信号分析与处答案(第二版)
- 格式:doc
- 大小:2.67 MB
- 文档页数:79
信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。
解已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
————第一章———— 时域离散信号与系统理论分析基础本章1.1节“学习要点”和1.2节“例题”部分的内容对应教材第一、二章内容。
为了便于归纳总结,我们将《数字信号处理(第二版)》教材中第一章和第二章的内容合并在一起叙述,这样使读者对时域离散线性时不变系统的描述与分析方法建立一个完整的概念,以便在分析和解决问题时,能全面考虑各种有效的途径,选择最好的解决方案。
1.1 学 习 要 点1.1.1 时域离散信号——序列时域离散信号(以下简称序列)是时域离散系统处理的对象,研究时域离散系统离不开序列。
例如,在时域离散线性时不变系统的时域描述中,系统的单位脉冲响应()n h 就是系统对单位脉冲响应()n δ的响应输出序列。
掌握()n δ的时域和频域特征,对分析讨论系统的时域特性描述函数()n h 和频域特性描述函数()ωj e H 和()z H 是必不可少的。
1. 序列的概念在数字信号处理中,一般用()n x 表示时域离散信号(序列)。
()n x 可看作对模拟信号()t x a 的采样,即()()nT x n x a =,也可以看作一组有序的数据集合。
要点 在数字信号处理中,序列()n x 是一个离散函数,n 为整数,如图1.1所示。
当≠n 整数时,()n x 无定义,但不能理解为零。
当()()nT x n x a =时,这一点容易理解。
当=n 整数时,()()nT x n x a =,为()t x a 在nT t =时刻的采样值,非整数T 时刻未采样,而并非为零。
在学习连续信号的采样与恢复时会看到,()n x 经过低通滤波器后,相邻的()T n nT 1~+之间的()t x a 的值就得到恢复。
例如,()n x 为一序列,取()()2n x n y =,n 为整数是不正确的,因为当=n 奇数时,()n y 无定义(无确切的值)。
2. 常用序列常用序列有六种:①单位脉冲序列()n δ,②矩形序列()n R N ,③指数序列()n u a n,④正弦序列()n ωcos 、()n ωsin ,⑤复指数序列nj eω,⑥周期序列。
绪论1 .举例说明什么是测试?答:(1) 测试例子:为了确定一端固定的悬臂梁的固有频率,我们可以采用锤击法对梁进行激振,再利用压电传感器、电荷放大器、波形记录器记录信号波形,由衰减的振荡波形便可以计算出悬臂梁的固有频率。
(2)结论:由本例可知:测试是指确定被测对象悬臂梁的属性—固有频率的全部操作,是通过一定的技术手段—激振、拾振、记录、数据处理等,获取悬臂梁固有频率的信息的过程。
2. 测试技术的任务是什么?答:测试技术的任务主要有:通过模型试验或现场实测,提高产品质量;通过测试,进行设备强度校验,提高产量和质量;监测环境振动和噪声,找振源,以便采取减振、防噪措施;通过测试,发现新的定律、公式等;通过测试和数据采集,实现对设备的状态监测、质量控制和故障诊断。
3. 以方框图的形式说明测试系统的组成,简述主要部分的作用。
(1)测试系统方框图如下:(2)各部分的作用如下:传感器是将被测信息转换成某种电信号的器件;信号的调理是把来自传感器的信号转换成适合传输和处理的形式;信号处理环节可对来自信号调理环节的信号,进行各种运算、滤波和分析;信号显示、记录环节将来自信号处理环节的信号显示或存贮。
模数(A/D)转换和数模(D/A)转换是进行模拟信号与数字信号相互转换,以便用计算机处理。
4.测试技术的发展动向是什么?传感器向新型、微型、智能型方向发展;测试仪器向高精度、多功能、小型化、在线监测、性能标准化和低价格发展;参数测量与数据处理向计算机为核心发展;第一章1 求周期方波的傅立叶级数(复指数函数形式),画出|c n|-w和j-w图。
解:(1)方波的时域描述为:(2) 从而:2 . 求正弦信号的绝对均值和均方根值。
解(1)(2)3.求符号函数和单位阶跃函数的频谱。
解:(1)因为不满足绝对可积条件,因此,可以把符合函数看作为双边指数衰减函数:其傅里叶变换为:(2)阶跃函数:4. 求被截断的余弦函数的傅里叶变换。
解:(1)被截断的余弦函数可以看成为:余弦函数与矩形窗的点积,即:(2)根据卷积定理,其傅里叶变换为:5.设有一时间函数f(t)与其频谱如图所示。
第八章 离散傅立叶变换8.1 假设()t x c 是一个周期的连续时间信号,其周期为1ms ,它的傅立叶级数为()()∑-=-=9910/23k kt j kc e a t x π. 对于9>k ,傅立叶系数k a 为零,以采样间隔s T 31061-⨯=对()t x c 采样得到[]n x : []⎪⎪⎭⎫⎝⎛=-6103n x n x c .(a) []n x 是周期的吗?如果是,周期为多少?(b) 采样率是否高于奈奎斯特采样率,也就是说T 是否充分小而且可以避免混叠? (c) 利用k a 求出[]n x 的离散傅立叶级数系数。
解:(a )[]∑∑-=-=⎪⎪⎭⎫ ⎝⎛⨯-==⎪⎪⎭⎫ ⎝⎛=--996299610102333610k kn jkk n k j k c ea e a n x n x ππ而() 1,0,62662==+l ee kn jl n k jππ[][]l n x n x 6+=∴∴ []n x 是周期的,周期为6。
(b )30102-=Ωπ而采样频率为03321012106122Ω>=⨯==Ω--πππT 所以T 足够小,而可以避免混叠。
(c )[][]()()()∑∑∑∑∑∑-=---==-=--=-=--=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==99335995062506299621011k k l k l lk n k l n j l n kn j l nl j l N n knNeea e a e e a w n x k X πππππ 8.2 设[]n x ~是一个周期为N 的周期序列,[]n x ~还是一个周期为3N 的周期序列。
令[]k X ~表示作为周期为N 的周期序列的[]n x ~的DFS 系数,[]k X ~3表示作为周期为3N 的周期序列的[]n x ~的DFS 系数。
(a) 用[]k X ~表示出[]k X ~3。
(b) 用公式计算[]k X ~和[]k X ~3,当[]n x ~为图P8.2中给定的序列时,证明你在(a)中得出的结果。
第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。
(1) )()1(31)(n x n y n y =--解 当激励为)(n δ时,响应为)(n h ,即:)()1(31)(n n h n h δ+-=由于方程简单,可利用迭代法求解:1)0()1(31)0(=+-=δh h ,31)0(31)1()0(31)1(==+=h h h δ,231)1(31)2()1(31)2(⎪⎭⎫ ⎝⎛==+=h h h δ…,由此可归纳出)(n h 的表达式:)()31()(n n h n ε=利用阶跃响应和冲激响应的关系,可以求得阶跃响应:)(])31(2123[311)31(1)31()()(10n k h n s n n k nk nk ε-=--===+=-∞=∑∑(2) )()2(41)(n x n y n y =--解 (a)求冲激响应)()2(41)(n n h n h δ=--,当0>n 时,0)2(41)(=--n h n h 。
特征方程0412=-λ,解得特征根为21,2121-==λλ。
所以: n n C C n h )21()21()(21-+= …(2.1.2.1)通过原方程迭代知,1)0()2(41)0(=+-=δh h ,0)1()1(41)1(=+-=δh h ,代入式(2.1.2.1)中得:121=+C C0212121=-C C 解得2121==C C , 代入式(2.1.2.1):0,)21(21)21(21)(>-+=n n h n n …(2.1.2.2)可验证)0(h 满足式(2.1.2.2),所以:)(])21()21[(21)(n n h n n ε-+=(b)求阶跃响应通解为 n n c C C n s )21()21()(21-+=特解形式为 K n s p =)(,K n s p =-)2(,代入原方程有 141=-K K , 即34=K完全解为34)21()21()()()(21+-+=+=n n p c C C n s n s n s通过原方程迭代之1)0(=s ,1)1(=s ,由此可得13421=++C C134212121=+-C C 解得211-=C ,612=C 。
信号分析与处理答案第二版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】第二章习题参考解答求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2)将(2.1.3.1)、式代入原方程,比较两边的系数得:阶跃响应:求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9) ,解(10),解或写作:求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解试求题图示系统的总冲激响应表达式。
解已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出某一阶电路如题图所示,电路达到稳定状态后,开关S 于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
浙江大学大学物理答案【篇一:11-12-2大学物理乙期末试题b】《大学物理乙(上)》课程期末考试试卷 (b)开课分院:基础部,考试形式:闭卷,允许带非存储计算器入场考试日期:2012年月日,考试所需时间: 120 分钟考生姓名学号考生所在分院:专业班级: .一、填空题(每空2分,共50分):1、一个0.1kg的质点做简谐振动,运动方程为x(t)?0.2cos3t m,则该质点的最大加速度amax,质点受到的合力随时间变化的方程f(t。
2、一质点作简谐振动,振幅为a,初始时具有振动能量2.4j。
当质点运动到a/2处时,质点的总能量为 j,其中动能为j。
3、在宁静的池水边,你用手指以2hz的频率轻叩池面,在池面上荡起水波,波速为2m/s,则这些波的波长为 m。
4、两列波在空间相遇时能够产生干涉现象的三个条件为:,振动方向相同,初相位差恒定。
5、如图所示,在均匀介质中,相干波源a和b相距3m,它们所发出的简谐波在ab连线上的振幅均为0.4m,波长均为2m,且a为波峰时b恰好为波谷,那么ab连线中点的振幅为 m,在ba延长线上,a点外侧任一点的振幅为m。
6、已知空气中的声速340m/s,一辆汽车以40m/s的速度驶近一静止的观察者,汽车喇叭的固有频率为555hz,则观察者听到喇叭的音调会更________(填“高”或“低”),其频率为____________ hz。
(请保留三位有效数字)......7、已知800k时某气体分子的方均根速率为500m/s,当该气体降温至200k时,其方均根速率为__________m/s。
8、体积为2?10?3m3的理想气体,气体分子总数为5.4?1022个,其温度为362k,则气体的压强为_________________pa。
9、麦克斯韦速率分布曲线下的面积恒等于_________。
10、一定量氢气在500k的温度下,分子的平均平动动能为______________________j,分子的平均转动动能为________________________j。
第l章1.模拟信号与数字信号各自的主要特点是什么?模拟信号:模拟信号的特点是信号强度(如电压或电流)的取值随时间连续变化。
由于模拟信号的强度是随时间连续变化的,所以模拟信号也称为连续信号。
数字信号:与模拟信号相反,数字信号强度参量的取值是离散变化的。
数字信号又叫离散信号,离散的含义是其强度的取值是有限个数值。
2.画出时分多路复用的示意图并说明其工作原理。
时分复用的电路结构示意图如图所示。
图中SA1和SA2为电子转换开关,它们在同步系统的控制下以同起点、同速度顺序同步旋转,以保证收、发两端同步工作。
在发端,开关的旋转接点接于某路信源时,就相当于取出某路信源信号的离散时间的幅度数值。
旋转接点按顺序旋转,就相当于按顺序取出各路信源信号在离散时间的幅度数值并合成,然后经模/数变换电路变为数字信号,再与同步信号合成即可送给信道传输。
在接收端,首先分出同步信号,再进行数/模变换后即可由旋转开关分别送给相应的信息接收者。
3.试述数字通信的主要特点。
(1)抗干扰能力强,无噪声积累(2)便于加密处理(3)利于采用时分复用实现多路通信(4)设备便于集成化、小型化(5) 占用频带宽4.简单说明数字通信系统有效性指标,可靠性指标各是什么?并说明其概念。
有效性指标(1)信息传输速率:信道的传输速率是以每秒钟所传输的信息量来衡量的。
信息传输速率的单位是比特/秒,或写成bit/s,即是每秒传输二进制码元的个数。
(2)符号传输速率符号传输速率也叫码元速率。
它是指单位时间内所传输码元的数目,其单位为“波特”(bd)。
(3)频带利用率频带利用率是指单位频带内的传输速率。
可靠性指标(1)误码率在传输过程中发生误码的码元个数与传输的总码元数之比。
(2)信号抖动在数字通信系统中,信号抖动是指数字信号码元相对于标准位置的随机偏移。
第2章1、假设某模拟信号的频谱如图1所示,试画出M s f f 2=时抽样信号的频谱。
答:2、某模拟信号的频谱如图2所示,设kHz f s 24=,试画出其抽样信号的频谱。
信号的频谱分析式研究信号特性的重要手段之一,对于确定信号,可以用Fourier变换来考察信号的频谱特性,而对于广义平稳随机信号而言,相应的方法是求其功率谱。
功率谱反映了随机信号功率能量的分布特征,可以揭示信号中隐含的周期性以及靠的很近的谱峰等有用信息,有很广泛的应用。
在雷达信号处理中,回波信号的功率提供了运动目标的位置、强度和速度等信息(即功率谱的峰值与宽度、高度、和位置的关系);在无源声纳信号处理中,功率谱密度的位置给出了鱼雷的方向(方位角)信息;在生物医学工程中,功率谱的峰和波形,表示了一些特殊疾病的发作周期;在语音处理中,谱分析用来探测语音语调共振;在电子战中,还利用功率谱来对目标进行分类。
功率谱密度函数反映了随机信号各频率成份的功率分布情况,是随机信号处理中应用很广泛的技术。
实际应用中的平稳信号通常是有限长的,因此,只能从有限的信号中去估计信号的真实功率谱,这就是功率谱估计问题。
寻找可靠与质量优良的估计谱是这次研究的主要内容。
功率谱估计可分为非参数化方法(低分辨率分析),参数化方法(高分辨率分析),广义的功率谱分析(空间谱分析),也可以把非参数化方法称为经典谱估计,参数化方法称为现代谱估计(包括空间谱估计)这次论文从不同角度介绍了现代谱估计的一些主要算法,包括参数模型法、Pisarenko 谐波分解法、最大熵估计、多重信号分类(MUSIC)、旋转不变技术(ESPRIT)等。
参数模型法将以ARMA模型为主,以及其谱估计所需的AR、MA的参数和阶数;最大熵估计也就是Burg最大熵谱估计,它在不同约束条件下,分别与AR谱估计、ARMA谱估计等价;MUSIC 方法是一种估计信号空间参数的现代谱估计方法;ESPRIT方法是一种估计信号空间参数的旋转不变技术,其基本思想是将谐波频率的估计转变为矩阵束的广义特征值分解。
最后,这次论文还会分析它们各自的优缺点及应用场合。
并利用计算机语言对各种现代谱估计算法的进行仿真实现,并比较它们的性能。
信号与线性系统第二版答案【篇一:7月份自考信号与线性系统习题答案】f(k)?cos(3?5k)为周期序列,其周期为( c )a. 2 b. 5 c. 10d. 122. 题2图所示f(t)的数学表达式为(b )图题2a.f(t)?10sin(?t)[?(t)??(t?1)] b. f(t)?10sin(?t)[?(t)??(t?1)] c.f(t)?10sin(?t)[?(t)??(t?2)] d. f(t)?10sin(?t)[?(t)??(t?2)] 3.已知f(t)? ??sin(?t)t??(t)dt,其值是( a )a.? b. 2? c. 3?d. 4?4.冲激函数?(t)的拉普拉斯变换为( a )a. 1 b. 2 c. 3 d. 45.为了使信号无失真传输,系统的频率响应函数应为(d )a. h(jw)?ejwtdb. h(jw)?e?jwtdc. h(jw)?kejwtdd. h(jw)?ke?jwtd6.已知序列f(k)?()?(k),其z变换为(b )1k3a.zz?13b.zz?13zz?14d.zz?147.离散因果系统的充分必要条件是( a)a.h(k)?0,k?0 b. h(k)?0,k?0c. h(k)?0,k?0 d. h(k)?0,k?0 8.已知f(t)的傅里叶变换为f(jw),则f(t?3)的傅里叶变换为( c )a.f(jw)e b. f(jw)ekjwj2wc. f(jw)ej3wd. f(jw)ej4w9.已知f(k)???(k),h(k)??(k?2),则f(k)?h(k)的值为(b ) a.? k?1?(k?1) b. ?k?2?(k?2) c. ?k?3?(k?3) d. ?k?4?(k?4)10.连续时间系统的零输入响应的“零”是指( a)a. 激励为零b. 系统的初始状态为零c. 系统的冲激响应为零d. 系统的阶跃响应为零 ?11. 已知序列f(k)?ej3k为周期序列,其周期为( c )a. 2 b. 4 c. 6 d. 812. 题2图所示f(t)的数学表达式为(a)ta.f(t)??(t?1)??(t?1)b.f(t)??(t?1)??(t?1) c.f(t)??(t)??(t?1)f(t)??(t)??(t?1)13.已知f1(t)??(t?1),f2(t)??(t?2),则 f1(t)?f2(t)的值是(d )a.?(t) b. ?(t?1) c. ?(t?2)d. ?(t?3)14.已知f(j?)?j?,则其对应的原函数为( b ) a.?(t) b. ?(t) c. ?(t) d. ?15.连续因果系统的充分必要条件是( b )a. h(t)?0,t?0 b. h(t)?0,t?0 c. h(t)?0,t?0 d. h(t)?0,t?0 16.单位阶跃序列?(k)的z变换为( d )a.zz?1,z?1 b. zz?1,z?1 c. zz?1,z?1 d. zz?1,z?1 17.已知系统函数h(s)?1s,则其单位冲激响应h(t)为(a )a.?(t) b. t?(t) c. 2t?(t) d. 3t?(t)18.已知f(t)的拉普拉斯变换为f(s),则f(5t)的拉普拉斯变换为(c)a.f(s) b. 1s1s53f(5) c. 5f(5) d. 1s7f(5) 19.已知f(k)??k?2?(k?2),h(k)??(k?2),则f(k)?h(k)的值为( d )a.?k?1?(k?1)b. ?k?2?(k?2) c. ?k?3?(k?3) d. ?k?4?(k?4)20.已知f(t)的傅里叶变换为f(j?),则f(jt)的傅里叶变换为( c )d.a. ?f(??)b. ?f(?)c. 2?f(??)d. 2?f(?)21. 下列微分或差分方程所描述的系统是时变系统的是(b)a. y(t)?2y(t)?f(t)?2f(t)b. y(t)?sinty(t)?f(t)c. y(t)?[y(t)]?f(t)d.y(k)?y(k?1)y(k?2)?f(k)22. 已知f1(t)?t?(t),f2(t)??(t),则f1(t)?f2(t)的值是( c)a.0.1t?(t) b. 0.3t?(t) c. 0.5t?(t)d. 0.7t?(t)23.符号函数sgn(t)的频谱函数为( b )22222a.1234b.c.d. j?j?j?j?24.连续系统是稳定系统的充分必要条件是( a ) a.???h(t)?mb.????h(t)?mc.????h(t)dt?md.????h(t)dt?m25.已知函数f(t)的象函数f(s)?(s?6),则原函数f(t)的初值为(s?2)(s?5)(b )a. 0b. 1 c. 2 d. 3 26.已知系统函数h(s)??t?t3,则该系统的单位冲激响应为( c) s?1?t?ta.e?(t) b.2e?(t) c.3e?(t) d. 4e?(t) 27.已知f(k)??kk?1?(k?1),h(k)??(k?2),则f(k)?h(k)的值为( d )k?1a.??(k) b.??(k?1) c.?k?2?(k?2) d. ?k?3?(k?3)28. 系统的零输入响应是指( c )a.系统无激励信号b. 系统的初始状态为零c. 系统的激励为零,仅由系统的初始状态引起的响应d. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中( b )a.只有正弦项 b.只有余弦项c. 只有偶次谐波 d. 只有奇次谐波 30. 已知信号f(t)的波形,则f()的波形为(b )a.将f(t)以原点为基准,沿横轴压缩到原来的c. 将f(t)以原点为基准,沿横轴压缩到原来的t21214b. 将f(t)以原点为基准,沿横轴展宽到原来的2倍d. 将f(t)以原点为基准,沿横轴展宽到原来的4倍简答题.。
浙江大学大学物理答案【篇一:11-12-2大学物理乙期末试题b】《大学物理乙(上)》课程期末考试试卷 (b)开课分院:基础部,考试形式:闭卷,允许带非存储计算器入场考试日期:2012年月日,考试所需时间: 120 分钟考生姓名学号考生所在分院:专业班级: .一、填空题(每空2分,共50分):1、一个0.1kg的质点做简谐振动,运动方程为x(t)?0.2cos3t m,则该质点的最大加速度amax,质点受到的合力随时间变化的方程f(t。
2、一质点作简谐振动,振幅为a,初始时具有振动能量2.4j。
当质点运动到a/2处时,质点的总能量为 j,其中动能为j。
3、在宁静的池水边,你用手指以2hz的频率轻叩池面,在池面上荡起水波,波速为2m/s,则这些波的波长为 m。
4、两列波在空间相遇时能够产生干涉现象的三个条件为:,振动方向相同,初相位差恒定。
5、如图所示,在均匀介质中,相干波源a和b相距3m,它们所发出的简谐波在ab连线上的振幅均为0.4m,波长均为2m,且a为波峰时b恰好为波谷,那么ab连线中点的振幅为 m,在ba延长线上,a点外侧任一点的振幅为m。
6、已知空气中的声速340m/s,一辆汽车以40m/s的速度驶近一静止的观察者,汽车喇叭的固有频率为555hz,则观察者听到喇叭的音调会更________(填“高”或“低”),其频率为____________ hz。
(请保留三位有效数字)......7、已知800k时某气体分子的方均根速率为500m/s,当该气体降温至200k时,其方均根速率为__________m/s。
8、体积为2?10?3m3的理想气体,气体分子总数为5.4?1022个,其温度为362k,则气体的压强为_________________pa。
9、麦克斯韦速率分布曲线下的面积恒等于_________。
10、一定量氢气在500k的温度下,分子的平均平动动能为______________________j,分子的平均转动动能为________________________j。
1.2. 已知样本空间{}1,2,,10Ω=,事件{}2,3,4A =,{}3,4,5B =,{}5,6,7C =,写出下列事件的表达式:(1)A B ; (2)AB ;(3)()A B C ; (4)ABC ;解:(1){}{}1,5,6,7,8,9,101,3,4,5,6,7,8,9,10A A B =∴= (2) {}5 AB = (3){}{}{}()3,4,5,6,7()3,4()1,2,5,6,7,8,9,10B C A B C A B C ==∴=(4){}{}{}{}51,2,3,4,6,7,8,9,102,3,41,5,6,7,8,9,10BC BC ABC ABC ===∴=3. 设随机试验E 是将一枚硬币抛两次,观察H -正面,T -反面出现的情况,试分析它的样本空间、事件与概率。
解:样本空间:{},,,HH TT HT TH Ω= 各种事件组成集合:{{}{}{}{}{}{}{}{}{}{}{}{}{}{}},,,,,,,,,,,,,,,,,,,,,,,,,,,,,F HH TT HT TH HH TT HH HT HH TH TT HT TT TH HT TH HH TT HT HH TT TH HH HT TH TT HT TH =∅Ω显然,其中的事件是样本的的各种组合。
A F ∀∈,()4k P A =,[0,4]k ∈为事件A 包含的样本点数。
4. 5.6. 有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ======== ()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯=== 7.8. 有朋自远方来,她乘火车、轮船、汽车或飞机来的概率分别是0.3,0.2,0.1和0.4。
第6章系统的频域分析一、选择题1.选择题已知信号f(t)的最高频率,则对信号取样时,其频谱不混叠的最大取样间隔等于()。
[北京交通大学研]A.B.C.D.【答案】A【解析】信号f(t)的最高频率为,根据Fourier变换的展缩特性可得信号的最高频率为(Hz),再根据时域抽样定理,可得对信号取样时,其频谱不混叠的最大取样间隔2.下列说法中正确的是()。
[东南大学研]A.罗斯—霍维茨准则也能判断离散系统的稳定性B.信号经调制后带宽一定增加C.抽样频率必须是信号最高频率的2倍以上才不产生混叠D.积分器是线性运算,不改变信号的带宽【答案】AD【解析】本题考查信号与系统的综合应用。
罗斯霍维茨准则是稳定性判定准则,信号经调制后带宽不一定增加,有时只是频谱的搬移,积分运算是累加运算,也即线性运算,抽样频率必须是信号最高频率的2倍或者2倍以上才不产生混叠。
因此选择AD。
3.系统的幅频特性和相频特性如图6-1(a)、(b)所示,则下列信号通过该系统时,不产生失真的是()。
[西安电子科技大学研]A.B.C.D.【答案】B【解析】由系统的幅频特性和相频特性可知:若输入信号的频率均处于之间,既不产生幅度失真又不产生相位失真。
只有(B)满足这一条件。
图6-1二、填空题1.已知一连续时间LTI系统的频响特性该系统的幅频特性相频特性是否是无失真传输系统______。
[北京交通大学研] 【答案】否【解析】由于的分子分母互为共轭,故有所以系统的幅度响应和相位响应分别为由于系统的相位响应不是的线性函数,所以系统不是无失真传输系统。
三、解答题1.某因果数字滤波器的零、极点如图6-2所示,并已知其H(π)=-1试求:图6-2(1)它的系统函数H(z)及其收敛域,且回答它是IIR、还是FIR的什么类型(低通、高通、带通、带阻或全通)滤波器;(2)写出图6-2(b)所示周期信号x[n研]的表达式,并求其离散傅里叶级数的系数;(3)该滤波器对周期输入x[n研]的响应y[n研]。
第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2) 将(2.1.3.1)、(2.1.3.2)式代入原方程,比较两边的系数得:阶跃响应:2.2 求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9),解(10) ,解或写作:2.3 求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解2.4 试求题图2.4示系统的总冲激响应表达式。
解2.5 已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出2.6 某一阶电路如题图2.6所示,电路达到稳定状态后,开关S于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
根据电路可以立出t>0时的微分方程:,整理得齐次解:非齐次特解:设代入原方程可定出B=2则:,2.7 积分电路如题图2.7所示,已知激励信号为,试求零状态响应。
解根据电路可建立微分方程:当时:由可定出,根据系统的时不变性知,当时:当时:2.8 求下列离散系统的零输入响应。
(1) ;,解由,可定出,,(2) ;,解由,,可定出.(3) ;,,解特征方程,,由可定出2.9 求下列离散系统的完全响应。
(1) ;解齐次方程通解:非齐次方程特解:代入原方程得:由可定出(2) ;,解齐次方程通解:非齐次方程特解:代入原方程定出由可定出2.10 试判断下列系统的稳定性和因果性。
(1)解因果的;稳定的。
(2)解因为冲激响应不满足绝对可和条件,所以是不稳定的;非因果的。
(3)解稳定的,非因果的。
(4)解不稳定的,因果的。
(5)解不稳定的,因果的。
(6) (为实数)解时:不稳定的,因果的;时:稳定的,因果的;时:不稳定的,因果的。
(7)解不稳定的,非因果的。
(8)解稳定的,非因果的。
2.11 用方框图表示下列系统。
(1)(2)(3)*2.12 根据系统的差分方程求系统的单位脉冲响应。
(1)解当时:,由原方程知当时:,由此可定出(2)解当时:齐次方程的通解为,由原方程迭代求解可得为:由此可以定出*2.13 根据系统的微分方程求系统的单位冲激响应。
(1)解当时:,,代入原方程可确定(2)解当时:代入原方程,比较两边系数得:*2.14 试求下列系统的零输入响应、零状态响应、强迫响应、自由响应。
(1) ;,,解(a)求强迫响应:假设特解为:代入原方程,可定出;则强迫响应(a)求自由响应:利用冲激平衡法可知:可定出;所以完全解形式:,由定出即完全响应为:所以自由响应为:(b)求强迫响应:假设特解为:代入原方程,可定出;则强迫响应(c)求零输入响应:由可定出(d)求零状态响应零状态响应=自由响应+强迫响应-零输入响应=综上所求,有:(2) ;,,解法一用z变换求解。
方程两边进行z变换,则有:解法二:时域解法。
求强迫响应:当时:即为常值序列,设特解为,代入原方程可定出当时:仅在激励作用下,由原方程知,即:特解在时均满足方程。
求自由响应:完全解:由经迭代得:由可定出完全解中系数为:则自由响应分量为:零输入响应:由可以定出:零状态响应:*2.15 试证明线性时不变系统具有如下性质:(1) 若系统对激励的响应为,则系统对激励的响应为;(2) 若系统对激励的响应为,则系统对激励的响应为。
证(1) 已知,根据系统的线性试不变性有:;令,则有:证(2) 已知,根据系统的线性试不变性有:令则,所以证毕。
*2.16 考察题图2.16(a)所示系统,其中开平方运算取正根。
(1) 求出和之间的关系;(2) 该系统是线性系统吗,是时不变系统吗?(3) 若输入信号是题图2.16(b)所示的矩形脉冲(时间单位:秒),求响应。
解(1)由系统框图可得(2) 由输入一输出关系可以看出,该系统不满足可加性,故系统是非线性的。
又因为当输入为时,输出为),故系统是时不变的。
(3)由输入一输出关系,可以求得输出为图示波形。
*2.17 一个线性系统对的响应为,(1) 该系统是否为时不变系统?(2) 该系统是否是因果系统?(3) 若 a);b),求该系统对每个输入的响应。
解(1)当时,输入为输出为当时,输入为输出为显然,是时变系统。
(2) 当时,如显然,响应出现于激励之前,所以是非因果系统。
(3) 因为不是LTI系统,所以输出响应不能用来计算。
对于线性时变系统,输出响应可求解如下:任意信号仍可分解为冲激函数的和,即有:因为(这里是的二元函数)由于系统为线性的,故有:对于此例有,当时:(注意:)即当时:第三章习题参考解答3.1 求下列信号展开成傅里叶级数,并画出响应相应的幅频特性曲线。
解(a)解(b)解(c)解(d)3.2 求题图3.2所示信号的傅里叶变换。
解(a)解(b)设,由傅氏变换的微积分性质知:解(c)利用傅氏变换性质知:解(d)或解(e)解(f)3.3 若已知,试求下列信号的傅里叶变换。
(1)解(2)解(3)解(4)解(5)解(6)解令则有:,,3.4 在题图3.2(b)中取,将进行周期为的周期延拓,得到周期信号,如题图3.4(a)所示;取的个周期构成截取函数,如题图3.4(b)所示。
(1) 求周期信号傅里叶级数系数;(2) 求周期信号的傅里叶变换;(3) 求截取信号的傅里叶变换。
解(1)设单个三角波脉冲为,其傅里叶变换根据傅里叶级数和傅里叶变换之间的关系知:(2) 由周期信号的傅里叶变换知:(3) 因为3.5 绘出下列信号波形草图,并利用傅里叶变换的对偶性,求其傅里叶变换。
(1) (2)[提示:参见脉冲信号和三角波信号的傅里叶变换]解(1),根据对偶知:解(2)3.6 已知的波形如题图3.6(a)所示,(1) 画出其导数及的波形图;(2) 利用时域微分性质,求的傅里叶变换;(3) 求题图3.6(b)所示梯形脉冲调制信号的频谱函数。
解(1)及的波形如下:(2)(3)3.7 求下列频谱函数的傅里叶逆变换。
(1)解(2)解(3)解(4)解(5)解………(3.7.5.1) 又………(3.7.5.2)由(3.7.5.1)、(3.7.5.2)式可知:(6)解*3.8 设输入信号为,系统的频率特性为,求系统的零状态响应。
解3.9 理想低通滤波器的幅频特性为矩形函数,相频特性为线性函数,如题图3.9所示。
现假设输入信号为的矩形脉冲,试求系统输出信号。
解利用傅里叶变换的对称性,可以求得该系统的冲激响应为:,,令得:其中:3.10 在题图3.10(a)所示系统中,采样信号如图(b) 所示,是一个正负交替出现的冲激串,输入信号的频谱如图(c)所示。
(1) 对于,画出和的频谱;(2) 对于,确定能够从中恢复的系统。
解(1)由此可以绘出及的频谱图如下:(2) 从的频谱可以看出,由恢复的系统如图所示:3.11在题图3.11(a)所示系统中,已知输入信号的傅里叶变换如题图(b)所示,系统的频率特性和分别如图(c)和图(d)所示,试求输出的傅里叶变换。
解:参见题图的标注。
*3.12 在题图3.12(a)所示的滤波器中,。
如果滤波器的频率特性函数满足:(,为常数)则称该滤波器为信号的匹配滤波器。
(1) 若为图(b)所示的单个矩形脉冲,求其匹配滤波器的频率特性函数;(2) 证明图(c)所示系统是单个矩形脉冲的匹配滤波器;(3) 求单个单个矩形脉冲匹配滤波器的冲激响应,并画出的波形;(4) 求单个单个矩形脉冲匹配滤波器的输出响应,并画出的波形。
解(1)解(2)参见图(c)标注.又,即与(1)中有相同的函数形式。
解(3),解(4)(取k=1)[为一三角波]*3.13 求题3.1中和的功率谱密度函数。
解(1)参见3-1题。
首先推出周期信号功率谱密度函数的表达式:周期信号的傅里叶变换为:其中是傅里叶级数展开式系数。
考虑截取信号:根据频域卷积定理,截取信号的傅里叶变换为:当时,趋向于集中在处,其他地方为零值,所以功率谱密度函数为:由于,,所以:由此可求题给信号的功率谱密度函数:解(2)*3.14 求题3.2中和的能量谱密度函数。
解设的能量谱密度函数为,。
设的能量谱密度函数为,。
*3.15 信号的最高频率为500Hz,当信号的最低频率分别为0,300Hz,400Hz时,试确定能够实现无混叠采样的最低采样频率,并解释如何从采样后信号中恢复。
解(1) ,所以(2) ,,取当代入式中可知,只有当不等式才能成立:,所以采样频率只能取Hz。
(3) ,,当代入式中可知,当不等式成立:,所以最低采样频率。
*3.16 正弦信号的振幅电平为V,现采用12位的量化器进行舍入式量化,求量化误差的方均根值和量化信噪比。
解,,;,;,;*3.17 绘出,的波形,并证明它们在[0,1]区间上是相互正交的。
解由三角函数和符号函数的意义可绘出的波形如图所示。
显然:即在[0,1]区间上满足正交的定义。
*3.18 求信号的自相关函数。
解当:当:第四章习题解答4.1 求下列离散周期信号的傅里叶级数系数。
(1)解,若取则:(2)解若取:则(3)解,若取则:(4) ,周期解(5)解(6)解4.2 已知周期信号的傅里叶级数系数及其周期,试确定信号。
(1) ,解,将此式与的定义式比较可知:若取则(2) ,解4.3 求下列序列的傅里叶变换。
(1)解(2)解令有:(3)解(4)解(5)解(6)解4.4 利用傅里叶变换的性质求下列序列的傅里叶变换。
(1)解(2)解(3)解(4)解4.5 已知的傅里叶变换为,求下列序列的傅里叶变换。
(1)解;(2)解,(3)解(4)解4.6 已知离散信号的傅里叶变换为,求其对应的时域信号。
(1)解(2)解和的定义式比较知:(3)解(4)解(5)解4.7 设两个离散LTI系统的频率响应分别为将这两个系统级联后,求描述整个系统的差分方程。