其性质第1课时不等关系与不等式学习目标核心素养1.会用不等式(组)表示实际问题中的不等关系.(难点)2.会用比较法比较两实数的大小.(重点)1. 借助实际问题表示不等式,提升数学建模素养.2. 通过大小比较,培养逻辑推理素养.如图,在日常生活中,我们经常看到下列标志:其含义分别为①最低限速:限制行驶速度v不得低于50 km/h;②限制质量:装载总质量m不得超过10 t;③限制高度:装载高度h不得超过3.5 m;④限制宽度:装载宽度a不得超过3 m.你能用数学式子表示上述关系吗?1.不等式的定义我们用数学符号“≠”“>”“<”“≥”“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些不等号的式子,称为不等式.2.不等式a≤b和a≥b的含义(1)不等式a≤b应读作“a小于或者等于b”,其含义是指“a<b,或者a=b”,等价于“a不大于b”,即若a<b与a=b之中有一个正确,则a≤b正确.(2)不等式a≥b应读作“a大于或者等于b”,其含义是指“a>b,或者a=b”,等价于“a不小于b”,即若a>b与a=b之中有一个正确,则a≥b正确.3.实数大小比较的依据我们已经知道,实数与数轴上的点一一对应,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.一般地,如果点P对应的数为x,则称x 为点P的坐标,并记作P(x).另外,数轴上的点往数轴的正方向运动时,它所对应的实数会变大,这就是说,两个数在数轴上对应的点的相对位置决定了这两个数的大小.如图所示的数轴中,A(a),B(b),不难看出b>1>0>a.此外,我们也知道,一个数加上一个正数,相当于数轴上对应的点向正方向移动了一段距离;一个数减去一个正数(即加上一个负数),相当于数轴上对应的点向负方向移动了一段距离.由此可以看出,要比较两个实数a,b的大小,只要考察a-b与0的相对大小就可以了,即a-b<0⇔a<b,a-b=0⇔a=b,a-b>0⇔a>b.上面等价符号的左式反映的是实数的运算性质,右式反映的则是实数的大小顺序,合起来就成为实数的运算性质与大小顺序之间的关系.它是不等式的理论基础,也是不等式性质的证明、证明不等式和解不等式的主要依据.1.思考辨析(正确的打“√”,错误的打“×”)(1)不等式x≥2的含义是指x不小于2. ( )(2)两个实数a,b之间,有且只有a>b,a=b,a<b三种关系中的一种.( )(3)若a>b,则ac2>bc2. ( )(4)若a+c>b+d,则a>b,c>d. ( )[答案](1)√(2)√(3)×(4)×2.某高速公路要求行驶的车辆的速度v的最大值为120 km/h,同一车道上的车间距d 不得小于10 m,用不等式表示为( )A.v≤120 km/h且d≥10 mB.v≤120 km/h或d≥10 mC.v≤120 km/hD.d≥10 mA[v的最大值为120 km/h,即v≤120 km/h,车间距d不得小于10 m,即d≥10 m,故选A.]3.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t℃,那么t应满足的关系式是________.4.5t<28 000[由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t<28 000.]4.设M=a2,N=-a-1,则M,N的大小关系为________.M>N[M-N=a2+a+1=⎝ ⎛⎭⎪⎫a +122+34>0, ∴M >N .]用不等式(组)表示不等关系【例1】 京沪线上,复兴号列车跑出了350 km/h 的速度,这个速度的2倍再加上100 km/h ,不超过民航飞机的最低时速,可这个速度已经超过了普通客车的3倍,请你用不等式表示三种交通工具的速度关系.[解] 设复兴号列车速度为v 1,民航飞机速度为v 2,普通客车速度为v 3.v 1,v 2的关系:2v 1+100≤v 2, v 1,v 3的关系:v 1>3v 3.在用不等式(组)表示不等关系时,要进行比较的各量必须具有相同性质,没有可比性的两个(或几个)量之间不可用不等式(组)来表示.另外,在用不等式(组)表示实际问题时,一定要注意单位的统一.[跟进训练]1.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于216 m 2,靠墙的一边长为x m .试用不等式(组)表示其中的不等关系.[解] 由于矩形菜园靠墙的一边长为x m ,而墙长为18 m ,所以0<x ≤18,这时菜园的另一条边长为30-x 2=⎝ ⎛⎭⎪⎫15-x 2(m).因此菜园面积S =x ·⎝ ⎛⎭⎪⎫15-x 2,依题意有S ≥216,即x ⎝ ⎛⎭⎪⎫15-x 2≥216, 故该题中的不等关系可用不等式组表示为 ⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎪⎫15-x 2≥216.比较两数(式)的大小【例2】 (教材P60例1改编)已知x ≤1,比较3x 3与3x 2-x +1的大小. [解] 3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1) =3x 2(x -1)+(x -1)=(3x 2+1)(x -1). ∵x ≤1,∴x -1≤0,而3x 2+1>0, ∴(3x 2+1)(x -1)≤0,∴3x 3≤3x 2-x +1.把本例中“x ≤1”改为“x ∈R ”,再比较3x 3与3x 2-x +1的大小. [解] 3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1) =(3x 2+1)(x -1). ∵3x 2+1>0,当x >1时,x -1>0,∴3x 3>3x 2-x +1; 当x =1时,x -1=0,∴3x 3=3x 2-x +1; 当x <1时,x -1<0,∴3x 3<3x 2-x +1.作差法比较两个实数大小的基本步骤[跟进训练]2.比较2x 2+5x +3与x 2+4x +2的大小. [解] (2x 2+5x +3)-(x 2+4x +2)=x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34. ∵⎝ ⎛⎭⎪⎫x +122≥0,∴⎝ ⎛⎭⎪⎫x +122+34≥34>0. ∴(2x 2+5x +3)-(x 2+4x +2)>0, ∴2x 2+5x +3>x 2+4x +2.不等关系的实际应用【例3】 某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买全票一张,其余人可享受 7.5 折优惠”.乙车队说:“你们属团体票,按原价的8折优惠”.这两车队的原价、车型都是一样的,试根据单位去的人数,比较两车队的收费哪家更优惠.[解] 设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x (n -1)=14x +34xn ,y 2=45nx .因为y 1-y 2=14x +34xn -45nx=14x -120nx =14x ⎝ ⎛⎭⎪⎫1-n 5, 当n =5时,y 1=y 2;当n >5时,y 1<y 2;当0<n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.解决决策优化型应用题,首先要确定制约着决策优化的关键量是哪一个,然后再用作差法比较它们的大小即可.[跟进训练]3.甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家旅行社价格更优惠?[解] 设该家庭除户主外,还有x 人参加旅游,甲、乙两旅行社收费总额分别为y 甲、y乙,一张全票价为a 元,则y 甲=a +0.55ax ,y 乙=0.75(x +1)a . y 甲-y 乙=(a +0.55ax )-0.75(x +1)a=0.2a (1.25-x ),当x >1.25(x ∈N )时,y 甲<y 乙;当x <1.25(x ∈N )时,即x =1时,y 甲>y 乙.因此两口之家,乙旅行社较优惠,三口之家或多于三口的家庭,甲旅行社较优惠.知识:比较两个实数的大小,只要求出它们的差就可以了.a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b .方法:作差法比较大小的一般步骤 第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论); 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.1.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上面叙述中的不等关系正确的是( )A .a >4bB .(a +4)(b +4)=200C .⎩⎪⎨⎪⎧a >4b (a +4)(b +4)=200 D .⎩⎪⎨⎪⎧a >4b4ab =200 C [∵仓库的长a 大于宽b 的4倍,∴a >4b .又矩形地基的面积为200 m 2,∴(a +4)(b +4)=200,故选C.]2.下面表示“a 与b 的差是非负数”的不等关系的是( ) A .a -b >0 B .a -b <0 C .a -b ≥0 D .a -b ≤0[答案] C3.设M =(a +1)(a -3),N =2a (a -2),则( ) A .M >N B .M ≥N C .M <ND .M ≤NC [N -M =2a (a -2)-(a +1)(a -3)=2a 2-4a -(a 2-2a -3)=a 2-2a +3=(a -1)2+2>0,即M <N ,故选C.]4.若实数a >b ,则a 2-ab ________ba -b 2.(填“>”或“<”) > [因为(a 2-ab )-(ba -b 2)=(a -b )2,又a >b ,所以(a -b )2>0.]5.完成一项装修工程,请木工共需付工资每人500元,请瓦工共需付工资每人400元,现有工人工资预算20 000元,设木工x 人,瓦工y 人,试用不等式表示上述关系.[解]由题意知,500x+400y≤20 000,即5x+4y≤200.。
2.2.1 对数与对数运算第一课时对数1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④=-5成立.其中正确命题的个数为( B )(A)1 (B)2 (C)3 (D)4解析:②错误,如(-1)2=1,不能写成对数式;④错误,log3(-5)没有意义.2.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x,则x=100;④若e=ln x,则x=e2.其中正确的是( C )(A)①③ (B)②④ (C)①② (D)③④解析:lg(lg 10)=lg 1=0,①正确;ln(ln e)=ln 1=0,②正确;10=lg x得x=1010,③错误;e=ln x,x=e e,④错误.故选C.3.已知log x9=2,则x的值为( B )(A)-3 (B)3 (C)±3 (D)解析:由log x9=2得x2=9,又因为x>0且x≠1,所以x=3.故选B.4.若log a=c,则下列各式正确的是( A )(A)b=a5c (B)b=c5a (C)b=5a c(D)b5=a c解析:由log a=c得a c=,所以b=a5c.故选A.5.已知log a=m,log a3=n,则a m+2n等于( D )(A)3 (B)(C)9 (D)解析:由已知得a m=,a n=3.所以a m+2n=a m×a2n=a m×(a n)2=×32=.故选D.6.已知log7[log3(log2x)]=0,那么等于( D )(A)(B)(C)(D)解析:由题知log3(log2x)=1,则log2x=3,解得x=8,所以===.故选D.7.已知f(2x+1)=,则f(4)等于( B )(A)log25 (B)log23(C)(D)解析:令2x+1=4,得x=log23,所以f(4)=log23,选B.8.已知x2+y2-4x-2y+5=0,则log x(y x)的值是( B )(A)1 (B)0 (C)x (D)y解析:x2+y2-4x-2y+5=0,则(x-2)2+(y-1)2=0,所以x=2,y=1.log x(y x)=log212=0.故选B.9.已知对数式log(a-2)(10-2a)(a∈N)有意义,则a= .解析:由对数定义知得2<a<5且a≠3,又因为a∈N,所以a=4.答案:410.方程log2(1-2x)=1的解x= .解析:因为log2(1-2x)=1=log22,所以1-2x=2,所以x=-.经检验满足1-2x>0. 答案:-11.已知=,则x= .解析:由已知得log2x=log9=log9=-,所以x==.答案:12.若f(10x)=x,则f(3)= .解析:令10x=3,则x=lg 3,所以f(3)=lg 3.答案:lg 313.计算下列各式:(1)10lg 3-(+e ln 6;(2)+.解:(1)原式=3-()0+6=3-1+6=8.(2)原式=22÷+3-2·=4÷3+×6=+=2.14.(1)已知10a=2,10b=3,求1002a-b的值; (2)已知log4(log5a)=log3(log5b)=1,求的值.解:(1)1002a-b=104a-2b===.(2)由题得log5a=4,log5b=3,则a=54,b=53,所以==5.15.(1)求值:0.1-2 0150+1+; (2)解关于x的方程(log2x)2-2log2x-3=0.解:(1)原式=0.-1++=()-1-1+23+=-1+8+=10.(2)设t=log2x,则原方程可化为t2-2t-3=0,(t-3)(t+1)=0,解得t=3或t=-1,所以log2x=3或log2x=-1,所以x=8或x=.16.()的值为( C )(A)6 (B)(C)8 (D)解析:()=()-1·()=2×4=8.故选C.17.若a>0,=,则lo a等于( B )(A)2 (B)3 (C)4 (D)5解析:因为=,a>0,所以a=()=()3,则lo a=lo()3=3.故选B.18.计算:lo(+)= .解析:因为(-)·(+)=n+1-n=1,所以+=(-)-1,所以原式=-1.答案:-119.已知log x27=,则x的值为.解析:log x27==3·=3×2=6,所以x6=27,所以x6=33,又x>0,所以x=. 答案:20.设x=,y=(a>0且a≠1),求证:z=.证明:由已知得log a x=,①log a y=, ②将②式代入①式,得log a z=, 所以z=.。
第一课时椭圆的简单几何性质[提出问题]图中椭圆的标准方程为x2 a2+y2b2=1(a>b>0).问题1:椭圆具有对称性吗?提示:有.椭圆是以原点为对称中心的中心对称图形,也是以x轴、y轴为对称轴的轴对称图形.问题2:可以求出椭圆与坐标轴的交点坐标吗?提示:可以,令y=0得x=±a,故A1(-a,0),A2(a,0),同理可得B1(0,-b),B2(0,b).问题3:椭圆方程中x,y的取值范围是什么?提示:x∈[-a,a],y∈[-b,b].问题4:当a的值不变,b逐渐变小时,椭圆的形状有何变化?提示:b越小,椭圆越扁.[导入新知]椭圆的简单几何性质1.由不等式x 2a 2=1-y 2b 2≤1可得|x |≤a ,由y 2b 2=1-x 2a2≤1可得|y |≤b ,从而可得椭圆的范围.2.椭圆有四个顶点、两个焦点共六个特殊点,研究椭圆时一定要注意这六个特殊点的位置,注意长轴长是2a ,而不是a .3.椭圆的离心率e 的大小,描述了椭圆的扁平程度.e 越接近1,则c 就越接近a ,从而b =a 2-c 2越小,因此,椭圆越扁;反之,e 越接近0,则c 就越接近0,从而b 越接近a ,这时椭圆越接近圆.特别地,当a =b 时,c =0,椭圆就变为圆了,此时方程为x 2+y 2=a 2.[例1] 求椭圆4x 2+9y 2=36 [解] 椭圆方程变形为x 29+y 24=1,∴a =3,b =2,∴c = a 2-b 2=9-4= 5.∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2), 离心率e =c a =53. [类题通法]求椭圆的性质时,应把椭圆化为标准方程,注意分清楚焦点的位置,这样便于直观地写出a ,b 的数值,进而求出c ,求出椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标等几何性质.[活学活用]已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.解:(1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10,短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1, 性质:①范围:-8≤x ≤8,-10≤y ≤10; ②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0); ④离心率:e =35.[例2] (1)长轴长是10,离心率是45;(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6. [解] (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b >0). 由已知得2a =10,a =5.又∵e =c a =45,∴c =4.∴b 2=a 2-c 2=25-16=9.∴椭圆的标准方程为x 225+y 29=1或y 225+x 29=1.(2)依题意可设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△A 1FA 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b , 则c =b =3,a 2=b 2+c 2=18, 故所求椭圆的标准方程为x 218+y 29=1.[类题通法](1)利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是: ①确定焦点位置.②设出相应椭圆的方程(对于焦点位置不确定的椭圆可能有两种标准方程).③根据已知条件构造关于参数的关系式,利用方程(组)求参数.列方程(组)时常用的关系式为b 2=a 2-c 2,e =c a等.(2)在椭圆的简单性质中,轴长、离心率不能确定椭圆的焦点位置,因此仅依据这些条件确定的椭圆方程可能有两个.[活学活用]求适合下列条件的椭圆的标准方程. (1)焦点在x 轴上,短轴长为2,离心率e =22; (2)长轴长是短轴长的5倍,且过点A (5,0).解:(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得a =2,b =1,因此,椭圆的标准方程为x 22+y 2=1.(2)若椭圆焦点在x 轴上,设其标准方程为x 2a 2+y2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧2a =5×2b ,25a 2+0b2=1,解得⎩⎪⎨⎪⎧a =5,b =1.故所求椭圆的标准方程为x 225+y 2=1;若焦点在y 轴上,设其标准方程为y 2a 2+x 2b2=1(a >b >0),由题意,得⎩⎪⎨⎪⎧2a=5×2b ,0a 2+25b 2=1,解得⎩⎪⎨⎪⎧a =25,b =5.故所求椭圆的标准方程为y 2625+x 225=1.综上所述,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1.[例3] 如图,已知F 1P 为椭圆上的一点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆的中心)时,求椭圆的离心率.[解] 由已知可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 则由题意可知P ⎝⎛⎭⎪⎫-c ,b 2a .∵△PF 1O ∽△BOA ,∴PF 1BO =F 1OOA ,∴b 2a b =c a,即b =c , ∴a 2=2c 2,∴e =ca =22. [类题通法]椭圆的离心率的求法求椭圆的离心率,关键是寻找a 与c 的关系,一般地: (1)若已知a ,c ,则直接代入e =c a求解; (2)若已知a ,b ,则由e =1-⎝ ⎛⎭⎪⎫b a 2求解;(3)若已知a ,b ,c 的关系,则可转化为a ,c 的齐次式,再转化为含e 的方程求解即可. [活学活用]若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A.12 B.32 C.34 D.64 解析:选A 依题意,△BF 1F 2是正三角形.∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°,∴a cos 60°=c ,∴c a=12,即椭圆的离心率e =12.4.忽视椭圆焦点位置致误[典例] 已知椭圆的中心在原点,对称轴是坐标轴,离心率e =32,且过P (2,3),求此椭圆的标准方程. [解] (1)当焦点在x 轴上时, 设椭圆的标准方程为x 2a 2+y2b 2=1(a >b >0). 由题意知⎩⎪⎨⎪⎧c a =32,4a 2+9b 2=1,a 2=b 2+c 2,解得b 2=10,a 2=40.所以所求椭圆的标准方程为x 240+y 210=1. (2)当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由题意得⎩⎪⎨⎪⎧c a =32,9a 2+4b 2=1,a 2=b 2+c 2,解得b 2=254,a 2=25.所以所求椭圆的标准方程为y 225+x 2254=1. 综上,所求椭圆的标准方程为x 240+y 210=1或y 225+x 2254=1.[易错防范]求解时不讨论焦点的位置,而默认为椭圆的焦点在x 轴上,这是最常见的错解. [成功破障] 若椭圆x 2k +8+y 29=1的离心率e =12,则k 的值等于________. 解析:分两种情况进行讨论:当焦点在x 轴上时,a 2=k +8,b 2=9,得c 2=k -1, 又∵e =12,∴k -1k +8=12,解得k =4. 当焦点在y 轴上时,a 2=9,b 2=k +8,得c 2=1-k , 又∵e =12,解得k =-54.∴k =4或k =-54.答案:4或-54[随堂即时演练]1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴3等分,则此椭圆的标准方程是( ) A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1 解析:选A 因为2a =18,2c =13×2a =6,所以a =9,c =3,b 2=81-9=72.2.椭圆C 1:x 225+y 29=1与椭圆C 2:x 225-k +y 29-k =1(k <9)( )A .有相同的长轴B .有相同的短轴C .有相同的焦点D .有相等的离心率解析:选C 25-9=(25-k )-(9-k ),故两椭圆有相同的焦点. 3.椭圆x 2+4y 2=16的短轴长为________. 解析:由x 216+y 24=1可知b =2, ∴短轴长2b =4. 答案:44.直线x +2y -2=0经过椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率e =________.解析:由题意知椭圆焦点在x 轴上, ∴在直线x +2y -2=0中, 令y =0得c =2;令x =0得b =1. ∴a =b 2+c 2= 5.∴e =c a =255.答案:2555.求适合下列条件的椭圆的标准方程: (1)中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆上一点到两个焦点的距离之和为12; (2)对称轴是坐标轴,一个焦点是(0,7),一个顶点是(9,0). 解:(1)由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), ∵椭圆上一点到两个焦点的距离之和为12, ∴2a =12,即a =6. ∵椭圆的离心率为32, ∴e =c a =a 2-b 2a =36-b 26=32,∴b 2=9.∴椭圆的标准方程为x 236+y 29=1.(2)由题意知椭圆的焦点在y 轴上,可设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),则b =9.因为c =7,所以a 2=b 2+c 2=81+49=130, ∴椭圆的标准方程为y 2130+x 281=1.[课时达标检测]一、选择题1.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( ) A .(±13,0) B .(0,±10) C .(0,±13)D .(0,±69)解析:选D 由题意知椭圆焦点在y 轴上,且a =13,b =10, 则c =a 2-b 2=69,故焦点坐标为(0,±69).2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1 D.x 212+y 24=1 解析:选A 由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,∴a = 3. 又∵e =33, ∴c =1.∴b 2=a 2-c 2=2, ∴椭圆的方程为x 23+y 22=1.3.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( )A .a 2=25,b 2=16 B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25 D .a 2=25,b 2=9解析:选D 因为椭圆x 225+y 216=1的长轴长为10,焦点在x 轴上,椭圆y 221+x 29=1的短轴长为6,所以a 2=25,b 2=9.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( )A.32 B.22C.13D.12解析:选D ∵AP ―→=2PB ―→, ∴|AP ―→|=2|PB ―→|. 又∵PO ∥BF , ∴|PA ||AB |=|AO ||AF |=23, 即aa +c =23, ∴e =c a =12.5.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是( ) A .(0,±m -n ) B .(±m -n ,0) C .(0,±n -m )D .(±n -m ,0)解析:选C 化为标准方程是x2-n +y2-m=1,∵m <n <0,∴0<-n <-m .∴焦点在y 轴上,且c =-m --n =n -m . 二、填空题6.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________________.解析:椭圆9x 2+4y 2=36可化为x 24+y 29=1,因此可设待求椭圆为x 2m +y 2m +5=1.又因为b =25,故m =20,得x 220+y 225=1. 答案:x 220+y 225=17.椭圆x 24+y 2m =1的离心率为12,则m =________.解析:当焦点在x 轴上时,4-m 2=12⇒m =3; 当焦点在y 轴上时,m -4m=12⇒m =163. 综上,m =3或m =163.答案:3或1638.已知椭圆的中心在原点,焦点在x 轴上,离心率为55, 且过点P (-5,4),则椭圆的方程为__________. 解析:∵e =c a =55, ∴c 2a 2=a 2-b 2a 2=15, ∴5a 2-5b 2=a 2, 即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a2=1(a >0).∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1,解得a 2=45.∴椭圆的方程为x 245+y 236=1. 答案:x 245+y 236=1三、解答题※ 推 荐 ※ 下 载 ※ 椭圆C 于A ,B 两点,且△ABF 2的周长为16,求椭圆C 的标准方程.解:设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由e =22知c a =22,故c 2a 2=12, 从而a 2-b 2a 2=12,b 2a 2=12. 由△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,得a =4,∴b 2=8. 故椭圆C 的标准方程为x 216+y 28=1. 10.椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点是A (a,0),其上存在一点P ,使∠APO =90°,求椭圆离心率的取值范围. 解:设P (x ,y ),由∠APO =90°知,点P 在以OA 为直径的圆上,圆的方程是:⎝ ⎛⎭⎪⎫x -a 22+y 2=⎝ ⎛⎭⎪⎫a 22, 所以y 2=ax -x 2.① 又因为P 点在椭圆上,故x 2a 2+y 2b2=1.② 把①代入②化简,得(a 2-b 2)x 2-a 3x +a 2b 2=0,即(x -a )[(a 2-b 2)x -ab 2]=0.∵x ≠a ,x ≠0, ∴x =ab 2a 2-b2,又0<x <a , ∴0<ab 2a 2-b 2<a ,即2b 2<a 2. 由b 2=a 2-c 2,得a 2<2c 2,所以e >22. 又∵0<e <1,∴22<e <1, 即椭圆离心率的取值范围是⎝⎛⎭⎪⎫22,1.。
2.2.2椭圆的简单几何性质第1课时椭圆的几何性质学习目标 1.掌握椭圆的几何性质,了解椭圆标准方程中a,b,c的几何意义.2.会用椭圆的几何意义解决相关问题.知识点一椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长=2b,长轴长=2a焦点(±a2-b2,0)(0,±a2-b2) 焦距|F1F2|=2a2-b2对称性对称轴:x轴、y轴对称中心:原点离心率e=ca∈(0,1) 知识点二离心率对椭圆扁圆程度的影响如图所示,在Rt△BF2O中,cos∠BF2O=ca,记e=ca,则0<e<1,e越大,∠BF2O越小,椭圆越扁;e越小,∠BF2O越大,椭圆越圆.1.椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长是a .( × )2.椭圆的离心率e 越大,椭圆就越圆.( × )3.若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x 225+y 216=1.( × )4.设F 为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点,M 为其上任一点,则|MF |的最大值为a +c (c 为椭圆的半焦距).( √ )一、椭圆的简单几何性质例1 求椭圆m 2x 2+4m 2y 2=1(m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解 由已知得x 21m 2+y 214m 2=1(m >0),因为0<m 2<4m 2,所以1m 2>14m2,所以椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距c =32m,所以椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为⎝⎛⎭⎫-32m ,0,⎝⎛⎭⎫32m ,0,顶点坐标为⎝⎛⎭⎫1m ,0,⎝⎛⎭⎫-1m ,0,⎝⎛⎭⎫0,-12m ,⎝⎛⎭⎫0,12m , 离心率e =c a =32m 1m=32.反思感悟 从椭圆的标准方程出发,分清其焦点位置,然后再写出相应的性质.跟踪训练1 已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率;(2)写出椭圆C 2的方程.解 (1)由椭圆C 1:x 2100+y 264=1,可得其长半轴长为10,短半轴长为8,焦点坐标为(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1.二、由几何性质求椭圆的标准方程 例2 求适合下列条件的椭圆的标准方程. (1)短轴长25,离心率e =23;(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6. 解 (1)由2b =25,e =c a =23,得b 2=5,a 2-b 2a 2=49,a 2=9.当焦点在x 轴上时,所求椭圆的标准方程为x 29+y 25=1;当焦点在y 轴上时,所求椭圆的标准方程为y 29+x 25=1.综上,所求椭圆的标准方程为x 29+y 25=1或y 29+x 25=1.(2)依题意可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).如图所示,△A 1F A 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b , 所以c =b =3, 所以a 2=b 2+c 2=18, 故所求椭圆的方程为x 218+y 29=1.反思感悟 此类问题应由所给的几何性质充分找出a ,b ,c 所应满足的关系式,进而求出a ,b ,在求解时,需注意椭圆的焦点位置.跟踪训练2 分别求出满足下列条件的椭圆的标准方程.(1)短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3; (2)离心率为32,经过点(2,0). 解 (1)由题意知a =5,c =3,b 2=25-9=16, 焦点所在坐标轴可为x 轴,也可为y 轴, 故椭圆的标准方程为x 225+y 216=1或x 216+y 225=1.(2)由e =c a =32,设a =2k ,c =3k ,k >0,则b =k . 又经过的点(2,0)为其顶点,故若点(2,0)为长轴顶点,则a =2,b =1, 椭圆的标准方程为x 24+y 2=1;若点(2,0)为短轴顶点,则b =2,a =4,椭圆的标准方程为x 24+y 216=1.三、求椭圆的离心率例3 (1)如图所示,A ,B ,C 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22 C.2-1 D.22答案 A解析 由(a +c )2=a 2+2b 2+c 2, 又因为b 2=a 2-c 2,所以c 2+ac -a 2=0. 因为e =ca,所以e 2+e -1=0,所以e =-1+52.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,椭圆上总存在点P 使得PF 1⊥PF 2,则椭圆的离心率的取值范围为________. 答案 ⎣⎡⎭⎫22,1解析 由PF 1⊥PF 2,知△F 1PF 2是直角三角形, 所以|OP |=c ≥b ,即c 2≥a 2-c 2,所以a ≤2c , 因为e =c a ,0<e <1,所以22≤e <1.反思感悟 求椭圆离心率及范围的两种方法(1)直接法:若已知a ,c 可直接利用e =ca 求解.若已知a ,b 或b ,c 可借助于a 2=b 2+c 2求出c 或a ,再代入公式e =ca求解.(2)方程法:若a ,c 的值不可求,则可根据条件建立a ,b ,c 的关系式,借助于a 2=b 2+c 2,转化为关于a ,c 的齐次方程或不等式,再将方程或不等式两边同除以a 的最高次幂,得到关于e 的方程或不等式,即可求得e 的值或范围.跟踪训练3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B ,若椭圆C 的中心到直线AB 的距离为66|F 1F 2|,求椭圆C 的离心率. 解 由题意知A (a ,0),B (0,b ), 从而直线AB 的方程为x a +yb =1,即bx +ay -ab =0, 又|F 1F 2|=2c ,∴aba 2+b 2=63c . ∵b 2=a 2-c 2,∴3a 4-7a 2c 2+2c 4=0, 解得a 2=2c 2或3a 2=c 2(舍去),∴e =22.椭圆几何性质的应用典例 神舟五号飞船成功完成了第一次载人航天飞行,实现了中国人民的航天梦想.某段时间飞船在太空中运行的轨道是一个椭圆,地心为椭圆的一个焦点,如图所示.假设航天员到地球的最近距离为d 1,最远距离为d 2,地球的半径为R ,我们想象存在一个镜像地球,其中心在神舟飞船运行轨道的另外一个焦点上,上面住着一个神仙发射某种神秘信号,需要飞行中的航天员中转后地球人才能接收到,则传送神秘信号的最短距离为( )A .d 1+d 2+RB .d 2-d 1+2RC .d 2+d 1-2RD .d 1+d 2答案 D解析 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c ,两焦点分别为F 1,F 2,飞行中的航天员为点P ,由已知可得⎩⎪⎨⎪⎧d 1+R =a -c ,d 2+R =a +c ,则2a =d 1+d 2+2R ,故传送神秘信号的最短距离为|PF 1|+|PF 2|-2R =2a -2R =d 1+d 2.[素养提升] 将太空中的轨迹与学过的椭圆建立起对应关系.利用椭圆的几何性质来解决航空航天问题,考查了学生运用所学知识解决实际问题的能力.1.椭圆以两坐标轴为对称轴,并且过点(0,13),(-10,0),则焦点坐标为( ) A .(±13,0) B .(0,±10) C .(0,±13) D .(0,±69)答案 D解析 由题意知,椭圆的焦点在y 轴上, 且a =13,b =10,则c =a 2-b 2=69,故选D.2.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 23=1 D.x 24+y 2=1 答案 C解析 依题意知,所求椭圆的焦点位于x 轴上, 且c =1,e =c a =12,即a =2,b 2=a 2-c 2=3,因此椭圆的方程是x 24+y 23=1.3.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A.12 B.32 C.34D.64答案 A解析 不妨设椭圆的左、右焦点分别为F 1,F 2,B 为椭圆的上顶点.依题意可知,△BF 1F 2是正三角形. ∵在Rt △OBF 2中,|OF 2|=c , |BF 2|=a ,∠OF 2B =60°, ∴cos 60°=c a =12,即椭圆的离心率e =12,故选A.4.椭圆x 2k +8+y 29=1的离心率为12,则k 的值为( )A .4B .-54C .4或-54D .不能确定答案 C解析 当k +8>9,即k >1时,e 2=c 2a 2=k +8-9k +8=14,k =4.当0<k +8<9,即-8<k <1时, e 2=c 2a 2=9-k -89=14,k =-54.5.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( ) A.12 B.14 C .2 D .4 答案 B解析 椭圆x 2+my 2=1的焦点在y 轴上,短半轴长为1,长轴长是短轴长的2倍, 故1m =2,解得m =14.1.知识清单: (1)椭圆的几何性质. (2)求椭圆的离心率.2.方法归纳:定义法、数形结合、函数与方程.3.常见误区:忽略椭圆离心率的范围0<e <1及长轴长与a 的关系.1.已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则椭圆C 的离心率为( )A.13B.12C.22D.223 答案 C解析 ∵a 2=4+22=8,∴a =22,∴e =c a =222=22.故选C.2.椭圆(m +1)x 2+my 2=1的长轴长是( )A.2m -1m -1B.-2-m mC.2m mD .-21-m m -1答案 C解析 椭圆方程可化简为x 211+m +y 21m =1,由题意,知m >0,∴11+m <1m,∴a =m m ,∴椭圆的长轴长2a =2mm.3.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1 C.x 26+y 24=1 D.y 26+x 24=1 答案 A解析 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),依题意得c =25,a +b =10,又a 2=b 2+c 2, 解得a =6,b =4.则椭圆的方程为x 236+y 216=1.4.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( ) A .a 2=25,b 2=16 B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9 答案 D解析 椭圆x 225+y 216=1的长轴长为10,椭圆y 221+x 29=1的短轴长为6,由题意可知椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,即有a =5,b =3.5.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为( )A .8,6B .4,3C .2, 3D .4,2 3答案 B解析 由题意知a =2,b =3,c =1,最长弦过两个焦点,长为2a =4,最短弦垂直于x 轴,长度为当x =c =1时,纵坐标的绝对值的2倍为3. 6.已知椭圆的短半轴长为1,离心率0<e ≤32,则长轴长的取值范围为________. 答案 (2,4] 解析 ∵e =1-⎝⎛⎭⎫b a 2,b =1,0<e ≤32, ∴1-⎝⎛⎭⎫b a 2≤32,则1<a ≤2,∴2<2a ≤4, 即长轴长的取值范围是(2,4].7.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为_____________. 答案 x 216+y 28=1解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =22,知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =16,故a =4,∴b 2=8,∴椭圆C 的方程为x 216+y 28=1.8.已知长方形ABCD ,AB =4,BC =3,则以A ,B 为焦点,且过C ,D 的椭圆的离心率为________. 答案 12解析 如图,AB =2c =4,∵点C 在椭圆上,∴CB +CA =2a =3+5=8,∴e =2c 2a =48=12. 9.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解 椭圆方程可化为x 2m +y 2m m +3=1(m >0), ∵m -m m +3=m (m +2)m +3>0,∴m >m m +3. ∴a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32,得m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1. ∴a =1,b =12,c =32. ∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0; 四个顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12. 10.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点M ⎝⎛⎭⎫43,13,求椭圆C 的离心率.解 2a =|MF 1|+|MF 2|=⎝⎛⎭⎫43+12+⎝⎛⎭⎫132+⎝⎛⎭⎫43-12+⎝⎛⎭⎫132=2 2. 所以a = 2. 又由已知c =1,所以椭圆C 的离心率e =c a =12=22.11.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( ) A.12B.13C.14D.22答案 A 解析 由题意知a =2c ,∴e =c a =c 2c =12. 12.已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为椭圆的左顶点和上顶点,F 为右焦点,且AB ⊥BF ,则椭圆的离心率为( )A.22 B.32 C.3-12 D.5-12 答案 D解析 在Rt △ABF 中,AB =a 2+b 2,BF =a ,AF =a +c ,由AB 2+BF 2=AF 2,得a 2+b 2+a 2=(a +c )2.将b 2=a 2-c 2代入,得a 2-ac -c 2=0,即e 2+e -1=0,解得e =-1±52, 因为0<e <1,所以e =5-12. 13.若将一个椭圆绕中心旋转90°,所得椭圆的两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆的方程中,是“对偶椭圆”的方程是( ) A.x 28+y 24=1 B.x 23+y 25=1 C.x 26+y 22=1 D.x 26+y 29=1 答案 A解析 由题意,知当b =c 时,将一个椭圆绕中心旋转90°,所得椭圆的两顶点恰好是旋转前椭圆的两焦点,该椭圆为“对偶椭圆”.选项中只有A 中b =c =2符合题意,故选A.14.如图,已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为( )A.3-1B .2- 3 C.22 D.32答案 A解析 ∵过F 1的直线MF 1是圆F 2的切线,∴∠F 1MF 2=90°,|MF 2|=c ,∵|F 1F 2|=2c ,∴|MF 1|=3c ,由椭圆定义可得|MF 1|+|MF 2|=c +3c =2a ,∴椭圆离心率e =21+3=3-1. 15.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1,F 2的连线夹角为直角,则|PF 1|·|PF 2|=________.答案 48解析 依题意知,a =7,b =26,c =49-24=5,|F 1F 2|=2c =10.∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,即|PF 1|2+|PF 2|2=100.又由椭圆定义知|PF 1|+|PF 2|=2a =14,∴(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=100.即196-2|PF 1|·|PF 2|=100.解得|PF 1|·|PF 2|=48.16.在平面直角坐标系中,椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c ,以O 为圆心,a 为半径的圆,过点⎝⎛⎭⎫a 2c ,0作圆的两切线互相垂直,则离心率e =________.答案 22 解析 如图,切线P A ,PB 互相垂直,又半径OA 垂直于P A ,所以△OAP 是等腰直角三角形,a 2c=2a . 解得e =c a =22, 则离心率e =22.17.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝⎛⎦⎤0,32B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1 答案 A解析 设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2. 离心率e =c a=c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32, 故选A.18.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若椭圆的焦距为2,且AF 2→=2F 2B →,求椭圆的方程.解 (1)由∠F 1AB =90°及椭圆的对称性知b =c ,则e =c a =c 2a 2=c 2b 2+c 2=22. (2)由已知a 2-b 2=1,A (0,b ),F 2(1,0),设B (x ,y ), 则AF 2→=(1,-b ),F 2B →=(x -1,y ), 由AF 2→=2F 2B →,即(1,-b )=2(x -1,y ),解得x =32,y =-b 2,则94a 2+b 24b 2=1, 得a 2=3,因此b 2=2,椭圆的方程为x 23+y 22=1.。
2.2 抛物线的简单性质第1课时 抛物线的简单性质学习目标 1.了解抛物线的范围、对称性、顶点、焦点、准线等简单性质.2.会利用抛物线的性质解决一些简单的抛物线问题.知识点一 抛物线的简单性质思考 类比椭圆的简单性质,结合图像,你能说出抛物线y2=2px(p>0)中x的范围、对称性、顶点坐标吗?答案 范围x≥0,关于x轴对称,顶点坐标(0,0).梳理 标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形性质范围x≥0,y∈R x≤0,y∈R x∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点(0,0)离心率e=1开口方向向右向左向上向下通径过焦点垂直于对称轴的直线与抛物线交于两点A,B,线段AB叫抛物线的通径,长度|AB|=2p知识点二 焦点弦设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则y2=2px(p>0)|AB|=x1+x2+py2=-2px(p>0)|AB|=p-(x1+x2)x2=2py(p>0)|AB|=y1+y2+px2=-2py(p>0)|AB|=p-(y1+y2)1.抛物线有一个顶点,一个焦点,一条对称轴,一条准线,一条通径.( √ )2.当抛物线的顶点在坐标原点时,其方程是标准方程.( × )3.抛物线的离心率均为1,所以抛物线形状都相同.( × )4.焦准距p决定抛物线的张口大小,即决定抛物线的形状.( √ )类型一 抛物线简单性质的应用例1 已知抛物线的焦点F在x轴上,直线l过F且垂直于x轴,l与抛物线交于A,B两点,O为坐标原点,若△OAB的面积等于4,求此抛物线的标准方程.考点 抛物线的标准方程题点 求抛物线方程解 由题意,设抛物线方程为y2=2mx(m≠0),焦点F(m2,0.直线l:x=m2,所以A,B两点的坐标分别为(m2,m,(m2,-m,所以|AB|=2|m|.因为△OAB的面积为4,所以12·||m2·2|m|=4,所以m=±22.所以抛物线的标准方程为y2=±42x.引申探究 等腰直角三角形AOB内接于抛物线y2=2px(p>0),O为抛物线的顶点,OA⊥OB,则△AOB的面积是___________________________.答案 4p2解析 因为抛物线的对称轴为x轴,内接△AOB为等腰直角三角形,所以由抛物线的对称性知,直线AB与抛物线的对称轴垂直,从而直线OA与x轴的夹角为45°.由方程组{y=x,y2=2px,得{x=0,y=0或{x=2p,y=2p,所以易得A,B两点的坐标分别为(2p,2p)和(2p,-2p).所以|AB|=4p,所以S△AOB=12×4p×2p=4p2.反思与感悟 把握三个要点确定抛物线简单性质(1)开口:由抛物线标准方程看图像开口,关键是明确二次项是x还是y,一次项的系数是正还是负.(2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.(3)定值:焦点到准线的距离为p;过焦点垂直于对称轴的弦(又称为通径)长为2p;离心率恒等于1.跟踪训练1 已知抛物线关于x轴对称,它的顶点在坐标原点,其上一点P到准线及对称轴的距离分别为10和6,求抛物线的方程.考点 抛物线的标准方程题点 求抛物线方程解 设抛物线的方程为y2=2ax(a≠0),点P(x0,y0).因为点P到对称轴的距离为6,所以y0=±6.因为点P到准线的距离为10,所以||x0+a2=10.①因为点P在抛物线上,所以36=2ax0,②由①②,得{a=2,x0=9或{a=18,x0=1或{a=-18,x0=-1或{a=-2,x0=-9.所以所求抛物线的方程为y2=±4x或y2=±36x.类型二 抛物线的焦点弦问题例2 已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于A,B两点.若直线l的倾斜角为60°,求|AB|的值.考点 抛物线的焦点弦问题题点 求抛物线的焦点弦长解 因为直线l的倾斜角为60°,所以其斜率k=tan 60°=3.又F(32,0,所以直线l的方程为y=3(x-32.联立{y2=6x,y=3(x-32,消去y,得x2-5x+94=0.设A(x1,y1),B(x2,y2),则x1+x2=5,所以|AB|=|AF|+|BF|=x1+p2+x2+p2=x1+x2+p=5+3=8.引申探究 1.若本例中“直线l的倾斜角为60°”改为“直线l垂直于x轴”,求|AB|的值.解 直线l的方程为x=32,联立{x=32,y2=6x,解得{x=32,y=3或{x=32,y=-3.所以|AB|=3-(-3)=6.2.若本例中“直线l的倾斜角为60°”改为“|AB|=9”,求线段AB的中点M到准线的距离.解 设A(x1,y1),B(x2,y2),由抛物线的定义知|AB|=|AF|+|BF|=x1+x2+p=x1+x2+3,所以x1+x2=6,于是线段AB的中点M的横坐标是3.又准线方程是x=-32,所以点M到准线的距离为3+32=92.反思与感悟 1.解决抛物线的焦点弦问题时,要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.2.设直线方程时要特别注意斜率不存在的直线应单独讨论.跟踪训练2 已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A,B两点,且|AB|=52p,求AB所在直线的方程.考点 抛物线的焦点弦问题题点 知抛物线焦点弦长求方程解 由题意可知,焦点F(p2,0.设A(x1,y1),B(x2,y2).若AB⊥x轴,则|AB|=2p≠52p,不合题意,故直线AB的斜率存在,设为k,则直线AB的方程为y=k(x-p2.联立{y=k(x-p2,y2=2px消去x,整理得ky2-2py-kp2=0,则y1+y2=2pk,y1y2=-p2.∴|AB|= (1+1k2y1-y22=1+1k2· y1+y22-4y1y2=2p(1+1k2=52p,解得k=±2,∴AB所在直线方程为y=2(x-p2或y=-2(x-p2.类型三 与抛物线有关的最值问题例3 设P是抛物线y2=4x上的一个动点,F为抛物线的焦点.(1)求点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值;(2)若点B的坐标为(3,2),求|PB|+|PF|的最小值.考点 抛物线的定义题点 由抛物线的定义求最值解 (1)如图,易知抛物线的焦点为F(1,0),准线方程是x=-1.由抛物线的定义知,点P到直线x=-1的距离等于点P到焦点F的距离.于是问题转化为在曲线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小.显然,连接AF,AF与抛物线的交点即为点P,故最小值为22+12=5,即点P到点A(-1,1)的距离与点P到直线x=-1的距离之和的最小值为5.(2)如图,把点B的横坐标代入y2=4x中,得y=±23.因为23>2,所以点B在抛物线内部.过点B作BQ垂直于准线,垂足为点Q,交抛物线于点P1,连接P1F.此时,由抛物线的定义知,|P1Q|=|P1F|.所以|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=3+1=4,即|PB|+|PF|的最小值为4.反思与感悟 抛物线的定义在解题中的作用,就是灵活地对抛物线上的点到焦点的距离与到准线距离进行转化,另外要注意平面几何知识的应用,如两点之间线段最短,三角形中三边间的不等关系,点与直线上点的连线垂线段最短等.跟踪训练3 已知点P是抛物线y2=2x上的一个动点,则点P到点A(0,2)的距离与点P到该抛物线的准线的距离之和的最小值为( )A.172B.2C.5D.92考点 抛物线的定义题点 由抛物线的定义求最值答案 A解析 如图,由抛物线的定义知|PA|+|PQ|=|PA|+|PF|,则所求距离之和的最小值转化为求|PA|+|PF|的最小值,则当A,P,F三点共线时,|PA|+|PF|取得最小值.又A(0,2),F(12,0,∴(|PA|+|PF|)min=|AF|= (0-122+2-02=172.1.以x轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( )A.y2=8x B.y2=-8xC.y2=8x或y2=-8x D.x2=8y或x2=-8y考点 抛物线的标准方程题点 求抛物线方程答案 C解析 设抛物线的方程为y2=2px或y2=-2px(p>0),由题意将x=p2或x=-p2分别代入y2=2px和y2=-2px,得|y|=p,∴2|y|=2p=8,p=4.即抛物线方程为y2=±8x.2.设抛物线y2=8x上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是( )A.4 B.6 C.8 D.12考点 抛物线的定义题点 由抛物线定义求距离答案 B解析 由抛物线的定义可知,点P到抛物线焦点的距离是4+2=6.3.已知抛物线y=ax2的准线方程是y=-2,则此抛物线上的点到准线距离的最小值为( ) A.1 B.2 C.3 D.4考点 抛物线的定义题点 由抛物线定义求距离答案 B解析 由题意知抛物线顶点到准线的距离最短,故最小值为2.4.过抛物线y2=8x的焦点作倾斜角为45°的直线,则被抛物线截得的弦长为________.考点 抛物线的焦点弦问题题点 求抛物线的焦点弦长答案 16解析 由y2=8x得焦点坐标为(2,0),由此直线方程为y=x-2,由{y2=8x,y=x-2,联立得x2-12x+4=0,设交点为A(x1,y1),B(x2,y2),由方程知x1+x2=12,∴弦长|AB|=x1+x2+p=12+4=16.5.已知正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,求这个正三角形的边长.考点 抛物线的简单性质题点 抛物线性质的综合应用解 如图△OAB为正三角形,设|AB|=a,则OD=32a,将A(32a,a2代入y2=2px,即a24=2p×32a,解得a=43p.∴正三角形的边长为43p.1.讨论抛物线的简单性质,一定要利用抛物线的标准方程;利用简单性质,也可以根据待定系数法求抛物线的方程.2.抛物线中的最值问题:注意抛物线上的点到焦点的距离与点到准线的距离的转化,其次是平面几何知识的应用.一、选择题1.设AB为过抛物线y2=8x的焦点的弦,则|AB|的最小值为( )A.2 B.4 C.8 D.无法确定答案 C解析 ∵当AB垂直于对称轴时,|AB|取最小值,此时AB为抛物线的通径,长度等于2p,∴|AB|的最小值为8.2.若抛物线y2=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为( )A.(14,±24B.(18,±24C.(14,24D.(18,24考点 抛物线的定义题点 由抛物线的定义求点坐标答案 B解析 由题意知,点P到焦点F的距离等于它到顶点O的距离,因此点P在线段OF的垂直平分线上,而F(14,0,所以点P的横坐标为18,代入抛物线方程得y=±24,故点P的坐标为(18,±24,故选B.3.已知抛物线y=2px2(p>0)的焦点为F,点P(1,14在抛物线上,过点P作PQ垂直于抛物线的准线,垂足为点Q,若抛物线的准线与对称轴相交于点M,则四边形PQMF的面积为( ) A.134 B.132C.138D.1316考点 抛物线的标准方程题点 抛物线方程的应用答案 C解析 由P(1,14在抛物线上,得p=18,故抛物线的标准方程为x2=4y,焦点为F(0,1),准线为y=-1,∴|FM|=2,|PQ|=1+14=54,|MQ|=1,则四边形PQMF的面积为12×(54+2×1=138.4.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )A.2 B.3C.115D.3716考点 抛物线的定义题点 由抛物线定义求最值答案 A解析 如图所示,动点P到l2:x=-1的距离可转化为PF的距离,由图可知,距离和的最小值即F到直线l1的距离d= |4+6|-32+42=2.5.已知抛物线y2=2px(p>0)的准线与曲线x2+y2-4x-5=0相切,则p的值为( )A.2 B.1C.12D.14考点 抛物线的简单性质题点 抛物线与其他曲线结合有关问题答案 A解析 曲线的标准方程为(x-2)2+y2=9,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x=-p2,∴由抛物线的准线与圆相切得2+p2=3,解得p=2.6.过抛物线y2=2px(p>0)的焦点作直线交抛物线于P,Q两点,若线段PQ中点的横坐标为3,|PQ|=10,则抛物线方程是( )A.y2=8x B.y2=2xC.y2=6x D.y2=4x考点 抛物线的焦点弦问题题点 知抛物线焦点弦长求方程答案 A解析 设P(x1,y1),Q(x2,y2),则x1+x22=3,即x1+x2=6.又|PQ|=x1+x2+p=10,即p=4,∴抛物线方程为y2=8x.7.经过抛物线y2=2px (p>0)的焦点作一直线交抛物线于A(x1,y1),B(x2,y2)两点,则y1y2x1x2的值是( )A.4 B.-4 C.p2 D.-p2考点 抛物线的焦点弦问题题点 与焦点弦有关的其他问题答案 B解析 采用特例法,当直线与x轴垂直时,易得A(p2,p,B(p2,-p,∴y1y2x1x2=-4.8.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )A.334B.939C.6332D.94考点 抛物线的焦点弦问题题点 抛物线焦点弦的其他问题答案 D解析 由已知得焦点坐标为F(34,0,因此直线AB的方程为y=33(x-34.即4x-43y-3=0.联立直线和抛物线方程,并化简得x2-212x+916=0,故x A+x B=212.根据抛物线的定义有|AB|=x A+x B+p=212+32=12,同时原点到直线AB的距离为h= |-3|42+-432=38,因此S△OAB=12|AB|·h=94.二、填空题9.抛物线y2=4x的焦点为F,过F的直线交抛物线于A,B两点,|AF|=3,则|BF|=________.考点 抛物线的焦点弦问题题点 与焦点弦有关的其他问题答案 32解析 由题意知F(1,0),且AB与x轴不垂直,则由|AF|=3,知x A=2.设l AB:y=k(x-1),代入y2=4x,得k2x2-(2k2+4)x+k2=0,所以x A·x B=1,故x B=12,故|BF|=x B+1=32.10.已知抛物线的顶点在坐标原点,对称轴为x轴,且与圆x2+y2=4相交的公共弦长等于23,则这条抛物线的方程为________.考点 抛物线的标准方程题点 求抛物线方程答案 y2=±3x解析 由题意设抛物线方程为y2=ax(a≠0),当a>0时,弦的端点坐标为(1,±3),代入抛物线方程得y2=3x,同理,当a<0时,弦的端点坐标为(-1,±3),代入抛物线方程得y2=-3x.11.已知在抛物线y=x2上存在两个不同的点M,N关于直线y=kx+92对称,则k的取值范围为__________________________________.考点 直线与抛物线位置关系题点 直线与抛物线位置关系答案 (-∞,-14∪(14,+∞解析 设M(x1,x21),N(x2,x22),两点关于直线y=kx+92对称,显然k=0时不成立.∴x21-x22x1-x2=-1k,即x1+x2=-1k.设MN的中点为P(x0,y0),则x0=-12k,y0=k×(-12k+92=4.又中点P在抛物线y=x2内,∴4>(-12k2,即k2>116,∴k>14或k<-14.三、解答题12.若抛物线的顶点在原点,开口向上,F为焦点,M为准线与y轴的交点,A为抛物线上一点,且|AM|=17,|AF|=3,求此抛物线的标准方程.考点 抛物线的标准方程题点 求抛物线方程解 设所求抛物线的标准方程为x2=2py(p>0),A(x0,y0),由题知M(0,-p2.∵|AF|=3,∴y0+p2=3.∵|AM|=17,∴x20+(y0+p22=17,∴x20=8,代入方程x20=2py0,得8=2p(3-p2,解得p=2或p=4.∴所求抛物线的标准方程为x2=4y或x2=8y.13.已知抛物线C:y2=2px(p>0),其准线为l,过M(1,0)且斜率为3的直线与l相交于A点,与C的一个交点为B,若AM→=MB→,求抛物线方程.考点 抛物线的标准方程题点 求抛物线方程解 由题意知,准线l:x=-p2,过M(1,0)且斜率为3的直线方程为y=3(x-1),联立 {x=-p2,y=3x-1,解得{x=-p2,y=-3(p2+1.∴点A的坐标为(-p2,-3(p2+1.又∵AM→=MB→,∴M是AB的中点,∴B点坐标为(p2+2,3(p2+1,将B(p2+2,3(p2+1代入y2=2px(p>0),得3(p2+12=2p(p2+2,解得p=2或p=-6(舍去),∴抛物线方程为y2=4x.四、探究与拓展14.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于A,B两点,交其准线于点C,若|BC|=2|BF|且|AF|=3,则此抛物线的方程为( )A.y2=3x B.y2=9xC.y2=32x D.y2=92x考点 抛物线的标准方程题点 求抛物线方程答案 A解析 作AM,BN分别垂直准线于点M,N,则|BN|=|BF|,|AM|=|AF|.又|BC|=2|BF|,∴|BC|=2|BN|,∴∠NCB=30°,∴|AC|=2|AM|=2|AF|=6.设A(x1,y1),B(x2,y2),|BF|=x,则2x+x+3=6,得x=1,而x1+p2=3,x2+p2=1,且x1x2=p24,∴(3-p2(1-p2=p24,∴p=32,得抛物线方程为y2=3x.15.已知抛物线y2=2x.(1)设点A的坐标为(23,0,求抛物线上距离点A最近的点P的坐标及相应的距离|PA|;(2)在抛物线上求一点P,使P到直线x-y+3=0的距离最短,并求出距离的最小值.考点 抛物线的定义题点 由抛物线的定义求最值解 (1)设抛物线上任一点P的坐标为(x,y),则|PA|2=(x-232+y2=(x-232+2x=(x+132+13.∵x∈[0,+∞),且在此区间上函数是增加的,故当x=0时,|PA|min=23,故距离点A最近的点的坐标为(0,0).(2)设点P(x0,y0)是y2=2x上任一点,则P到直线x-y+3=0的距离为d=|x0-y0+3|2=||y202-y0+32= |y0-12+5|22,当y0=1时,d min=522=524,∴点P的坐标为(12,1.。
2.2.2直线的方程第1课时直线的点斜式方程与斜截式方程学习目标 1.了解直线的方程、方程的直线的概念.2.掌握直线的点斜式方程和直线的斜截式方程.3.结合具体实例理解直线的方程和方程的直线概念及直线在y轴上的截距的含义.知识点一直线的方程与方程的直线如果直线l上的点的坐标都是方程F(x,y)=0的解,而且以方程F(x,y)=0的解为坐标的点都在直线l上,则称F(x,y)=0为直线l的方程,而直线l称为方程F(x,y)=0的直线,“直线l”也可说成“直线F(x,y)=0”,记作l:F(x,y)=0.知识点二直线的点斜式方程点斜式已知条件点P(x0,y0)和斜率k图示方程形式y-y0=k(x-x0)适用条件斜率存在思考经过点P0(x0,y0)且垂直于x轴的直线是否都能用点斜式方程来表示?如果不能表示,该直线的方程是什么?答案垂直于x轴的直线斜率不存在.斜率不存在的直线不能用点斜式表示,过点P0且斜率不存在的直线方程为x=x0.知识点三直线的斜截式方程1.直线的截距当直线l既不是x轴也不是y轴时,若l与x轴的交点为(a,0),则称l在x轴上的截距为a;若l与y轴的交点为(0,b),则称l在y轴上的截距为b.一条直线在y轴上的截距简称为截距.2.直线的斜截式方程斜截式已知条件斜率k和直线在y轴上的截距b 图示方程式y=kx+b适用条件斜率存在1.对直线的点斜式方程y-y0=k(x-x0)也可写成k=y-y0x-x0.(×)2.直线y-3=k(x+1)恒过定点(-1,3).(√)3.直线y=kx-b在y轴上的截距为b.(×)4.直线在y轴上的截距是直线与y轴交点到原点的距离.(×)一、直线的点斜式方程例1(1)若直线l满足下列条件,求其直线方程.①过点(-1,2)且斜率为3;②过点(-1,2)且与x轴平行;③过点(-1,2)且与x轴垂直;④已知点A(3,3),B(-1,5),过线段AB的中点且倾斜角为60°.⑤过点(-1,2)且直线的方向向量为a=(2,-1).解①y-2=3(x+1),即y=3x+5.②y=2.③x=-1.④斜率k=tan 60°=3,AB的中点为(1,4),则该直线的点斜式方程为y-4=3(x-1),即y=3x-3+4.⑤直线的方向向量为a=(2,-1),∴k =-12=-12,故直线的方程为y -2=-12(x +1),即y =-12x +32.(2)已知直线的方程为y +2=-x -1,则( ) A .该直线过点(-1,2),斜率为-1 B .该直线过点(-1,2),斜率为1 C .该直线过点(-1,-2),斜率为-1 D .该直线过点(-1,-2),斜率为1 答案 C解析 原方程可化为y -(-2)=(-1)[x -(-1)], 即该直线斜率为-1,且过点(-1,-2), 故选C.反思感悟 (1)只有在斜率存在的情况下才可以使用点斜式方程.(2)当倾斜角为0°,即k =0时,这时直线l 与x 轴平行或重合,直线l 的方程是y =y 0. (3)当倾斜角为90°时,直线无斜率,这时直线l 与y 轴平行或重合,直线l 的方程是x =x 0. 跟踪训练1 (1)求满足下列条件的直线的点斜式方程: ①过点P (4,-2),倾斜角为150°; ②过两点A (1,3),B (2,5).解 ①∵α=150°,∴k =tan 150°=-33, ∴直线的点斜式方程为y +2=-33(x -4). ②∵k =5-32-1=2,∴直线的点斜式方程为y -3=2(x -1). (2)直线方程y -y 0=k (x -x 0)( ) A .可以表示任何直线 B .不能表示过原点的直线 C .不能表示与y 轴垂直的直线 D .不能表示与x 轴垂直的直线答案 D解析该直线方程为点斜式方程,斜率为k且一定存在,故不能表示垂直于x轴的直线,故选D.二、直线的斜截式方程例2(1)(多选)下列四个选项中,正确的是()A.任何一条直线在y轴上都有截距B.直线在y轴的截距一定是正数C.直线方程的斜截式可以表示不垂直于x轴的任何直线D.直线y=2x-1在y轴上的截距为-1答案CD解析平行于y轴的直线与y轴不相交,所以在y轴上没有截距,故A不正确.直线在y轴上的截距即为直线与y轴交点的纵坐标,可正、可负、可为0,故B不正确.直线的斜截式方程y=kx+b所表示的直线斜率要存在,且直线在y轴上的截距要存在,所以直线的斜截式方程不能表示垂直于x轴的直线,故C正确.直线y=2x-1在y轴上的截距为-1,故D正确.(2)根据条件写出下列直线的斜截式方程.①斜率为2,在y轴上的截距是5;②倾斜角为150°,在y轴上的截距是-2;③倾斜角为60°,与y轴的交点到坐标原点的距离为3.解①由直线方程的斜截式可知,所求直线方程为y=2x+5.②∵倾斜角α=150°,∴斜率k=tan 150°=-3 3.由斜截式可得直线方程为y=-33x-2.③∵直线的倾斜角为60°,∴斜率k=tan 60°= 3.∵直线与y轴的交点到原点的距离为3,∴直线在y轴上的截距b=3或b=-3.∴所求直线方程为y=3x+3或y=3x-3.反思感悟(1)在求解过程中,常因混淆截距与距离的概念,而漏掉解.(2)截距是直线与x轴(或y轴)交点的横(或纵)坐标,它是个数值,可正、可负、可为零.跟踪训练2(1)直线y+2=-2(x-3)化成斜截式方程为________________,在y轴上的截距为________.答案y=-2x+4 4解析y+2=-2(x-3)可化为y=-2x+4,在y轴上的截距为4.(2)已知直线l与直线l1:y=2x+6在y轴上有相同的截距,且l的斜率与l1的斜率互为相反数,则直线l的方程为________________.答案y=-2x+6解析l1:y=2x+6在y轴上的截距为6,斜率为2,故直线l的斜率为-2,在y轴上的截距为6,所以直线l的方程为y=-2x+6.1.方程y=k(x-2)表示()A.通过点(-2,0)的所有直线B.通过点(2,0)的所有直线C.通过点(2,0)且不垂直于x轴的所有直线D.通过点(2,0)且除去x轴的所有直线答案 C解析易验证直线通过点(2,0),又直线斜率存在,故直线不垂直于x轴.2.已知直线的倾斜角为60°,在y轴上的截距为3,则此直线方程为()A.y=3x+ 3 B.y=-3x+ 3C.y=-3x- 3 D.y=3x- 3答案 A解析直线的倾斜角为60°,则其斜率为3,利用斜截式直接写方程.3.直线y=kx+b通过第一、三、四象限,则有()A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<0答案 B解析如图,∵直线经过第一、三、四象限,∴k >0,b <0.4.直线y =-2x +3的斜率为________,在y 轴上的截距为________,在x 轴上的截距为________. 答案 -2 3 32解析 直线的斜率为k =-2,在y 轴上的截距为3,令y =0,解得x =32,故在x 轴上的截距为32. 5.已知直线l 过点P (2,1),且直线l 的斜率为直线x -4y +3=0的斜率的2倍,则直线l 的点斜式方程为____________. 答案 y -1=12(x -2)解析 由x -4y +3=0, 得y =14x +34,其斜率为14,故所求直线l 的斜率为12,又直线l 过点P (2,1),所以直线l 的点斜式方程为y -1=12(x -2).1.知识清单:(1)直线的方程与方程的直线. (2)直线的点斜式方程. (3)直线的斜截式方程. 2.方法归纳:公式法.3.常见误区:直线的点斜式方程、斜截式方程并不能表示所有直线.1.下面四个直线方程中,是直线的斜截式方程的是( ) A .x =3B .y =3x -5C .y -2=3(x -1)D .x =4y -1答案 B2.与直线y =32x 的斜率相等,且过点(-4,3)的直线方程为( )A .y -3=-32(x +4)B .y +3=32(x -4)C .y -3=32(x +4)D .y +3=-32(x -4)答案 C3.直线y =k (x -2)+3必过定点,该定点为( ) A .(3,1) B .(2,3) C .(2,-3) D .(-2,3) 答案 B解析 直线方程为y =k (x -2)+3, 可化为y -3=k (x -2),所以过定点(2,3). 4.经过点(-1,1),斜率是直线y =22x -2斜率的2倍的直线方程是( ) A .y =-1 B .y =1C .y -1=2(x +1)D .y -1=22(x +1) 答案 C解析 由方程知已知直线的斜率为22, ∴所求直线的斜率是2,由直线方程的点斜式,可得直线方程为y -1=2(x +1).5.(多选)在y 轴上的截距为-6,且与y 轴相交成30°角的直线的斜截式方程为( ) A .y =3x -6 B .y =63x -6 C .y =-3x -6 D .y =-33x -6 答案 AC解析 因为直线与y 轴相交成30°角, 所以直线的倾斜角为60°或120°, 所以直线的斜率为3或-3, 又因为在y 轴上的截距为-6,所以直线的斜截式方程为y =3x -6或y =-3x -6.6.(多选)经过点(2,1),且与两坐标轴围成等腰直角三角形的直线方程为( ) A .y =x +3 B .y =x -1 C .y =-x +3 D .y =-x -1答案 BC解析 由题意可知直线的斜率为±1,当直线的斜率为1时,直线方程为y -1=x -2,化简得y =x -1;当直线的斜率为-1时,直线方程为y -1=-(x -2),化简得y =-x +3. 7.已知直线l 的方程为y -m =(m -1)(x +1),若l 在y 轴上的截距为7,则m =________. 答案 4解析 直线l 的方程可化为y =(m -1)x +2m -1, ∴2m -1=7,得m =4.8.设直线l 的倾斜角是直线y =3x +1的倾斜角的12,且与y 轴的交点到x 轴的距离是3,则直线l 的斜率为________,直线l 的方程是____________________. 答案33 y =33x ±3 解析 y =3x +1的倾斜角为60°,则l 的倾斜角为30°,故斜率为tan 30°=33. 由题意知,l 在y 轴上的截距为±3, ∴直线l 的方程为y =33x ±3. 9.求倾斜角为直线y =-3x +1的倾斜角的一半,且分别满足下列条件的直线方程. (1)经过点(-4,1); (2)在y 轴上的截距为-10.解 由直线y =-3x +1的斜率为-3,可知此直线的倾斜角为120°,所以所求直线的倾斜角为60°,故所求直线的斜率k = 3.(1)因为直线过点(-4,1),所以由直线的点斜式方程得y -1=3(x +4),即y =3x +43+1.(2)因为直线在y 轴上的截距为-10,所以由直线的斜截式方程得y =3x -10.10.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程. (1)过定点A (-2,0); (2)斜率为16.解 依题意直线l 的斜率存在且不为0. (1)设直线l 的方程为y =k (x +2) 令x =0,y =2k , 令y =0,x =-2, ∴S =12|-2|·|2k |=3,解得k =±32.∴直线l 的方程为y =32(x +2)或y =-32(x +2).(2)设直线l 的方程为y =16x +b ,令x =0,y =b ,令y =0,x =-6b , ∴S =12|-6b |·|b |=3,解得b =±1.∴直线l 的方程为y =16x +1或y =16x -1.11.一条直线过点(-2,3)且直线的一个法向量为v =(2,3),则该直线的方程为( ) A .y =23x +133B .y =32x +6C .y =-32xD .y =-23x +53答案 D解析 直线的一个法向量v =(2,3),则该直线的一个方向向量为a =(3,-2),故k =-23,又直线过点(-2,3),所以直线方程为y-3=-23(x+2),即y=-23x+53,故选D.12.下列选项中,在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()答案 C解析①当a>0时,直线y=ax的倾斜角为锐角,直线y=x+a在y轴上的截距为a>0,A,B,C,D都不成立;②当a=0时,直线y=ax的倾斜角为0°,所以A,B,C,D都不成立;③当a<0时,直线y=ax的倾斜角为钝角,直线y=x+a的倾斜角为锐角且在y轴上的截距为a<0,只有C成立.13.已知直线l不经过第三象限,设它的斜率为k,在y轴上的截距为b(b≠0),那么() A.kb<0 B.kb≤0 C.kb>0 D.kb≥0答案 B解析直线l不经过第三象限,则k≤0且b>0,即kb≤0.14.将直线y=x+3-1绕其上面一点(1,3)沿逆时针方向旋转15°,所得到的直线的点斜式方程是________________.答案y-3=3(x-1)解析由y=x+3-1得直线的斜率为1,倾斜角为45°.∵沿逆时针方向旋转15°后,倾斜角变为60°,∴所求直线的斜率为 3.又∵直线过点(1,3),∴由直线的点斜式方程可得y-3=3(x-1).15.已知等边三角形ABC的两个顶点A(0,0),B(3,3),则AC边所在的直线方程为_____.答案 x =0或y =-33x 解析 k AB =3-03-0=33, ∴直线AB 的倾斜角为30°,故直线AC 的倾斜角为90°或150°.当AC 的倾斜角为90°时,直线为y 轴,方程为x =0, 当AC 的倾斜角为150°时,k AC =-33,方程为y =-33x . 16.直线l 的方程为y =ax +3-a 5, (1)证明:直线l 恒经过第一象限;(2)若直线l 一定经过第二象限,求a 的取值范围.(1)证明 直线l :y =ax +3-a 5, 可化为y -35=a ⎝⎛⎭⎫x -15, 所以直线l 过定点P ⎝⎛⎭⎫15,35,又点P ⎝⎛⎭⎫15,35在第一象限,故直线l 恒经过第一象限.(2)解 因为直线l 过点P ⎝⎛⎭⎫15,35且点P 在第一象限,故只需l 在y 轴上的截距大于0即可,即3-a 5>0得a <3. 故a 的取值范围是(-∞,3).。