语音信号处理实验二
- 格式:doc
- 大小:235.71 KB
- 文档页数:9
语音信号处理实验报告实验二一、实验目的本次语音信号处理实验的目的是深入了解语音信号的特性,掌握语音信号处理的基本方法和技术,并通过实际操作和数据分析来验证和巩固所学的理论知识。
具体而言,本次实验旨在:1、熟悉语音信号的采集和预处理过程,包括录音设备的使用、音频格式的转换以及噪声去除等操作。
2、掌握语音信号的时域和频域分析方法,能够使用相关工具和算法计算语音信号的短时能量、短时过零率、频谱等特征参数。
3、研究语音信号的编码和解码技术,了解不同编码算法对语音质量和数据压缩率的影响。
4、通过实验,培养我们的动手能力、问题解决能力和团队协作精神,提高我们对语音信号处理领域的兴趣和探索欲望。
二、实验原理(一)语音信号的采集和预处理语音信号的采集通常使用麦克风等设备将声音转换为电信号,然后通过模数转换器(ADC)将模拟信号转换为数字信号。
在采集过程中,可能会引入噪声和干扰,因此需要进行预处理,如滤波、降噪等操作,以提高信号的质量。
(二)语音信号的时域分析时域分析是对语音信号在时间轴上的特征进行分析。
常用的时域参数包括短时能量、短时过零率等。
短时能量反映了语音信号在短时间内的能量分布情况,短时过零率则表示信号在单位时间内穿过零电平的次数,可用于区分清音和浊音。
(三)语音信号的频域分析频域分析是将语音信号从时域转换到频域进行分析。
通过快速傅里叶变换(FFT)可以得到语音信号的频谱,从而了解信号的频率成分和分布情况。
(四)语音信号的编码和解码语音编码的目的是在保证一定语音质量的前提下,尽可能降低编码比特率,以减少存储空间和传输带宽的需求。
常见的编码算法有脉冲编码调制(PCM)、自适应差分脉冲编码调制(ADPCM)等。
三、实验设备和软件1、计算机一台2、音频采集设备(如麦克风)3、音频处理软件(如 Audacity、Matlab 等)四、实验步骤(一)语音信号的采集使用麦克风和音频采集软件录制一段语音,保存为常见的音频格式(如 WAV)。
语音信号处理试验实验一:语音信号时域分析实验目的:(1)录制两段语音信号,内容是“语音信号处理”,分男女声。
(2)对语音信号进行采样,观察采样后语音信号的时域波形。
实验步骤:1、使用window自带录音工具录制声音片段使用windows自带录音机录制语音文件,进行数字信号的采集。
启动录音机。
录制一段录音,录音停止后,文件存储器的后缀默认为.Wav。
将录制好文件保存,记录保存路径。
男生女生各录一段保存为test1.wav和test2.wav。
图1基于PC机语音信号采集过程。
2、读取语音信号在MATLAB软件平台下,利用wavread函数对语音信号进行采样,记住采样频率和采样点数。
通过使用wavread函数,理解采样、采样频率、采样位数等概念!Wavread函数调用格式:y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。
[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(hz),nbits表示采样位数。
y=wavread(file,N),读取前N点的采样值放在向量y中。
y=wavread(file,[N1,N2]),读取从N1到N2点的采样值放在向量y中。
3、编程获取语音信号的抽样频率和采样位数。
语音信号为test1.wav和test2.wav,内容为“语音信号处理”,两端语音保存到工作空间work文件夹下。
在M文件中分别输入以下程序,可以分两次输入便于观察。
[y1,fs1,nbits1]=wavread('test1.wav')[y2,fs2,nbits2]=wavread('test2.wav')结果如下图所示根据结果可知:两端语音信号的采样频率为44100HZ,采样位数为16。
4、语音信号的时域分析语音信号的时域分析就是分析和提取语音信号的时域参数。
进行语音分析时,最先接触到并且夜市最直观的是它的时域波形。
语音信号处理实验报告——语音信号分析实验一.实验目的及原理语音信号分析是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信、语音合成和语音识别等处理,并且语音合成的音质好坏和语音识别率的高低,都取决于对语音信号分析的准确性和精确性。
贯穿语音分析全过程的是“短时分析技术”。
因为从整体来看,语音信号的特性及表征其本质特征的参数均是随时间变化的,所以它是一个非平稳态过程,但是在一个短时间范围内(一般认为在10~30ms的时间内),其特性基本保持不变,即相对稳定,可将其看做一个准稳态过程,即语音信号具有短时平稳性。
所以要将语音信号分帧来分析其特征参数,帧长一般取为10ms~30ms。
二.实验过程1.2.男声及女声(蓝色为时域信号,红色为每一帧的能量,绿色为每一帧的过零率)某一帧的自相关函数3.频域分析①一帧信号的倒谱分析和FFT及LPC分析②男声和女声的倒谱分析对应的倒谱系数:,,……对应的LPC预测系数:1,,,,,……原语音波形一帧语音波形一帧语音的倒谱③浊音和清音的倒谱分析④浊音和清音的FFT分析和LPC分析(红色为FFT图像,绿色为LPC图像)三.实验结果分析1.时域分析实验中采用的是汉明窗,窗的长度对能否由短时能量反应语音信号的变化起着决定性影响。
这里窗长合适,En能够反应语音信号幅度变化。
同时,从图像可以看出,En可以作为区分浊音和清音的特征参数。
短时过零率表示一帧语音中语音信号波形穿过横轴(零电平)的次数。
从图中可以看出,短时能量和过零率可以近似为互补的情况,短时能量大的地方过零率小,短时能量小的地方过零率较大。
从浊音和清音的时域分析可以看出,清音过零率高,浊音过零率低。
从男声女声的时域信号对比图中可以看出,女音信号在高频率分布得更多,女声信号在高频段的能量分布更多,并且女声有较高的过零率,这是因为语音信号中的高频段有较高的过零率。
2.频域分析这里对信号进行快速傅里叶变换(FFT),可以发现,当窗口函数不同,傅里叶变换的结果也不相同。
数字语音信号处理实验指导书前言语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。
通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。
同时,语言也是人与机器之间进行通信的重要工具,它是一种理想的人机通信方式,因而可为信息处理系统建立良好的人机交互环境,进一步推动计算机和其他智能机器的应用,提高社会的信息化程度。
语音信号处理是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。
虽然从事这一领域研究的人员主要来自信号与信息处理及计算机应用等学科,但是它与语音学、语言学、声学、认知科学、生理学、心理学等许多学科也有非常密切的联系。
20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。
随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。
近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。
为了深入理解语音信号数字处理的基础理论、算法原理、研究方法和难点,根据数字语音信号处理教学大纲,结合课程建设的需求,我们编写了本实验参考书。
本本参考书针对教学大纲规定的四个研究设计型实验,每个实验给出了参考程序,目的是起一个抛砖引玉的作用,学生在学习过程中,可以针对某一个实验进行延伸的创新学习,比如说,语音端点的检测、语音共振峰提取、基于HMM或DTW的有限词汇或大词汇的特定人、非特定人的语音识别、识别率的提高(如何提高有噪环境下的识别率)、以及编码问题等,同时在学习中还可深入思考如何将有关的方法在嵌入式系统或DSP 下的实现问题等。
华南理工大学《语音信号处理》实验报告实验名称:基音周期估计姓名:学号:班级:10级电信5班日期:2013年5 月15日1.实验目的本次试验的目的是通过matlab编程,验证课本中基音周期估计的方法,本实验采用的方法是自相关法。
2. 实验原理1、基音周期基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。
基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。
因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。
由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。
基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。
②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容易。
③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。
④基音周期变化范围大,从老年男性的50Hz到儿童和女性的450Hz,接近三个倍频程,给基音检测带来了一定的困难。
由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。
尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT、谱图法、小波法等等。
实验二语音信号处理班级:08电子C班姓名:苏清法学号:0815241036(1)语音信号的采集:利用Windows下的录音机,录制一段话音。
然后在Matla软件平台下,利用函数wavread对语音信号进行采样,播放语音信号,并绘制原始语音信号;wavread函数调用格式:y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。
[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(Hz),nbits表示采样位数。
y=wavread(file,N),读取前N点的采样值放在向量y中。
y=wavread(file,[N1,N2]),读取从N1点到N2点的采样值放在向量y中。
降采样:利用windows下的录音机录制的音频采样率是固定的fs(=22050),可以选择以下函数实现对语音信号的降采样。
y=x((1:N:length(x))); %对原始信号每隔N个点取一位,即采样率变为原来的1/Ny=resample(yn,L,M); %采样率变为原来的L/M倍y=downsample(yn,N); %%采样率变为原来的1/N倍改变采样率为原来的1/2倍,1/4倍,1/20倍,1/50倍,1/100倍等,分别画出降样前后的信号波形和频谱图,分析采样前后信号的变化Matlab程序如下:(2)重构原信号:降采样后,信号的采样率和采样点数同时变化。
如采样率变为原来的1/2,即对原始信号每隔一个点采样。
如果要恢复原始信号,即信号长度和采样率须变为原来同样大小。
所以,必须对降采样后信号进行插值重构。
对采样后的真实语音信号进行插值重构,滤波,恢复原始信号。
画出插值前后信号的波形以及频谱图,并将重构后信号与原始信号进行比较。
如,对采样率降为原来1/4的降采样后信号插值重构。
Matlab程序如下:(3)对原始信号加入噪声:对原始语音信号加入s=sin(2*pi*f*Ts*n)的噪声,采样后可知Fs = 16000,选择f = 2500,播放加入噪声信号的语音信号,并绘制噪声信号和含噪语音信号;设计频率已知的噪声信号或者用自然噪声信号加在原始语音信号上,构建带噪声信号。
学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:实验四 减谱法语音增强技术研究一、实验目的本实验要求掌握减谱法语音增强的原理,会利用已学的相关语音特征,构建语音特征矢量,然后自己设计减谱法语音增强程序(也可参考相关文献),能显示干净语音和加噪语音信号及处理后的结果语音信号波形,分析实验结果,写出报告。
二、实验原理谱减法的基本原理谱相减方法是基于人的感觉特性,即语音信号的短时幅度比短时相位更容易对人的听觉系统产生影响,从而对语音短时幅度谱进行估计,适用于受加性噪声污染的语音。
由于语音是短时平稳的,所以在短时谱幅度估计中认为它是平稳随机信号,假设)(m s 、)(m n 和)(m y 分别代表语音、噪声和带噪语音,)(ωs S 、)(ωn S 和)(ωy S 分别表示其短时谱。
假设噪声)(m n 是与语音)(m s 不相关的加性噪声。
于是得到信号的加性模型:)()()(m n m s m y += (4-1)对功率谱有 )()()()(|)(||)(||)(|**222ωωωωωωωw w w w w w w N S N S N S Y +++= (4-4) 原始语音的估值为]|)([||)(||)(|222ωωωw w w N E Y S -=∧(4-5)只要在频域用(4-5)式得到纯净语音的谱估计,就可以根据(4-6)式得到增强后的语音。
[])()(ˆ)(ˆωϕωj w e s IFFT m s=错误!未找到引用源。
(4-6)根据前面分析,我们可以给出谱相减算法的整个算法流程,如图4-1所示:图4-1 谱减法的算法流程三、实验程序带噪学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩:1、噪声叠加到信号上的比较%在噪声环境下语音信号的增强%语音信号为读入的声音文件%噪声为正态随机噪声clear;input=wavread('C:\Users\Administrator\Desktop\yuyinxinhao\b1.wav');count=length(input);noise1=0.1*randn(1,count);signal=input;for i=1:countvoice1(i)=signal(i)+noise1(i);endnoise2=0.01*randn(1,count);for i=1:countvoice2(i)=signal(i)+noise2(i);endnoise3=randn(1,count);signal=input;for i=1:countvoice3(i)=signal(i)+noise3(i);endn=1:count;figure %对比纯净语音信号,噪音信号和带噪语音信号subplot(3,1,1);plot(n,signal);title('纯净信号')subplot(3,1,2);plot(n,noise1);title('噪音信号')subplot(3,1,3);plot(n,voice1);title('带噪信号')figure %对比纯净语音信号频谱,噪音信号和带噪信号频谱Fss=fft(signal);subplot(3,1,1);plot(n,abs(Fss));title('纯净信号频谱')Fss1=fft(noise1);subplot(3,1,2);plot(n,abs(Fss1));学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226 课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩:title('噪音信号频谱')Fv1=fft(voice1);subplot(3,1,3)plot(n,abs(Fv1));title('带噪信号的频谱')figure %对比纯净语音信号,噪音信号和带噪语音信号subplot(3,1,1);plot(n,signal);title('纯净信号')subplot(3,1,2);plot(n,noise2);title('噪音信号')subplot(3,1,3);plot(n,voice2);title('带噪信号')figure %对比纯净语音信号频谱,噪音信号和带噪信号频谱Fss=fft(signal);subplot(3,1,1);plot(n,abs(Fss));title('纯净信号频谱')Fss2=fft(noise2);subplot(3,1,2);plot(n,abs(Fss2));title('噪音信号频谱')Fv2=fft(voice2);subplot(3,1,3)plot(n,abs(Fv2));title('带噪信号的频谱')figure %对比纯净语音信号,噪音信号和带噪语音信号subplot(3,1,1);plot(n,signal);title('纯净信号')subplot(3,1,2);plot(n,noise3);title('噪音信号')subplot(3,1,3);plot(n,voice3);title('带噪信号')figure %对比纯净语音信号频谱,噪音信号和带噪信号频谱学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩:Fss=fft(signal);subplot(3,1,1);plot(n,abs(Fss));title('纯净信号频谱')Fss3=fft(noise3);subplot(3,1,2);plot(n,abs(Fss3));title('噪音信号频谱')Fv3=fft(voice3);subplot(3,1,3)plot(n,abs(Fv3));title('带噪信号的频谱')2、利用减谱法的基本原理给语音信号降噪噪声为0.1*randn(1,coun) 纯净信号为输入信号%在噪声环境下语音信号的增强%语音信号为读入的声音文件%噪声为正态随机噪声clear;input=wavread('C:\Users\Administrator\Desktop\yuyinxinhao\b1.wav');count=length(input);noise=1*randn(1,count);signal=input';for i=1:countvoice(i)=signal(i)+noise(i);endFv=fft(voice);anglev=angle(Fv);Fn=fft(noise);power1=(abs(Fv)).^2;power2=(abs(Fn)).^2;power3=power1-power2;power4=sqrt(power3);Fs=power4.*exp(j*anglev);sound=ifft(Fs);n=1:count;%纯净语音信号频谱Fss=fft(signal);figure %对比纯净语音信号和输出信号subplot(2,1,1)学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩:plot(n,signal);title('纯净信号')subplot(2,1,2)plot(n,sound);title('输出信号')figure %对比纯净语音信号频谱和输出语音信号频谱subplot(2,1,1)plot(n,abs(Fss));title('纯净信号频谱')subplot(2,1,2)plot(n,abs(Fs));title('输出信号频谱')max_v=max(voice); %对带噪信号抽样值点进行归一化处理re_voice=voice/max_v;%对输出信号抽样点值进行归一化处理max_s=max(sound);re_sound=sound/max_s;%读出带噪语音信号,存为'1001.wav'wavwrite(re_voice,5500,16,'1001');%读出处理后语音信号,存为'1002.wav'wavwrite(re_sound,5500,16,'1002')3、利用改进的减谱法给语音信号降噪噪声为0.1*randn(1,coun) 纯净信号为输入信号%在噪声环境下语音信号的增强%语音信号为读入的声音文件%噪声为正态随机噪声clear;input=wavread('C:\Users\Administrator\Desktop\yuyinxinhao\b1.wav');count=length(input);noise=0.1*randn(1,count);signal=input';for i=1:countvoice(i)=signal(i)+noise(i);endFv=fft(voice);anglev=angle(Fv);Fn=fft(noise);power1=(abs(Fv)).^2;power2=(abs(Fn)).^2;学院:信息与电气工程学院班级: 电信111 姓名: 彭宝玺学号: 2011081226 课程: 语音信号处理实验日期: 2014 年 4 月 25 日成绩: for i=1:countif(power1(i)>=3*power2(i))power3(i)=power1(i)-3*power2(i);elsepower3(i)=0.01*power2(i);endendpower4=sqrt(power3);Fs=power4.*exp(j*anglev);sound=ifft(Fs);n=1:count;%纯净语音信号频谱Fss=fft(signal);figure %对比纯净语音信号和输出信号subplot(2,1,1)plot(n,signal);title('纯净信号')subplot(2,1,2)plot(n,sound);title('输出信号')figure %对比纯净语音信号频谱和输出语音信号频谱subplot(2,1,1)plot(n,abs(Fss));title('纯净信号频谱')subplot(2,1,2)plot(n,abs(Fs));title('输出信号频谱')四、实验结果1、噪声叠加到信号上的比较(1)噪声为0.1*randn(1,count)学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020004000600080001000012000140001600018000-0.200.2纯净信号020004000600080001000012000140001600018000-0.500.5噪音信号020004000600080001000012000140001600018000-0.50.5带噪信号020004000600080001000012000140001600018000050100纯净信号频谱050噪音信号频谱2000400060008000100001200014000160001800050100带噪信号的频谱(2)噪声为0.01*randn(1,count)学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020004000600080001000012000140001600018000-0.200.2纯净信号020004000600080001000012000140001600018000-0.0500.05噪音信号020004000600080001000012000140001600018000-0.20.2带噪信号020004000600080001000012000140001600018000050100纯净信号频谱0200040006000800010000120001400016000180005噪音信号频谱02000400060008000100001200014000160001800050100带噪信号的频谱(3)噪声为randn(1,count)学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020004000600080001000012000140001600018000-0.200.2纯净信号020004000600080001000012000140001600018000-505噪音信号-505带噪信号2、利用减谱法的基本原理给语音信号降噪噪声为0.1*randn(1,coun) 纯净信号为输入信号20004000600080001000012000140001600018000-0.2-0.100.10.2纯净信号-0.50.5输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱50100输出信号频谱3、利用改进的减谱法给语音信号降噪噪声为0.1*randn(1,coun) 纯净信号为输入信号 (1)参数取a=3,b=0.0120004000600080001000012000140001600018000-0.2-0.100.10.2纯净信号20004000600080001000012000140001600018000-0.1-0.0500.050.1输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020004000600080001000012000140001600018000020406080纯净信号频谱0200040006000800010000120001400016000180000204060输出信号频谱(2)参数取a=10,b=0.01-0.2-0.10.10.2纯净信号-0.1-0.050.050.1输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱020406080输出信号频谱(3)参数取a=0.8,b=0.01020004000600080001000012000140001600018000-0.2-0.10.10.2纯净信号020004000600080001000012000140001600018000-0.4-0.20.20.4输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱20004000600080001000012000140001600018000020406080输出信号频谱(4)参数取a=3,b=0.0001020004000600080001000012000140001600018000-0.2-0.10.10.2纯净信号-0.1-0.050.050.1输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱020004000600080001000012000140001600018000020406080输出信号频谱(5)参数取a=3,b=0.1020004000600080001000012000140001600018000-0.2-0.10.10.2纯净信号20004000600080001000012000140001600018000-0.2-0.10.10.2输出信号学院:信息与电气工程学院 班级: 电信111 姓名: 彭宝玺 学号: 2011081226 课程: 语音信号处理 实验日期: 2014 年 4 月 25 日 成绩:020406080纯净信号频谱20004000600080001000012000140001600018000020406080输出信号频谱五、实验分析1、噪声叠加到信号上时,噪声会对信号产生较大影响,噪声加强会使信号被噪声淹没;噪声减弱,对信号的影响减小;2、用减谱法的基本原理対带噪信号进行处理后,信号质量明显提升,从而得到较纯净的语音信号;3、用改进的减谱法対带噪信号进行处理后,信号质量更好,语音信号更纯净。
最新语音信号处理实验报告实验二实验目的:本实验旨在通过实际操作加深对语音信号处理理论的理解,并掌握语音信号的基本处理技术。
通过实验,学习语音信号的采集、分析、滤波、特征提取等关键技术,并探索语音信号处理在实际应用中的潜力。
实验内容:1. 语音信号采集:使用语音采集设备录制一段时长约为10秒的语音样本,确保录音环境安静,语音清晰。
2. 语音信号预处理:对采集到的语音信号进行预处理,包括去噪、归一化等操作,以提高后续处理的准确性。
3. 语音信号分析:利用傅里叶变换等方法分析语音信号的频谱特性,观察并记录基频、谐波等特征。
4. 语音信号滤波:设计并实现一个带通滤波器,用于提取语音信号中的特定频率成分,去除噪声和非目标频率成分。
5. 特征提取:从处理后的语音信号中提取关键特征,如梅尔频率倒谱系数(MFCC)等,为后续的语音识别或分类任务做准备。
6. 实验总结:根据实验结果,撰写实验报告,总结语音信号处理的关键技术和实验中遇到的问题及其解决方案。
实验设备与工具:- 计算机一台,安装有语音信号处理相关软件(如Audacity、MATLAB 等)。
- 麦克风:用于采集语音信号。
- 耳机:用于监听和校正采集到的语音信号。
实验步骤:1. 打开语音采集软件,调整麦克风输入设置,确保录音质量。
2. 录制语音样本,注意控制语速和音量,避免过大或过小。
3. 使用语音分析软件打开录制的语音文件,进行频谱分析,记录观察结果。
4. 设计带通滤波器,设置合适的截止频率,对语音信号进行滤波处理。
5. 应用特征提取算法,获取语音信号的特征向量。
6. 分析滤波和特征提取后的结果,评估处理效果。
实验结果与讨论:- 描述语音信号在预处理、滤波和特征提取后的变化情况。
- 分析实验中遇到的问题,如噪声去除不彻底、频率成分丢失等,并提出可能的改进措施。
- 探讨实验结果对语音识别、语音合成等领域的潜在应用价值。
结论:通过本次实验,我们成功实现了语音信号的基本处理流程,包括采集、预处理、分析、滤波和特征提取。
语⾳信号处理实验报告语⾳信号处理实验报告【实验⼀】⼀、实验题⽬Short time analysis⼆、实验要求Write a MA TLAB program to analyze a speech and simultaneously, on a single page, plot the following measurements:1. the entire speech waveform2. the short-time energy, En3. the short-time magnitude, Mn4. the short-time zero-crossing, Zn5. the narrowband spectrogram6. the wideband spectrogramUse both the speech waveforms in the wznjdx_normal.wav. Choose appropriate window sizes, window shifts, and window for the analysis. Explain your choice of these parameters.三、实验程序clear[x,fs]=wavread('wznjdx_normal.wav');n=length(x);N=320;subplot(4,1,1);plot(x);h=linspace(1,1,N);En=conv(h,x.*x);subplot(4,1,2);plot(En);Mn=conv(h,abs(x));subplot(4,1,3);plot(Mn);for i=1:n-1if x(i)>=0 y(i)=1;else y(i)=-1;endif x(i+1)>=0 y(i+1)=1;else y(i+1)=-1;endw(i)=abs(y(i+1)-y(i));endk=1;j=0;while (k+N-1)Zm(k)=0;for i=0:N-1Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2;endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N);endsubplot(4,1,4);plot(Q);grid;figure(2);subplot(2,1,1);spectrogram(x,h,256,200,0.0424*fs); subplot(2,1,2);spectrogram(x,h,256,200,0.0064*fs);四、实验结果语谱图:(Matlab 7.0 ⽤不了spectrogram)【实验⼆】⼀、实验题⽬Homomorphic analysis⼆、实验要求Write a MATLAB program to compute the real cepstrums of a section of voiced speech and unvoiced speech. Plot the signal, the log magnitude spectrum, the real cepstrum, and the lowpass liftered log magnitude spectrum.三、实验程序nfft=256;[x,fs] = wavread('wznjdx_normal.wav');fx=x;Xvm=log(abs(fft(fx,nfft)));xhv=real(ifft(Xvm,nfft));lifter=zeros(1,nfft);lifter(1:30)=1;lifter(nfft-28:nfft)=1;fnlen=0.02*fs; % 20mswin=hamming(fnlen);%加窗n=fnlen;%窗宽度赋给循环⾃变量nnoverlap=0.5*fnlen;while(n<=length(x)-1)fx=x(n-fnlen+1:n).*win;n=n+noverlap;endxhvp=xhv.*lifter';figure;subplot(4,1,1)plot(lifter);title('倒谱滤波器');subplot(4,1,2)plot(x);title('语⾳信号波形');subplot(4,1,3)plot(Xvm);title('Xvm');subplot(4,1,4)plot(xhv);title('xhv');四、实验结果【实验三】⼀、实验题⽬LP analysis⼆、实验要求Write a MATLAB program to convert from a frame of speech to a set of linear prediction coefficients. Plot the LPC spectrum superimposed on the corresponding STFT.三、实验程序clear;[x,fs]=wavread('wznjdx_normal.wav');fx=x(4000:4160-1);p=10;[a,e,k]=aryule(fx,p);G=sqrt(e*length(fx));f=log(abs(fft(fx)));h0=zeros(1,160);h=log(G)-log(abs(fft(a,160)));figure(1);subplot(211);plot(fx);subplot(212);plot(f);hold on;plot((0:160-1),h,'r');四、实验结果【实验四】⼀、实验题⽬Pitch estimation⼆、实验内容Write a program to implement the pitch estimation and the voiced/unvoiced decision using the LPC-based method.三、实验程序clear[x,fs]=wavread('wznjdx_normal.wav');n=length(x);Q = x';NFFT=512;N = 256;Hamm = hamming(N);frame = 30;M = Q(((frame -1) * (N / 2) + 1):((frame - 1) * (N / 2) + N)); Frame = M .* Hamm';% lowpass filter[b2,a2]=butter(2,900/4000);speech2=filter(b2,a2,Frame); % filter% residual[a,e] = lpc(speech2,20);errorlp=filter(a,1,speech2); % residual% Short-term autocorrelation.re = xcorr(errorlp);% Find max autocorrelation for lags in the interval minlag to maxlag. minlag = 17; % F0: 450Hzmaxlag =160; % F0: 50Hz[remax,idx] = max(re(fnlen+minlag:fnlen+maxlag));figuresubplot(3,1,1);plot(Frame);subplot(3,1,2);plot(speech2);subplot(3,1,3);plot(re);text(500,0,'idx');idx=idx-1+minlagremax四、实验结果【实验五】⼀、实验题⽬Speech synthesis⼆、实验内容Write a program to analyze a speech and synthesize it using the LPC-based method.三、实验程序主程序clear;[x,sr] = wavread('wznjdx_normal.wav');p=[1 -0.9];x=filter(p,1,x);N=256;inc=128;y=lpcsyn(x,N,inc);wavplay(y,sr);⼦程序lpcsynfunction y=lpcsyn(x,N,inc)%[x,sr] = wavread('wznjdx_normal.wav');%pre = [1 -0.97];%x = filter(pre,1,x);%N=256;%inc=128;fn=floor(length(x)/inc);y=zeros(1,50000);for (i=1:fn)x(1:N,i)=x((i-1)*inc+1:(i+1)*inc);[A(i,:),G(i),P(i),fnlen,fnshift] = lpcana(x(1:N,i),order); if (P(i)) % V oiced frame.e = zeros(N,1);e(1:P(i):N) = 1; % Impulse-train excitation.else % Unvoiced frame.e = randn(N,1); % White noise excitation.endyt=filter(G(i),A(i,:),e);j=(i-1)*inc+[1:N];y(j) = y(j)+yt';end;end⼦程序lpcanafunction [A,G,P,fnlen,fnshift] = lpcana(x,order) fnlen=256;fnshift=fnlen/2;n=length(x);[b2,a2]=butter(2,900/4000);speech2=filter(b2,a2,x);[A,e]=lpc(speech2,order);errorlp=filter(A,1,speech2);re=xcorr(errorlp);G=sqrt(e*length(speech2));minlag=17;maxlag=160;[remax,idx]=max(re(n+minlag:n+maxlag));P=idx-1+minlag;end四、实验结果【实验六】⼀、实验题⽬Speech enhancement⼆、实验内容Write a program to implement the basic spectral magnitude subtraction.三、实验程序clear[speech,fs,nbits]=wavread('wznjdx_normal.wav');%读⼊数据alpha=0.04;%噪声⽔平winsize=256;%窗长size=length(speech);%语⾳长度numofwin=floor(size/winsize);%帧数hamwin=zeros(1,size);%定义汉明窗长度enhanced=zeros(1,size);%定义增强语⾳的长度ham=hamming(winsize)';%%产⽣汉明窗x=speech'+alpha*randn(1,size);%信号加噪声noisy=alpha*randn(1,winsize);%噪声估计N=fft(noisy);nmag=abs(N);%噪声功率谱%分帧for q=1:2*numofwin-1frame=x(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2);%对带噪语⾳帧间重叠⼀半取值hamwin(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)=...hamwin(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)+ham;%加窗y=fft(frame.*ham);mag=abs(y);%带噪语⾳功率谱phase=angle(y);%带噪语⾳相位%幅度谱减for i=1:winsizeif mag(i)-nmag(i)>0clean(i)=mag(i)-nmag(i);else clean(i)=0;endend%频域中重新合成语⾳spectral=clean.*exp(j*phase);%反傅⾥叶变换并重叠相加enhanced(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)=...enhanced(1+(q-1)*winsize/2:winsize+(q-1)*winsize/2)+real(ifft(spectral));endfigure(1);subplot(3,1,1);plot(speech);xlabel('样点数');ylabel('幅度');title('原始语⾳波形'); subplot(3,1,2);plot(x);xlabel('样点数');ylabel('幅度');title('语⾳加噪波形'); subplot(3,1,3);plot(enhanced);xlabel('样点数');ylabel('幅度');title('增强语⾳波形');四、实验结果。
实验一、语音信号采集与分析一、实验目的:1)了解语音信号处理基本知识:语音信号的生成的数学模型。
2)在理论学习的基础上,进一步地理解和掌握语音信号的读入、回放、波形显示。
语音信号时域和频域分析方法。
二、实验原理一定时宽的语音信号,其能量的大小随时间有明显的变化。
其中清音段(以清音为主要成份的语音段),其能量比浊音段小得多。
短时过零数也可用于语音信号分析中,发浊音时,其语音能量约集中于3kHz以下,而发清音时,多数能量出现在较高频率上,可认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数,因而,对一短时语音段计算其短时平均能量及短时平均过零数,就可以较好地区分其中的清音段和浊音段,从而可判别句中清、浊音转变时刻,声母韵母的分界以及无声与有声的分界。
这在语音识别中有重要意义。
FFT在数字通信、语音信号处理、图像处理、匹配滤波以及功率谱估计、仿真、系统分析等各个领域都得到了广泛的应用。
本实验通过分析加噪的语音信号频谱,可以作为分离信号和噪声的理论基础。
三、实验内容:Matlab编程实验步骤:1.新建M文件,扩展名为“.m”,编写程序;2.选择File/Save命令,将文件保存在F盘中;3.在Command Window窗中输入文件名,运行程序;程序一、用MATLAB对原始语音信号进行时域分析,分析短时平均能量及短时平均过零数。
程序二、用MATLAB对原始语音信号进行频域分析,画出它的时域波形和频谱给原始的语音信号加上一个高频余弦噪声,频率为5kHz。
画出加噪后的语音信号时域和频谱图。
程序1.a=wavread(' D:\II.wav'); %读取语音信号的数据,赋给变量x1,这里的文件的全路径和文件名由个人设计n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);%形成一个矩形窗,长度为NEn=conv(h,a.*a);%求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0b(i)= 1;elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)=-1;endw(i)=abs(b(i+1)-b(i));end%求出每相邻两点符号的差值的绝对值k=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+160; %每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/640;%短时平均过零率endsubplot(3,1,3),plot(Q);实验结果打印粘贴到右侧:程序2:fs=22050; %语音信号采样频率为22050x1=wavread('D:\II.wav'); %读取语音信号的数据,赋给变量x1sound(x1,22050); %播放语音信号f=fs*(0:511)/1024;t=0:1/22050:(size(x1)-1)/22050; %将所加噪声信号的点数调整到与原始信号相同Au=0.03;d=[Au*cos(2*pi*5000*t)]'; %噪声为5kHz的余弦信号x2=x1+d;sound(x2,22050); %播放加噪声后的语音信号y2=fft(x2,1024); %对信号做1024点FFT变换figure(1)subplot(2,1,1);plot(x1) %做原始语音信号的时域图形title('原始语音信号');xlabel('time n');ylabel('幅值 n');subplot(2,1,2);plot(t,x2)title('加噪后的信号');xlabel('time n');ylabel('幅值 n');figure(2)subplot(2,1,1);plot(f,abs(x1(1:512)));title('原始语音信号频谱');xlabel('Hz');ylabel('幅值');subplot(2,1,2);plot(f,abs(y2(1:512)));title('加噪后的信号频谱');xlabel('Hz'); ylabel('幅值');实验结果打印粘贴到右侧:050010001500200025003000350040004500原始语音信号time n幅值 n加噪后的信号time n幅值 n020004000600080001000012000原始语音信号频谱Hz幅值加噪后的信号频谱Hz幅值四、实验分析加入噪声后音频文件可辨性下降,波形的平缓,频谱图上看,能量大部分集中在2000HZz到4000Hz之间。
一、实验目的1. 理解语音信号处理的基本原理和流程。
2. 掌握语音信号的采集、预处理、特征提取和识别等关键技术。
3. 提高实际操作能力,运用所学知识解决实际问题。
二、实验原理语音信号处理是指对语音信号进行采集、预处理、特征提取、识别和合成等操作,使其能够应用于语音识别、语音合成、语音增强、语音编码等领域。
实验主要包括以下步骤:1. 语音信号的采集:使用麦克风等设备采集语音信号,并将其转换为数字信号。
2. 语音信号的预处理:对采集到的语音信号进行降噪、去噪、归一化等操作,提高信号质量。
3. 语音信号的特征提取:提取语音信号中的关键特征,如频率、幅度、倒谱等,为后续处理提供依据。
4. 语音信号的识别:根据提取的特征,使用语音识别算法对语音信号进行识别。
5. 语音信号的合成:根据识别结果,合成相应的语音信号。
三、实验步骤1. 语音信号的采集使用麦克风采集一段语音信号,并将其保存为.wav文件。
2. 语音信号的预处理使用MATLAB软件对采集到的语音信号进行预处理,包括:(1)降噪:使用谱减法、噪声抑制等算法对语音信号进行降噪。
(2)去噪:去除语音信号中的杂音、干扰等。
(3)归一化:将语音信号的幅度归一化到相同的水平。
3. 语音信号的特征提取使用MATLAB软件对预处理后的语音信号进行特征提取,包括:(1)频率分析:计算语音信号的频谱,提取频率特征。
(2)幅度分析:计算语音信号的幅度,提取幅度特征。
(3)倒谱分析:计算语音信号的倒谱,提取倒谱特征。
4. 语音信号的识别使用MATLAB软件中的语音识别工具箱,对提取的特征进行识别,识别结果如下:(1)将语音信号分为浊音和清音。
(2)识别语音信号的音素和音节。
5. 语音信号的合成根据识别结果,使用MATLAB软件中的语音合成工具箱,合成相应的语音信号。
四、实验结果与分析1. 语音信号的采集采集到的语音信号如图1所示。
图1 语音信号的波形图2. 语音信号的预处理预处理后的语音信号如图2所示。
语音信号处理实验指导书实验一:语音信号的采集与播放实验目的:了解语音信号的采集与播放过程,掌握采集设备的使用方法。
实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 将麦克风插入电脑的麦克风插孔。
2. 打开电脑的录音软件(如Windows自带的录音机)。
3. 在录音软件中选择麦克风作为录音设备。
4. 点击录音按钮开始录音,讲话或者唱歌几秒钟。
5. 点击住手按钮住手录音。
6. 播放刚刚录制的语音,检查录音效果。
7. 将扬声器或者耳机插入电脑的音频输出插孔。
8. 打开电脑的音频播放软件(如Windows自带的媒体播放器)。
9. 选择要播放的语音文件,点击播放按钮。
10. 检查语音播放效果。
实验二:语音信号的分帧与加窗实验目的:了解语音信号的分帧和加窗过程,掌握分帧和加窗算法的实现方法。
实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段语音。
2. 将录制的语音信号进行分帧处理。
选择合适的帧长和帧移参数。
3. 对每一帧的语音信号应用汉明窗。
4. 将处理后的语音帧进行播放,检查分帧和加窗效果。
实验三:语音信号的频谱分析实验目的:了解语音信号的频谱分析过程,掌握频谱分析算法的实现方法。
实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段语音。
2. 将录制的语音信号进行分帧处理。
选择合适的帧长和帧移参数。
3. 对每一帧的语音信号应用汉明窗。
4. 对每一帧的语音信号进行快速傅里叶变换(FFT)得到频谱。
5. 将频谱绘制成图象,观察频谱的特征。
6. 对频谱进行谱减法处理,去除噪声。
7. 将处理后的语音帧进行播放,检查频谱分析效果。
实验四:语音信号的降噪处理实验目的:了解语音信号的降噪处理过程,掌握降噪算法的实现方法。
实验器材:1. 电脑2. 麦克风3. 扬声器或者耳机实验步骤:1. 使用实验一中的步骤1-5录制一段带噪声的语音。
一、实验目的1. 理解语音信号的基本特性及其在数字信号处理中的应用。
2. 掌握语音信号的采样、量化、编码等基本处理方法。
3. 学习语音信号的时域、频域分析技术。
4. 熟悉语音信号的增强、降噪等处理方法。
二、实验原理语音信号是一种非平稳信号,其特性随时间变化。
在数字信号处理中,我们通常采用采样、量化、编码等方法将语音信号转换为数字信号,以便于后续处理和分析。
三、实验内容1. 语音信号的采集与预处理- 使用麦克风采集一段语音信号。
- 对采集到的语音信号进行预加重处理,提高高频成分的幅度。
- 对预加重后的语音信号进行采样,采样频率为8kHz。
2. 语音信号的时域分析- 画出语音信号的时域波形图。
- 计算语音信号的短时能量和短时平均过零率,分析语音信号的时域特性。
3. 语音信号的频域分析- 对语音信号进行快速傅里叶变换(FFT)分析,得到其频谱图。
- 分析语音信号的频谱特性,提取关键频段。
4. 语音信号的增强与降噪- 在语音信号中加入噪声,模拟实际应用场景。
- 使用谱减法对加噪语音信号进行降噪处理。
- 对降噪后的语音信号进行主观评价,比较降噪效果。
5. 语音信号的回放与对比- 对原始语音信号和降噪后的语音信号进行回放。
- 对比分析两种语音信号的时域波形、频谱图和听觉效果。
四、实验步骤1. 采集语音信号- 使用麦克风采集一段时长为5秒的语音信号。
- 将采集到的语音信号保存为.wav格式。
2. 预处理- 使用Matlab中的preemphasis函数对采集到的语音信号进行预加重处理。
- 设置预加重系数为0.97。
3. 时域分析- 使用Matlab中的plot函数画出语音信号的时域波形图。
- 使用Matlab中的energy和zero crossing rate函数计算语音信号的短时能量和短时平均过零率。
4. 频域分析- 使用Matlab中的fft函数对语音信号进行FFT变换。
- 使用Matlab中的plot函数画出语音信号的频谱图。
语音信号处理实验班级:学号:姓名:实验一基于MATLAB的语音信号时域特征分析(2 学时)1)短时能量( 1)加矩形窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32;for i=2:6h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2) ,legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.54 x 102N=32 0 0.5 1 1.5 2 2.55 x 10N=64 0 0.5 1 1.5 2 2.510 x 1050.5 1 1.5 2 2.5 N=128 020 x 10100.5 1 1.5 2 2.5 N=256 040 x 1020N=5120 0.5 1 1.5 2 2.5x 10( 2)加汉明窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32; 3 43 43 43 43 43 4for i=2:6h=hanning(2.^(i-2)*N);% 形成一个汉明窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2), legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.52 x 101N=32 0 0.5 1 1.5 2 2.54 x 102N=64 0 0.5 1 1.5 2 2.54 x 102N=128 0 0.5 1 1.5 2 2.510 x 105N=256 0 0.5 1 1.5 2 2.520 x 1010N=5120 0.5 1 1.5 2 2.5x 102)短时平均过零率a=wavread('mike.wav');a=a(:,1);n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);En=conv(h,a.*a); %求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0 3 43 43 43 43 43 4elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)= -1;endw(i)=abs(b(i+1)-b(i)); %求出每相邻两点符号的差值的绝对值endk=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2; % 每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N); %短时平均过零率endsubplot(3,1,3),plot(Q),grid;1-100.51 1.52 2.5 34x 10201000.51 1.52 2.5 34x 100.50204060801001201401601803)自相关函数N=240y=wavread('mike.wav');y=y(:,1);x=y(13271:13510);x=x.*rectwin(240);R=zeros(1,240);for k=1:240for n=1:240-kR(k)=R(k)+x(n)*x(n+k);endendj=1:240;plot(j,R);grid;2.521.510.5-0.5-1-1.5050100150200250实验二基于 MATLAB 分析语音信号频域特征1)短时谱cleara=wavread('mike.wav');a=a(:,1);subplot(2,1,1),plot(a);title('original signal');gridN=256;h=hamming(N);for m=1:Nb(m)=a(m)*h(m)endy=20*log(abs(fft(b)))subplot(2,1,2)plot(y);title('短时谱 ');gridoriginal signal10.5-0.5-100.51 1.52 2.5 34x 10短时谱10.500.20.40.60.81 1.2 1.4 1.6 1.8 22)语谱图[x,fs,nbits]=wavread('mike.wav')x=x(:,1);specgram(x,512,fs,100);xlabel('时间 (s)');ylabel('频率 (Hz)' );title('语谱图 ');语谱图50004000)zH3000(率频200010000.51 1.5 2时间 (s) 3)倒谱和复倒谱(1)加矩形窗时的倒谱和复倒谱cleara=wavread('mike.wav',[4000,4350]);a=a(:,1);N=300;h=linspace(1,1,N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加矩形窗时的倒谱')subplot(2,1,2)plot(c);title( '加矩形窗时的复倒谱')加矩形窗时的倒谱1-1-2050100150200250300加矩形窗时的复倒谱105-5-10050100150200250300(2)加汉明窗时的倒谱和复倒谱 cleara=wavread('mike.wav',[4000,4350]);a=a(;,1);N=300;h=hamming(N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加汉明窗时的倒谱')subplot(2,1,2)plot(c);title( '加汉明窗时的复倒谱')加汉明窗时的倒谱1-1-2-3050100150200250300加汉明窗时的复倒谱105-5-10050100150200250300实验三基于 MATLAB 的 LPC 分析MusicSource = wavread('mike.wav');MusicSource=MusicSource(:,1);Music_source = MusicSource';N = 256; % window length, N = 100 -- 1000;Hamm = hamming(N); % create Hamming windowframe = input( '请键入想要处理的帧位置= ' );% origin is current frameorigin = Music_source(((frame - 1) * (N / 2) + 1):((frame - 1) * (N / 2) + N));Frame = origin .* Hamm';%%Short Time Fourier Transform%[s1,f1,t1] = specgram(MusicSource,N,N/2,N);[Xs1,Ys1] = size(s1);for i = 1:Xs1FTframe1(i) = s1(i,frame);endN1 = input( '请键入预测器阶数= ' ); % N1 is predictor's order[coef,gain] = lpc(Frame,N1); % LPC analysis using Levinson-Durbin recursionest_Frame = filter([0 -coef(2:end)],1,Frame); % estimate frame(LP)FFT_est = fft(est_Frame);err = Frame - est_Frame; % error% FFT_err = fft(err);subplot(2,1,1),plot(1:N,Frame,1:N,est_Frame,'-r');grid;title('原始语音帧 vs.预测后语音帧 ')subplot(2,1,2),plot(err);grid;title('误差 ');pause%subplot(2,1,2),plot(f',20*log(abs(FTframe2)));grid;title('短时谱 ')%%Gain solution using G^2 = Rn(0) - sum(ai*Rn(i)),i = 1,2,...,P%fLength(1 : 2 * N) = [origin,zeros(1,N)];Xm = fft(fLength,2 * N);X = Xm .* conj(Xm);Y = fft(X , 2 * N);Rk = Y(1 : N);PART = sum(coef(2 : N1 + 1) .* Rk(1 : N1));G = sqrt(sum(Frame.^2) - PART);A = (FTframe1 - FFT_est(1 : length(f1'))) ./ FTframe1 ; % inverse filter A(Z)subplot(2,1,1),plot(f1',20*log(abs(FTframe1)),f1',(20*log(abs(1 ./ A))),'-r');grid;title('短时谱 ');subplot(2,1,2),plot(f1',(20*log(abs(G ./ A))));grid;title( 'LPC谱 ');pause%plot(abs(ifft(FTframe1 ./ (G ./ A))));grid;title('excited')%plot(f1',20*log(abs(FFT_est(1 : length(f1')) .* A / G )));grid;%pause%%find_pitch%temp = FTframe1 - FFT_est(1 : length(f1'));%not move higher frequncepitch1 = log(abs(temp));pLength = length(pitch1);result1 = ifft(pitch1,N);% move higher frequncepitch1((pLength - 32) : pLength) = 0;result2 = ifft(pitch1,N);%direct do real cepstrum with errpitch = fftshift(rceps(err));origin_pitch = fftshift(rceps(Frame));subplot(211),plot(origin_pitch);grid;title( '原始语音帧倒谱 (直接调用函数 )');subplot(212),plot(pitch);grid;title( '预测误差倒谱 (直接调用函数 )');pausesubplot(211),plot(1:length(result1),fftshift(real(result1)));grid;title('预测误差倒谱 (根据定义编写,没有去除高频分量)');subplot(212),plot(1:length(result2),fftshift(real(result2)));grid;title('预测误差倒谱 (根据定义编写,去除高频分量 )');原始语音帧 vs. 预测后语音帧0.40.2-0.2-0.4050100150200250300误差0.20.1-0.1-0.2050100150200250300短时谱50-50-100010203040506070LPC 谱100806040010203040506070原始语音帧倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300实验四基于 VQ 的特定人孤立词语音识别研究1、mfcc.mfunction ccc = mfcc(x)bank=melbankm(24,256,8000,0,0.5,'m' );bank=full(bank);bank=bank/max(bank(:));for k=1:12n=0:23;dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24));endw = 1 + 6 * sin(pi * [1:12] ./ 12);w = w/max(w);xx=double(x);xx=filter([1 -0.9375],1,xx);xx=enframe(xx,256,80);for i=1:size(xx,1)y = xx(i,:);s = y' .* hamming(256);t = abs(fft(s));t = t.^2;c1=dctcoef * log(bank * t(1:129));c2 = c1.*w';m(i,:)=c2';enddtm = zeros(size(m));for i=3:size(m,1)-2dtm(i,:) = -2*m(i-2,:) - m(i-1,:) + m(i+1,:) + 2*m(i+2,:);enddtm = dtm / 3;ccc = [m dtm];ccc = ccc(3:size(m,1)-2,:);2、vad.mfunction [x1,x2] = vad(x)x = double(x);x = x / max(abs(x));FrameLen = 240;FrameInc = 80;amp1 = 10;amp2 = 2;zcr1 = 10;zcr2 = 5;maxsilence = 8; % 6*10ms = 30msminlen = 15; % 15*10ms = 150msstatus = 0;count = 0;silence = 0;tmp1 = enframe(x(1:end-1), FrameLen, FrameInc);tmp2 = enframe(x(2:end) , FrameLen, FrameInc);signs = (tmp1.*tmp2)<0;diffs = (tmp1 -tmp2)>0.02;zcr = sum(signs.*diffs, 2);amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)), 2); amp1 = min(amp1, max(amp)/4);amp2 = min(amp2, max(amp)/8);x1 = 0;x2 = 0;for n=1:length(zcr)goto = 0;switch statuscase {0,1}if amp(n) > amp1x1 = max(n-count-1,1);status = 2;silence = 0;count= count + 1;elseif amp(n) > amp2 | ...zcr(n) > zcr2status = 1;count = count + 1;elsestatus = 0;count= 0;endcase 2,if amp(n) > amp2 | ...zcr(n) > zcr2count = count + 1;elsesilence = silence+1;if silence < maxsilence count = count + 1;elseif count < minlenstatus = 0;silence = 0;count= 0;elsestatus = 3;endendcase 3,break;endendcount = count-silence/2;x2 = x1 + count -1;3、codebook.m%clear;function xchushi= codebook(m) [a,b]=size(m);[m1,m2]=szhixin(m);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m15,m16]=szhixin(m8);[m13,m14]=szhixin(m7);[m11,m12]=szhixin(m6);[m9,m10]=szhixin(m5);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);chushi(1,:)=zhixinf(m1);chushi(2,:)=zhixinf(m2);chushi(3,:)=zhixinf(m3);chushi(4,:)=zhixinf(m4);chushi(5,:)=zhixinf(m5);chushi(6,:)=zhixinf(m6);chushi(7,:)=zhixinf(m7);chushi(8,:)=zhixinf(m8);chushi(9,:)=zhixinf(m9);chushi(10,:)=zhixinf(m10);chushi(11,:)=zhixinf(m11);chushi(12,:)=zhixinf(m12);chushi(13,:)=zhixinf(m13);chushi(14,:)=zhixinf(m14);chushi(15,:)=zhixinf(m15);chushi(16,:)=zhixinf(m16);sumd=zeros(1,1000);k=1;dela=1;xchushi=chushi;while(k<=1000)sum=ones(1,16);for p=1:afor i=1:16d(i)=odistan(m(p,:),chushi(i,:));enddmin=min(d);sumd(k)=sumd(k)+dmin;for i=1:16if d(i)==dminxchushi(i,:)=xchushi(i,:)+m(p,:);sum(i)=sum(i)+1;endendendfor i=1:16xchushi(i,:)=xchushi(i,:)/sum(i); endif k>1dela=abs(sumd(k)-sumd(k-1))/sumd(k); endk=k+1;chushi=xchushi;endreturn4、 testvq.mclear;disp('这是一个简易语音识别系统,请保证已经将您的语音保存在相应文件夹中') disp('正在训练您的语音模版指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%da.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);m = mfcc(x);m = m(x1:x2-5,:);ref(i).code=codebook(m);enddisp('语音指令训练成功,恭喜!)?'disp('正在测试您的测试语音指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endsumsumdmax=0;sumsumdmin=0;disp('对训练过的语音进行测试')for w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd)/a;sumdmin1=min(sumd);sumdmax(w)=max(sumd)/a;sumsumdmin=sumdmin+sumsumdmax;sumsumdmax=sumdmax(w)+sumsumdmax;disp('正在匹配您的语音指令,请稍后...')for i=1:10if (sumd(i)==sumdmin1)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendenddelamin=sumsumdmin/10;delamax=sumsumdmax/10;disp('对没有训练过的语音进行测试')disp('正在测试你的语音,请稍后...')for i=1:10fname = sprintf(o£ ?ùμ ?éùò?\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endfor w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd);z=0;for i=1:10if (((sumd(i))/a)>delamax)||z=z+1;endenddisp('正在匹配您的语音指令,请稍后...')if z<=3for i=1:10if (sumd(i)==sumdmin)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendelsefprintf( '您输入的语音无效?\n'£)?endend(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。
实验二语音信号的频域特性一、实验目的(1)结合汉语语音信号的各类音素和复元音的特点分析其频域性质;(2)熟悉语音信号的各类音素和复元音的频域参数;(3)熟悉声音编辑软件PRAAT的简单使用和操作。
二、实验记录与思考题1.观察语音信号的频域特点, 总结其规律。
浊音段:其谱线结构是与浊音信号中的周期信号密切相关。
具有与基音及其谐波对应的谱线。
频谱包络中有几个凸起点, 与声道的谐振频率相对应。
这些凸起点为共振峰。
清音段:2.清音的频谱无明显的规律, 比较平坦。
总结清音/b/p/m/f/d/t/n/l/g/k/h/j/q/x/z/c/s/zh/ch/sh/r/共21个的语谱图的规律, 给出辅音的能量集中区;语谱图中的花纹有横杠、乱纹和竖直条。
横杠是与时间轴平行的几条深黑色带纹, 它们是共振峰。
从横杠对应的频率和宽度可以确定相应的共振峰频率和带宽。
在一个语音段的语谱图中, 有没有横杠出现是判断它是否是浊音的重要标志。
竖直条是语谱图中出现于时间轴垂直的一条窄黑条。
每个竖直条相当于一个基音, 条纹的起点相当于声门脉冲的起点, 条纹之间的距离表示基音周期, 条纹越密表示基音频率越高。
b, p……清音的语谱图为乱纹。
辅音的能量集中区为: 高频区4./r/、/m/、/n/、/l/ 从这几个音素的的基频、共振峰频率分析宽带语谱图和窄带语谱图的不同之处, 请解释原因;语谱图中的花纹有横杠、乱纹和竖直条等。
横杠是与时间轴平行的几条深黑色带纹, 它们是共振峰。
从横杠对应的频率和宽度可以确定相应的共振峰频率和带宽。
在一个语音段的语谱图中, 有没有横杠出现是判断它是否是浊音的重要标志。
竖直条(又叫冲直条)是语谱图中出现与时间轴垂直的一条窄黑条。
每个竖直条相当于一个基音, 条纹的起点相当于声门脉冲的起点, 条纹之间的距离表示基音周期。
条纹越密表示基音频率越高。
宽带语谱图的时域分辨率高、可以看见语谱图上的纵的线条;窄带语谱图的频域分辨率高、语谱图上横的线条明显。
一、实验目的1. 理解语音信号的基本特性和处理方法。
2. 掌握语音信号的采样、量化、编码等基本过程。
3. 学习使用相关软件对语音信号进行时域和频域分析。
4. 了解语音信号的降噪、增强和合成技术。
二、实验原理语音信号是一种非平稳的、时变的信号,其频谱特性随时间变化。
语音信号处理的基本过程包括:信号采集、信号处理、信号分析和信号输出。
三、实验仪器与软件1. 仪器:计算机、麦克风、耳机。
2. 软件:Matlab、Audacity、Python。
四、实验步骤1. 信号采集使用麦克风采集一段语音信号,并将其存储为.wav格式。
2. 信号处理(1)使用Matlab读取.wav文件,提取语音信号的采样频率、采样长度和采样数据。
(2)将语音信号进行时域分析,包括绘制时域波形图、计算信号的能量和过零率等。
(3)将语音信号进行频域分析,包括绘制频谱图、计算信号的功率谱密度等。
3. 信号分析(1)观察时域波形图,分析语音信号的幅度、频率和相位特性。
(2)观察频谱图,分析语音信号的频谱分布和能量分布。
(3)计算语音信号的能量和过零率,分析语音信号的语音强度和语音质量。
4. 信号输出(1)使用Audacity软件对语音信号进行降噪处理,比较降噪前后的效果。
(2)使用Python软件对语音信号进行增强处理,比较增强前后的效果。
(3)使用Matlab软件对语音信号进行合成处理,比较合成前后的效果。
五、实验结果与分析1. 时域分析从时域波形图可以看出,语音信号的幅度、频率和相位特性随时间变化。
语音信号的幅度较大,频率范围一般在300Hz~3400Hz之间,相位变化较为复杂。
2. 频域分析从频谱图可以看出,语音信号的能量主要集中在300Hz~3400Hz范围内,频率成分较为丰富。
3. 信号处理(1)降噪处理:通过对比降噪前后的时域波形图和频谱图,可以看出降噪处理可以显著降低语音信号的噪声,提高语音质量。
(2)增强处理:通过对比增强前后的时域波形图和频谱图,可以看出增强处理可以显著提高语音信号的幅度和频率,改善语音清晰度。
语音信号处理实验报告语音信号处理实验报告一、引言语音信号处理是一门研究如何对语音信号进行分析、合成和改善的学科。
在现代通信领域中,语音信号处理起着重要的作用。
本实验旨在探究语音信号处理的基本原理和方法,并通过实验验证其有效性。
二、实验目的1. 了解语音信号处理的基本概念和原理。
2. 学习使用MATLAB软件进行语音信号处理实验。
3. 掌握语音信号的分析、合成和改善方法。
三、实验设备和方法1. 设备:计算机、MATLAB软件。
2. 方法:通过MATLAB软件进行语音信号处理实验。
四、实验过程1. 语音信号的采集在实验开始前,我们首先需要采集一段语音信号作为实验的输入。
通过麦克风将语音信号输入计算机,并保存为.wav格式的文件。
2. 语音信号的预处理在进行语音信号处理之前,我们需要对采集到的语音信号进行预处理。
预处理包括去除噪声、归一化、去除静音等步骤,以提高后续处理的效果。
3. 语音信号的分析语音信号的分析是指对语音信号进行频谱分析、共振峰提取等操作。
通过分析语音信号的频谱特征,可以了解语音信号的频率分布情况,进而对语音信号进行进一步处理。
4. 语音信号的合成语音信号的合成是指根据分析得到的语音信号特征,通过合成算法生成新的语音信号。
合成算法可以基于传统的线性预测编码算法,也可以采用更先进的基于深度学习的合成方法。
5. 语音信号的改善语音信号的改善是指对语音信号进行降噪、增强等处理,以提高语音信号的质量和清晰度。
常用的语音信号改善方法包括时域滤波、频域滤波等。
六、实验结果与分析通过实验,我们得到了经过语音信号处理后的结果。
对于语音信号的分析,我们可以通过频谱图观察到不同频率成分的分布情况,从而了解语音信号的特点。
对于语音信号的合成,我们可以听到合成后的语音信号,并与原始语音信号进行对比。
对于语音信号的改善,我们可以通过降噪效果的评估来判断处理的效果。
七、实验总结通过本次实验,我们深入了解了语音信号处理的基本原理和方法,并通过实验验证了其有效性。
实验二 语音信号的时域分析一、 实验目的在理论学习的基础上,进一步理解和掌握语音信号短时能量、短时过零了分析的意义及基于matlab 的实现方法。
二、 实验原理语音是一时变的、非平稳的随机过程,但由于一段时间内(10-30ms)人的声带和声道形状的相对稳定性,可认为其特征是不变的,因而语音的短时谱具有相对稳定性。
在语音分析中可以利用短时谱的这种平稳性,将语音信号分帧。
10~30ms 相对平稳,分析帧长一般为20ms 。
语音信号的分帧是通过可移动的有限长度窗口进行加权的方法来实现的。
几种典型的窗函数有:矩形窗、汉明窗、哈宁窗、布莱克曼窗。
语音信号的能量分析是基于语音信号能量随时间有相当大的变化,特别是清音段的能量一般比浊音段的小得多。
定义短时平均能量[][]∑∑+-=∞-∞=-=-=nN n m m n m n w m x m n w m x E 122)()()()(下图说明了短时能量序列的计算方法,其中窗口采用的是直角窗。
过零就是信号通过零值。
对于连续语音信号,可以考察其时域波形通过时间轴的情况。
而对于离散时间信号,如果相邻的取样值改变符号则称为过零。
由此可以计算过零数,过零数就是样本改变符号的次数。
单位时间内的过零数称为平均过零数。
语音信号x (n )的短时平均过零数定义为()[]()[]()()[]()[]()n w n x n x m n w m x m x Z m n *--=---=∑∞-∞=1sgn sgn 1sgn sgn式中,[]∙sgn 是符号函数,即()[]()()()()⎩⎨⎧<-≥=0101sgn n x n x n x短时平均过零数可应用于语音信号分析中。
发浊音时,尽管声道有若干个共振峰,但由于声门波引起了谱的高频跌落,所以其语音能量约集中干3kHz 以下。
而发清音时.多数能量出现在较高频率上。
既然高频率意味着高的平均过零数,低频率意味着低的平均过零数,那么可以认为浊音时具有较低的平均过零数,而清音时具有较高的平均过零数。
然而这种高低仅是相对而言,没有精确的数值关系。
三、 实验步骤1. 语音信号的录音、读入、放音等:利用函数wavread 对语音信号进行采样,记住采样频率和采样点数,给出以下语音的波形图(2.wav )。
程序:x=wavread('2.wav');Fs=10000; nbits=80;[x,Fs,nbits]=wavread('2.wav'); wavplay(x,10000); soundview(x,10000);2.短时能量分析:(1)首先对语音信号预加重;(2)对预加重后的语音信号进行分帧,帧长取N=256个样值点,帧移取128个样值点;(3)求短时能量。
程序:x=wavread('2.wav');z=filter([1-0.9375],1,x);y=enframe(z,256,128);m1=sum(abs(y),2);m2=sum(y.*y,2);m3=sum(log(y.*y+eps),2);figure(1);subplot(3,1,1),plot(m1)subplot(3,1,2),plot(m2)subplot(3,1,3),plot(m3)3.短时过零率分析:求语音信号的短时过零率。
程序:[x,fs,nbit]=wavread('2.wav');x=x/max(abs(x));len=256;inc=128;tmp1=enframe(x(1:end-1),256,128);tmp2=enframe(x(2:end),256,128);signs=(tmp1.*tmp2)<0;diffs=(tmp1-tmp2)>0.02;zor=sum(signs.*diffs,2)figure;subplot(2,1,1),plot(x)subplot(2,1,2),plot(zor)4.编写程序:参考Matlab有关资料,设计并编写出上述程序。
利用subplot,将语音信号的波形、短时能量、短时过零率放在一张图里进行比较,给出结论,注明语音段和所用窗函数及其宽度。
程序:[x,fs,nbit]=wavread('2.wav');z=filter([1-0.9375],1,x);inc=128;len=256;y=enframe(z,len,inc);amp1=sum(abs(y),2);tmp1=enframe(x(1:end-1),256,128);tmp2=enframe(x(2:end),256,128);signs=(tmp1.*tmp2)<0;diffs=(tmp1-tmp2)>0.02;zor=sum(signs.*diffs,2);figure;subplot(3,1,1),plot(x)subplot(3,1,2),plot(amp1)subplot(3,1,3),plot(zor)结论:4000之前的是清音,之后的是浊音。
清音的短时能量小,浊音的短时能量大。
清音的短时过零率大,浊音的短时过零率小。
语音段为第二段,为矩形窗。
5.换一段语音重复上述步骤。
程序:[x,fs,nbit]=wavread('8.wav');soundview(x,10000);z=filter([1-0.9375],1,x);inc=128;len=256;y=enframe(z,len,inc);amp1=sum(abs(y),2);tmp1=enframe(x(1:end-1),256,128);tmp2=enframe(x(2:end),256,128);signs=(tmp1.*tmp2)<0;diffs=(tmp1-tmp2)>0.02;zor=sum(signs.*diffs,2);figure;subplot(3,1,1),plot(x)subplot(3,1,2),plot(amp1)subplot(3,1,3),plot(zor)结果:6.变换帧长观察结果有什么不同。
程序:[x,fs,nbit]=wavread('2.wav'); z=filter([1-0.9375],1,x);inc=128;len=256;y=enframe(z,len,inc);amp1=sum(abs(y),2);tmp1=enframe(x(1:end-1),256,128); tmp2=enframe(x(2:end),256,128); signs=(tmp1.*tmp2)<0;diffs=(tmp1-tmp2)>0.02;zor=sum(signs.*diffs,2);subplot(2,2,1),plot(amp1)title('短时能量(256)')subplot(2,2,2),plot(zor)title('短时过零率(256)')inc1=256;len1=512;y1=enframe(z,len1,inc1);amp11=sum(abs(y1),2);tmp11=enframe(x(1:end-1),512,256);tmp21=enframe(x(2:end),512,256);signs1=(tmp11.*tmp21)<0;diffs1=(tmp11-tmp21)>0.02;zor1=sum(signs1.*diffs1,2);subplot(2,2,3),plot(amp11)title('短时能量(512)')subplot(2,2,4),plot(zor1)title('短时过零率(512)')结果对比:7.(选作)学习语音信号处理工具软件praat(参见教程),它可以分析、合成、变换语音并为论文著述创建优质图表的计算机程序,Praat程序由阿姆斯特丹大学语音科学研究所(the Institute of Phonetics Sciences of the University of Amsterdam)的Paul Boersma与David Weenink共同开发。
利用它画出波形图,与上述结果比较。
四、实验报告要求报告中要有实验目的、实验原理及步骤、实验程序、实验中得出的图形结果及结论等(清浊音的短时平均能量、短时过零率有什么特点),注明语音段和所用窗函数及其宽度。
五、思考题1.短时平均能量、短时过零率的主要用途是什么?短时能量的用途:第一,可以区分清音段和浊音段,因为浊音时比清音能量大的多。
第二,可以用来区分声母和韵母的分界,有声和无声的分界,连字的分界等。
第三,作为一种超音段信息,用于语音识别。
短时过零率的用途:第一,初步判断清音和浊音。
第二,与短时能量结合进行端检测。
第三,作为语音频域分析的中间步骤。
2. 窗的宽度(帧长)的改变,对短时能量分析产生怎样的影响?答:语音信号采用短时能量分析时,信号流的处理用分段或分帧来实现,分帧可以用可移动的有限长度窗口进行加权的方法来实现。
窗每次移动的距离如果恰好与窗的宽度相等,相应于各帧语音信号是相互衔接的;如果窗的移动距离比窗宽度要小,那么相邻帧之间将有一部分重叠。