济南市2009年高中阶段学校招生考试数学试题及答案(Word版)(有反比例)(二次函数动点+最值)_初中数学
- 格式:doc
- 大小:956.50 KB
- 文档页数:13
ABC D第23题图三、解答题(本大题共7个小题,共57分。
解答应写出文字说明、证明过程或演算步骤) 22.(本小题满分7分)⑴解不等式组:224x xx +>-⎧⎨-⎩≤⑵如图所示,在梯形ABCD 中,BC ∥AD ,AB =DC ,点M 是AD 的中点. 求证:BM =CM .22.(本题共2小题,满分7分)(1)计算:(a +b )(a -b )+2b 2; (2)解方程: 2 x +3 = 1x .22、(本小题满分7分)(1)解不等式324x -≥,并将解集在数轴上表示出来.(2)化简:2121224a a a a a --+÷-- 22.(本小题满分7分) (1)计算:︒+-45tan )12013(0(2)解方程:123-=x x23.(本小题满分7分) ⑴计算:152++0(3)-⑵如图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC =3. 求线段AD 的长.得 分 评卷人B ACDM第22题图第23题(1)图F E D C B A 第23题(2)图DC B A A B C图1A BC D M 图223.(本题共2小题,满分7分)(1)如图1,在△ABC 中,∠A =60º,∠B ∶∠C =1∶5.求∠B 的度数.(2)如图2,点M 在正方形ABCD 的对角线BD 上.求证:AM =CM .23、(本小题满分7分)(1)如图,在平行四边形ABCD 中,点E ,F 分别在AB ,CD 上,AE=CF.求证:DE=BF.(2)如图,在△ABC 中,AB=A C ,∠A=400,BD 是∠ABC 的平分线. 求∠BDC 的度数.23.(本小题满分7分)(1)如图,在ABC △和DCE △中,AB DC ∥,AB=DC ,BC=CE ,且点B ,C ,E 在一条直线上. 求证:AD ∠=∠.A B CD16米 草坪第25题图(2)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AB =4,120AOD ∠=°,求AC 的长.24.(本小题满分8分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率.24.( 8分)某小学在6月1日组织师生共110人到趵突泉公园游览.趵突泉公园规定:成人票价每位40元,学生票价每位20元.该校购票共花费2400元.在这次游览活动中,教师和学生各有多少人?24、(本小题满分8分)冬冬全家周末一起去南部山区参加采摘节,它们采摘了油桃和樱桃两种水果,其中油桃比樱桃多摘了5斤,若采摘油桃和樱桃分别用了80元钱,且樱桃每斤价格是油桃每斤价格的2倍,问油桃和樱桃每斤各是多少元?24.(本小题满分8分)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人.该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间?25.(2010)如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.得 分 评卷人 1 2-3 -4 第24题图2.5米31.5米33米31米325.(2011 8分)飞飞和欣欣两位同学到某文具专卖店购买文具,恰好赶上“店庆购物送礼”活动.该文具店设置了A 、B 、C 、D 四种型号的钢笔作为赠品,购物者可随机抽取一支抽到每种型号钢笔的可能性相同.(1)飞飞购物后,获赠A 型号钢笔的概率是多少?(2)飞飞和欣欣购物后,两人获赠的钢笔型号相同的概率是多少?25、(本小题满分8分)济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动.宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量均比4月份有所下降,宁宁将5月份各户居民的节水量统计整理制成如下统计图表:节水量(米3) 1 1.5 2.5 3户数 50 80 100 70 (1)300户居民5月份节水量的众数、中位数分别是多少米3?(2)扇形统计图中2.5米3对应扇形的圆心角为 度; (3)该小区300户居民5月份平均每户节约用水多少米3?25.(本小题满分8分)在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.(1)搅匀后从中随机摸出一球,请直接写出摸到红球的概率;(2)如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)O第26题图xyAB PC D ACBD图1图2 M O xy N26.(本小题满分9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式. ⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?26.(本题共2小题,满分9分)(1)如图1,在△ABC 中,∠C =90º,∠ABC =30º,AC =m ,延长CB 至点D ,使BD=AB .①求∠D 的度数;②求tan75º的值.(2)如图2,点M 的坐标为(2,0),直线MN 与y 轴的正半轴交于点N ,∠OMN =75º.求直线MN 的函数解析式.26、(本小题满分9分)如图1,在菱形ABCD 中,AC=2,BD=32,AC ,BD 相交于点O.(1)求边AB 的长;(2)如图2,将一个足够大的直角三角板600角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转,其中三角板600角的两边分别与边BC ,CD 相交于点E ,F ,连接EF 与AC 相交于点G.①判断△AEF 是哪一种特殊三角形,并说明理由;②旋转过程中,当点E 为边BC 的四等分点时(BE>CE ),求CG 的长.得 分 评卷人A B C NM PA M N P 1 C P 2B AC M NP 1 P 2 P 2009 …… ……B 第27题图2 第27题图1第27题图3 第26题图2第26题图1GFE600A BC DO OD C BA26.(本小题满分9分)如图,点A 的坐标是(2-,0),点B 的坐标是(6,0),点C 在第一象限内且OBC △为等边三角形,直线BC 交y 轴于点D ,过点A 作直线AE BD ⊥,垂足为E ,交OC 于点F .(1)求直线BD 的函数表达式; (2)求线段OF 的长;(3)连接BF ,OE ,试判断线段BF 和OE 的数量关系,并说明理由.27.(本小题满分9分)已知:△ABC 是任意三角形. ⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A . ⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC 的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由. ⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2010等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)得 分 评卷人27.(济南 9分)如图,在矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0).抛物线y =- 49x 2+bx +c 经过点A 、C ,与AB 交于点D .(1)求抛物线的函数解析式;(2)点P 为线段BC 上一个动点(不与点C 重合),点Q 为线段AC 上一个动点,AQ =CP ,连接PQ ,设CP =m ,△CPQ 的面积为S . ①求S 关于m 的函数表达式;②当S 最大时,在抛物线y =- 4 9x 2+bx +c 的对称轴l 上,若存在点F ,使△DFQ为直角三角形,请直接..写出所有符合条件的点F 的坐标;若不存在,请说明理由.27、(本小题满分9分)如图,已知双曲线xky经过点D (6,1),点C 是双曲线第三象限分支上的动点,过C 作C A ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC. (1)求k 的值; (2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.27.(本小题满分9分)如图1,在△ABC 中,AB=AC=4,∠ABC=67.5°,△ABD 和△ABC 关于AB 所在的直线对称,点M 为边AC 上的一个动点(重合),点M 关于AB 所在直线的对称点为N ,△CMN 的面积为S 。
2009年济南市高中阶段学校招生考试第Ⅰ卷(选择题共80分)Ⅰ.听力测试A)听录音,在每组句子中选出一个你所听到的句子。
每个句子听一遍。
1.A.That story is really funny.B.Let’s play computer games,Linda.C.I don’t like documentaries because they’re boring.2.A.Mike.is this your ruler? B.Why don’t you get her a scarf?C.Did everyone have a good weekend?3.A.Thank you for joining us! B.You’re never too young to start doing things.C.You can meet so many interesting people as a reporter.4.A.Who’s your favorite teacher? B.Would you mind waiting for me?C.Can I drink some hot tea with honey?5.A.Don’t listen to music in class.B.How much does the T-shirt cost?C.We need more actors for the talent show.B)听录音,从每题三幅图画中选出与听到的对话内容相符的一项。
每段对话听两遍.C)在录音中,你将听到一段对话及五个问题。
请根据对话内容及问题选择正确答案。
对话及问题听两遍。
(5分)11.A.He is playing computer games.B.He is watching TV at home.C.He is looking for some information on the Internet.12.A.To New York.B.To Sydney.C.To Tokyo.13.A.Yes,he is.B.No.he isn’t.C.We don’t know.14.A.Sam will come back on August 20th.B.Sam will come back on July 1th.C.Sam will come back on June 27th.15.A.Because she loves English.B.Because she has to learn English.C.Because a foreign friend is coining to visit her.D)在录音中,你将听到一篇短文及五个问题。
2009届山东省济南市高三年级统一考试数学试卷(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,测试时间120分钟.第Ⅰ卷 (选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在测试卷上.一、选择题:本大题共12个小题,每小题5分;共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i+12的虚部是 ( )A .1B .i -C .iD .-12.若合集U=R ,集合},22|{≤≤-=x x M =⋂≤-=)(}03|{2N C M ,x x x N U 则( )A .[-2,0]B .)0,2[-C .[0,2]D .]2,(- 3.下列函数,在其定义域内既是奇函数又是增函数的是( )A .)(3R x x x y ∈+= B .)(3R x y x∈=C .),0(log 2R x x x y ∈>-=D .)0,(1≠∈-=x R x xy 4.设0,0>>b a ,则以下不等式中不.一定成立的是( )A .2≥+abb aB .1)1ln(≥+abC .b a b a 22222+≥++D .2332ab b a ≥+5.已知一空间几何体的三视图如下图所示,它的表面积是( )A .24+B .22+C .3+2D .3 6.若=+-∈=)45cos()2,2(,53sin παππαα则, ( )A .1027-B .102-C .102D .10277.已知点A (2,1),B (0,2),C (-2,1),O (0,0). 给出下面的结论:①BA OC //;②;⊥③=+;④2-=. 其中正确结论的个数是( )A .0个B .1个C .2个D .3个 8.函数)1(||>⋅=a a x xy x 的图象的基本形状是( )9.设a ,b 是两条不同的直线,βα、是两个不同的平面,则能得出b a ⊥的是 ( ) A .βαβα⊥⊥,//,b a B .βαβα//,,⊥⊥b aC .βαβα//,,⊥⊂b aD .βαβα⊥⊂,//,b a10.过椭圆)0(12222>>=+b a b y a x 的焦点垂直于x 轴的弦长为a 21,则双曲线12222=-by a x 的离心率e 的值是( )A .45 B .25 C .23 D .4511.观察图中各正方形图案,每条边上有)2(≥n n 个圆点,第n 个图案中圆点的个数是n a ,按此规律推断出所有圆点总和S n 与n 的关系式为( )A .n n S n 222-= B .22n S n =C .n n S n 342-=D .n n S n 222+=12.图1是某市参加2008年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A 1,A 2,…,A 10(如A 2表示身高(单位:cm )在)150,150[内的学生人数). 图2是统计图1中身高在一定范围内学生人数的一个算法流程图,现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的“?”所代表的数与判断框内应填写的条件分别是( )A .4,9<iB .8,4<iC .3,9<iD .3,8<i第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题;每小题4分;共16分. 把答案填在题中横线上. 13.抛物线x y 42=上一点A 的横坐标为4,则点A 的抛物线焦点的距离为 14.等差数列3 ,9}{963741=++=++a a a a a a ,a n 若中,则}{n a 的前9项的和S 9=15.设变量⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x y x 满足约束条件,,则目标函数y x z +=2的最大值为16.有以下四个命题:①函数x y 2sin =和图象可以由)42sin(π+=x y 向右平移4π个单位而得到; ②在△ABC 中,若C c B b cos cos =,则△ABC 一定是等腰三角形; ③函数2log 22-+=x x y 在(1,2)内只有一个零点; ④3||>x 是4>x 的必要条件.其中真命题的序号是 (写出所有真命题的序号).三、解答题:本大题共6个小题. 共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知}{n a 是正数组成的数列,*))((111N n a a a n n ∈=+,,且点在函数22+=x y 的图象上.(1)求数列}{n a 的通项公式;(2)若数列{b n }满足12,211++==+n a n n b b b ,求b n .18.(本小题满分12分)已知函数)0( 21cos )cos sin 3()(>-+=ωωωωx x x x f 的最小正周期为4π. (1)求ω的值;(2)求)(x f 的单调递增区间. 19.(本小题满分12分)某校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加2009年在济南市举行的“第11届全国运动”志愿服务工作.(1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;(2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.20.(本小题满分12分)如图所示,△ABC 是正三角形,AE 和CD 都垂直于平面ABC ,且AE=AB=2a ,CD=a ,F 是BE 的中点.(1)求证:DF//平面ABC/ (2)求证:AF ⊥BD. 21.(本小题满分12分)已知圆O :122=+y x ,点O 为坐标原点,一条直线)0(:>+=b b kx y l 与圆O相切并与椭圆1222=+y x 交于不同的两点A 、B. (1)设)(k f b =,求)(k f 的表达式; (2)若32=⋅,求直线l 的方程; (3)在(2)的条件下,求三角形OAB 的面积. 22.(本小题满分14分)设函数]1,0()0,1[)(⋃-是定义在x f 上的奇函数,当时,)0,1[-∈x ).( 12)(2R a x ax x f ∈+=(1)求函数)(x f 的解析式;(2)若1->a ,试判断]1,0()(在x f 上的单调性; (3)是否存在a ,使得当)(]1,0(x f x 时,∈有最大值-6.。
2009年山东省各地市中考试题(代数)27.二次函数2365y x x =--+的图象的顶点坐标是( ) A .(18)-,B .(18),C .(12)-,D .(14)-,9.如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a b +的值为( ) A .2 B .3C .4D .515.分解因式:2(3)(3)x x +-+=___________.4.已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .56.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .98.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B.D.25+12.在同一平面直角坐标系中,反比例函数8y x=-与一次函数2y x =-+交于A B 、两点,O 为坐标原点,则AOB △的面积为( ) A .2 B .6 C .10D .813.分解因式:227183x x ++= .14.方程3123x x =+的解是 . 12. 小强从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有 A .2个 B .3个 C .4个 D .5个7.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是(A)0020132340x ⋅=(B)0020234013x =⨯(C)0020(1132340x -=(D)0013x ⋅=9.如图,点A ,B ,C 的坐标分别为(0,1),(0,2),(3,0)-.从下面四个点(3,3)M ,(3,3)N -, (3,0)P -,(3,1)Q -中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是)xB CAD l(第12题)(A)M(B)N (C)P(D)Q12.如图,直线y kx b =+经过(2,1)A --和(3,0)B -两点, 利用函数图象判断不等式1kx b x<+的解集为 (A)x x > x <<x <<(D)0x x <<或23. (本题满分8分)已知12,x x 是方程220x x a -+=的两个实数根,且1223x x += (1)求12,x x 及a 的值;(2)求32111232x x x x -++的值.21.(9分)如图,一巡逻艇航行至海面B 处时,得知其正北方向上C 处一渔船发生故障.已知港口A 处在B 处的北偏西37方向上,距B 处20海里;C 处在A 处的北偏东65方向上.求,B C 之间的距离(结果精确到0.1海里).参考数据:sin370.60cos370.80tan370.75≈≈≈,,, sin 650.91cos650.42tan 65 2.14.≈≈≈,,22.(8分)坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.(1)小华利用测角仪和皮尺测量塔高. 图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A ,用测角仪测出看塔顶()M 的仰角35α=,在A 点和塔之间选择一点B ,测出看塔顶()M 的仰角45β=,然后用皮尺量出A 、B 两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度(tan 350.7≈,结果保留整数).MM(第6题)(第12题)23.(8分)阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数222(0)y k x b k =+≠的图象为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点(1,4)P 且与已知直线21y x =--平行的直线l 的函数表达式,并画出直线l 的图象;(2)设直线l 分别与y 轴、x 轴交于点A 、B ,如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t 的函数表达式. 24.(11分)如图,在直角坐标系中,点A B C ,,的坐标分别为(10)(30)(03)-,,,,,,过A B C ,,三点的抛物线的对称轴为直线l D ,为对称轴l 上一动点.(1)求抛物线的解析式;(2)求当AD CD +最小时点D 的坐标; (3)以点A 为圆心,以AD 为半径作A .①证明:当AD CD +最小时,直线BD 与A 相切.②写出直线BD 与A 相切时,D 点的另一个坐标:___________. 26.(本小题满分13分)如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;x(第23题)(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标. 25.(12分)一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数ky x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点A B ,在反比例函数ky x=的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形; ②AN BM =.(2)若点A B ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论. 24.(本小题满分12分)如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C . (1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF(3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P)25.如图,在平面直角坐标系中,正方形OABC 的边长是2.O 为坐标原点,点A 在x 的正半轴上,点C 在y 的正半轴上.一条抛物线经过A 点,顶点D 是OC 的中点.(1)求抛物线的表达式;(2)正方形OABC 的对角线OB 与抛物线交于E 点,线段FG 过点E 与x 轴垂直,分别交x 轴和线段BC 于F ,G 点,试比较线段OE 与EG 的长度;(3)点H 是抛物线上在正方形内部的任意一点,线段IJ 过点H 与x 轴垂直,分别交x 轴和线段BC 于I 、J 点,点K 在y 轴的正半轴上,且OK =OH ,请证明△OHI ≌△如图,△OAB 是边长为2的等边三角形,过点A 的直线。
绝密★启用前济南市历城区2009年高中阶段学校招生考试数学模拟试题(四)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至8页.共120分.考试时间120分钟.第Ⅰ卷(选择题 共48分)注意事项:1.数学考试中不允许使用计算器.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.3.选择题为四选一题目,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.不能答在考试卷上.4.考试结束后,监考教师将本试卷和答题卡一并收回.一、选择题:每小题4分,共48分.在每题中只有一项是符合题目要求的. 1.25的算术平方根是 ( ) A .±5B . 5C .–5D .52、国家统计局统计资料显示:一季度,全国规模以上工业企业(全部国有企业和年产品销售收入500万元以上的非国有企业)完成增加值17822亿元,这个增加值用科学记数法(保留三位有效数字)表示为 ( ) A .1.782×1012元 B .1.78×1011元 C .1.78×1012元 D .1.79×1012元3.若()()232y y y m y n +-=++,则m 、n 的值分别为 ( ).A . 5m =,6n = B. 1m =,6n =- C. 1m =,6n = D. 5m =,6n =- 4.用配方法解方程2420x x -+=,下列配方正确的是 ( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5.大家知道5是一个无理数,那么5-1在哪两个整数之间 ( )A .4与5B .3与4C .2与3D .1与26.已知(x 1,-2),(x 2,2),(x 3,3)都在反比例函数6y x=的图像上,则下列关系中正确的是 ( )A. 123x x x <<B. 132x x x <<C. 321x x x <<D. 231x x x <<(第12题)B FABCDEFPR 9题图7.已知函数ky x=-中,0x >时,y 随x 的增大而增大,则y kx k =-的大致图象为( )8.某学校在迎接第十一届全运会的体育活动中,举行了乒乓球比赛,进入前四名的选手分别是甲,乙,丙,丁四个人,随机分成A ,B 两组,每组两人,则甲分在A 组的概率是( )A .1/2B 1/3C 1/4D 1/69. 如图,已知矩形ABCD 中,R 、P 分别是DC 、BC 上的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,下列结论成立的是 ( ) A. 线段EF 的长逐渐增长 B. 线段EF 的长逐渐减小 C. 线段EF 的长不改变 D. 线段EF 的长不能确定10. 如图,水平地面上有一面积为230cm π的扇形AOB ,半径OA=6cm ,且OA 与地面垂直.在没有滑动的情况下,将扇形向右滚动至OB 与地面垂直为止,则O 点移动的距离为( )A .10cm πB .20cmC .24cmD .30cm π11.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示, 有下列4个结论:①0abc >;②b a c <+;③420a b c ++>; ④240b ac ->;其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个 12.如图,在直线m △ABC 、△HFG 、△DCE ,已知BC =12CE F 、G 分别是BC 、CE 的中点,FM ∥GN ∥DCA .B .C.D .依次是S 1,S 2,S 3,若S 1+S 3=10,则S 2的值为( )A .2B .3C .4D .5第II 卷(非选择题 共72分)二、填空题:本大题共5个小题.每小题3分,共15分.把答案填在题中横线上. 13.分解因式:x 2+x -6= . 14. 已知x 1,x 2是方程2x 2+3x+1=0的两个根,则1 x 1 +1x 2的值是 . 15. 我校某学习小组六位同学的身高依次为171,172,170,169,x ,171的平均数是171,则这组数据的方差为 . 16把抛物线2y x bx c =++向上平移2个单位,再向左平移3个单位,得到抛物线221y x x =-+,则原抛物线的解析式是 .17.如下图,∠AOB= 45°,过OA 上到点O 的距离分别为 1,3,5,7,9,11…,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1, S 2, S 3,S 4, …观察图中的规律,求出第n 个黑色梯形的面积S n = 。
济南中考数学试题解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)(•济南)下列计算正确的是()A.=9B.=﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=2考点:负整数指数幂;绝对值;算术平方根;零指数幂.分析:对各项分别进行负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,然后选出正确选项即可.解答:解:A 、()﹣2=9,该式计算正确,故本选项正确;B 、=2,该式计算错误,故本选项错误;C、(﹣2)0=1,该式计算错误,故本选项错误;D、|﹣5﹣3|=8,该式计算错误,故本选项错误;故选A.点评:本题考查了负整数指数幂、算术平方根、零指数幂、绝对值的化简等运算,属于基础题,掌握各知识点运算法则是解题的关键.2.(3分)(•济南)民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,也不是中心对称图形,故本选项正确;D、是轴对称图形,也是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称及轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(•济南)森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物.28.3亿吨用科学记数法表示为()A.28.3×107B.2.83×108C.0.283×1010D.2.83×109考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:28.3亿=28.3×108=2.83×109.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•济南)如图,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A.68°B.32°C.22°D.16°考点:平行线的性质;等腰三角形的性质.分析:根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.解答:解:∵CD=CE,∴∠D=∠DEC,∵∠D=74°,∴∠C=180°﹣74°×2=32°,∵AB∥CD,∴∠B=∠C=32°.故选B.点评:本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.5.(3分)(•济南)图中三视图所对应的直观图是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解解:从俯视图可以看出直观图的下面部分为长方体,上面部分为圆柱,且与下面的答:长方体的顶面的两边相切高度相同.只有C满足这两点.故选C.点评:本题考查了三视图的概念.易错易混点:学生易忽略圆柱的高与长方体的高的大小关系,错选B.6.(3分)(•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多考点:函数的图象.分析:利用图象可得出,甲,乙的速度,以及所行路程等,注意利用所给数据结合图形逐个分析.解答:解:结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.点评:本题考查了函数的图象,关键是会看函数图象,要求同学们能从图象中得到正确信息.7.(3分)(•济南)下列命题中,真命题是()A.对角线相等的四边形是等腰梯形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形考点:命题与定理.分析:根据矩形、菱形、正方形的判定与性质分别判断得出答案即可.解答:解:A、根据对角线相等的四边形也可能是矩形,故此选项错误;B、根据对角线互相垂直平分的四边形是菱形,故此选项错误;C、根据对角线互相垂直平分的四边形是菱形,故此选项错误;D、根据四个角相等的四边形是矩形,是真命题,故此选项正确.故选:D.点评:此题主要考查了命题与定理,熟练掌握矩形、菱形、正方形的判定与性质是解题关键.8.(3分)(•济南)下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣x+1 B.y=x2﹣1 C.y=D.y=﹣x2+1考点:二次函数的性质;一次函数的性质;反比例函数的性质.分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.解答:解:A、y=﹣x+1,一次函数,k<0,故y随着x增大而减小,错误;B、y=x2﹣1(x>0),故当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧(x<0),y随着x的增大而减小,正确.C、y=,k=1>0,在每个象限里,y随x的增大而减小,错误;D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,错误;故选B.点评:本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.9.(3分)(•济南)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是()A.B.C.D.考点:列表法与树状图法.分析:由在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n 次,n次抛掷所出现的点数之和大于n2,则算过关;可得能过第二关的抛掷所出现的点数之和需要大于5,然后根据题意列出表格,由表格求得所有等可能的结果与能过第二关的情况,再利用概率公式求解即可求得答案.解答:解:∵在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,n次抛掷所出现的点数之和大于n2,则算过关;∴能过第二关的抛掷所出现的点数之和需要大于5,列表得:6 7 8 9 10 11 125 6 7 8 9 10 114 5 6 7 8 9 103 4 5 6 7 8 92 3 4 5 6 7 81 2 3 4 5 6 71 2 3 4 5 6∵共有36种等可能的结果,能过第二关的有26种情况,∴能过第二关的概率是:=.故选A.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(•济南)如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算.分析:首先利用扇形公式计算出半圆的面积和扇形AOB的面积,然后求出△AOB的面积,用S半圆+S△AOB﹣S扇形AOB可求出阴影部分的面积.解答:解:在Rt△AOB中,AB==,S半圆=π×()2=π,S△AOB=OB×OA=,S扇形OBA==,故S阴影=S半圆+S△AOB﹣S扇形AOB=.故选C.点评:本题考查了扇形的面积计算,解答本题的关键是熟练掌握扇形的面积公式,仔细观察图形,得出阴影部分面积的表达式.11.(3分)(•济南)函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.12.(3分)(•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)考点:规律型:点的坐标.专题:规律型.分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用除以6,根据商和余数的情况确定所对应的点的坐标即可.解答:解:如图,经过6次反弹后动点回到出发点(0,3),∵÷6=335…3,∴当点P第次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(•济南)cos30°的值是.考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入计算即可.解答:解:cos30°=×=.故答案为:.点评:本题考查了特殊角的三角函数值,属于基础题,掌握几个特殊角的三角函数值是解题的关键.14.(4分)(•济南)如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.考点:线段的性质:两点之间线段最短;三角形三边关系.专题:开放型.分析:根据线段的性质解答即可.解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.15.(4分)(•济南)甲乙两种水稻试验品中连续5年的平均单位面积产量如下(单位:吨/公顷)品种第1年第2年第3年第4年第5年甲9.8 9.9 10.1 10 10.2乙9.4 10.3 10.8 9.7 9.8经计算,=10,=10,试根据这组数据估计甲中水稻品种的产量比较稳定.考点:方差.分析:根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]分别求出两种水稻的产量的方差,再进行比较即可.解答:解:甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.124.∴0.02<0.124,∴产量比较稳定的小麦品种是甲,故答案为:甲点评:此题考查了方差,用到的知识点是方差和平均数的计算公式,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.(4分)(•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先根据反比例函数与一次函数的交点坐标满足两函数的解析式得到=x﹣2,去分母化为一元二次方程得到x2﹣2x﹣1=0,根据根与系数的关系得到a+b=2,ab=﹣1,然后变形+得,再利用整体思想计算即可.解答:解:根据题意得=x﹣2,化为整式方程,整理得x2﹣2x﹣1=0,∵函数y=与y=x﹣2图象交点的横坐标分别为a,b,∴a、b为方程x2﹣2x﹣1=0的两根,∴a+b=2,ab=﹣1,∴+===﹣2.故答案为﹣2.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了一元二次方程根与系数的关系.17.(4分)(•济南)如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④(把你认为正确的都填上).考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正确,利用解三角形求正方形的面积等知识可以判断④的正误.解答:解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,∵在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAD≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.点评:本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18.(6分)(•济南)先化简,再求值:÷,其中a=﹣1.考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为乘法后代入求值.解答:解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.点评:本题考查了分式的化简求值,熟悉通分、约分及因式分解是解题的关键.19.(8分)(•济南)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.08.0<x≤9.5 合计2 50(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?考点:频数(率)分布直方图;频数(率)分布表.分析:(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与 6.5<x≤8.0 的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)本题答案不唯一.例如:从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨.解答:解:(1)频数分布表如下:分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.01358.0<x≤9.5合计250 频数分布直方图如下:(2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;(3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.点评:本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(•济南)如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.考点:切线的判定与性质;直角三角形斜边上的中线;平行四边形的性质.专题:计算题.分析:(1)连接BD,由ED为圆O的直径,利用直径所对的圆周角为直角得到∠DBE为直角,由BCOE为平行四边形,得到BC与OE平行,且BC=OE=1,在直角三角形ABD中,C为AD的中点,利用斜边上的中线等于斜边的一半求出AD的长即可;(2)连接OB,由BC与OD平行,BC=OD,得到四边形BCDO为平行四边形,由AD为圆的切线,利用切线的性质得到OD垂直于AD,可得出四边形BCDO为矩形,利用矩形的性质得到OB垂直于BC,即可得出BC为圆O的切线.解答:解:(1)连接BD,则∠DBE=90°,∵四边形BCOE为平行四边形,∴BC∥OE,BC=OE=1,在Rt△ABD中,C为AD的中点,∴BC=AD=1,则AD=2;(2)连接OB,∵BC∥OD,BC=OD,∴四边形BCDO为平行四边形,∵AD为圆O的切线,∴OD⊥AD,∴四边形BCDO为矩形,∴OB⊥BC,则BC为圆O的切线.点评:此题考查了切线的判定与性质,直角三角形斜边上的中线性质,以及平行四边形的判定与性质,熟练掌握切线的判定与性质是解本题的关键.21.(10分)(•济南)某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万米3?考点:反比例函数的应用;分式方程的应用.专题:应用题.分析:(1)利用“每天的工作量×天数=土方总量”可以得到两个变量之间的函数关系;(2)根据“工期比原计划减少了24天”找到等量关系并列出方程求解即可;解答:解:(1)由题意得,y=把y=120代入y=,得x=3把y=180代入y=,得x=2,∴自变量的取值范围为:2≤x≤3,∴y=(2≤x≤3);(2)设原计划平均每天运送土石方x万米3,则实际平均每天运送土石方(x+0.5)万米3,根据题意得:解得:x=2.5或x=﹣3经检验x=2.5或x=﹣3均为原方程的根,但x=﹣3不符合题意,故舍去,答:原计划每天运送2.5万米3,实际每天运送3万米3.点评:本题考查了反比例函数的应用及分式方程的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.22.(10分)(•济南)设A是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”.(1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)表11 2 3 ﹣7﹣2 ﹣1 0 1(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值表2.a a2﹣1 ﹣a ﹣a22﹣a 1﹣a2a﹣2 a2考点:一元一次不等式组的应用.分析:(1)根据某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”,先改变表1的第4列,再改变第2行即可;(2)根据每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,然后分别根据如果操作第三列或第一行,根据每行的各数之和与每列的各数之和均为非负整数,列出不等式组,求出不等式组的解集,即可得出答案.解答:解:(1)根据题意得:改变第4列改变第2行(2)∵每一列所有数之和分别为2,0,﹣2,0,每一行所有数之和分别为﹣1,1,则①如果操作第三列,则第一行之和为2a﹣1,第二行之和为5﹣2a,,解得:≤a,又∵a为整数,∴a=1或a=2,②如果操作第一行,则每一列之和分别为2﹣2a,2﹣2a2,2a﹣2,2a2,,解得a=1,此时2﹣2a2,=0,2a2=2,综上可知:a=1.点评:此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的操作要求,列出不等式组,注意a为整数.23.(10分)(•济南)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.考点:四边形综合题.专题:计算题.分析:(1)分别以A、B为圆心,AB长为半径画弧,两弧交于点D,连接AD,BD,同理连接AE,CE,如图所示,由三角形ABD与三角形ACE都是等边三角形,得到三对边相等,两个角相等,都为60度,利用等式的性质得到夹角相等,利用SAS得到三角形ABD与三角形ACE全等,利用全等三角形的对应边相等即可得证;(2)BE=CD,理由与(1)同理;(3)根据(1)、(2)的经验,过A作等腰直角三角形ABD,连接CD,由AB=AD=100,利用勾股定理求出BD的长,由题意得到三角形DBC为直角三角形,利用勾股定理求出CD的长,即为BE的长.解解:(1)完成图形,如图所示:答:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.点评:此题考查了四边形综合题,涉及的知识有:全等三角形的判定与性质,等边三角形,等腰直角三角形,以及正方形的性质,勾股定理,熟练掌握全等三角形的判定与性质是解本题的关键.24.(12分)(•济南)如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)先求出A、B、C的坐标,再运用待定系数法就可以直接求出二次函数的解析式;(2)①由(1)的解析式可以求出抛物线的对称轴,分类讨论当∠CEF=90°时,当∠CFE=90°时,根据相似三角形的性质就可以求出P点的坐标;②先运用待定系数法求出直线CD的解析式,设PM与CD的交点为N,根据CD的解析式表示出点N的坐标,再根据S△PCD=S△PCN+S△PDN就可以表示出三角形PCD 的面积,运用顶点式就可以求出结论.解答:解:(1)在Rt△AOB中,OA=1,tan∠BAO==3,∴OB=3OA=3.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A、B、C的坐标分别为(1,0),(0,3)(﹣3,0).代入解析式为,解得:.∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴l=﹣=﹣1,∴E点的坐标为(﹣1,0).如图,当∠CEF=90°时,△CEF∽△COD.此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于点M,则△EFC∽△EMP.∴,∴MP=3EM.∵P的横坐标为t,∴P(t,﹣t2﹣2t+3).∵P在二象限,∴PM=﹣t2﹣2t+3,EM=﹣1﹣t,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=﹣3(与C重合,舍去),∴t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3.∴P(﹣2,3).∴当△CEF与△COD相似时,P点的坐标为:(﹣1,4)或(﹣2,3);②设直线CD的解析式为y=kx+b,由题意,得,解得:,∴直线CD的解析式为:y=x+1.设PM与CD的交点为N,则点N的坐标为(t,t+1),∴NM=t+1.∴PN=PM﹣NM=t2﹣2t+3﹣(t+1)=﹣t2﹣+2.∵S△PCD=S△PCN+S△PDN,∴S△PCD=PM•CM+PN•OM=PN(CM+OM)=PN•OC=×3(﹣t2﹣+2)=﹣(t+)2+,∴当t=﹣时,S△PCD的最大值为.点评:本题考查了相似三角形的判定及性质的运用,待定系数法求函数的解析式的运用,三角形的面积公式的运用,二次函数的顶点式的运用,解答本题时,先求出二次函数的解析式是关键,用函数关系式表示出△PCD的面积由顶点式求最大值是难点.。
2009届山东省济南市高三年级统一考试数学试卷(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,测试时间120分钟第Ⅰ卷 (选择题, 共60分)注意事项: 1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
不能答在测试卷上。
一、选择题:本大题共12个小题。
每小题5分;共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数(a +i )2对应的点在y 轴负半轴上,则实数a 的值是 ( )A .—1B .1C .2-D .2 2.如图几何体的主视图和左视图都正确的是( )3.已知43)4sin(-=+πx ,则x 2sin 的值等于 ( )A .42 B .81-C .42- D .81 4.若log a 2<log b 2<0,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 5.在空间中,给出下面四个命题,则其中正确命题的个数为( )① 过平面α外的两点,有且只有一个平面与平面α垂直;② 过平面β内有不贡献三点到平面α的距离都相等,则α∥β ③ 若直线l 与平面内的无数条直线垂直,则l ⊥α; ④ 两条异面直线在同一平面内的射影一定是两条平行线;A .0B .1C .2D .36.设集合}012|{2=-+=x x x A ,集合}01|{=+=kx x B 如果A ∪B =A ,则由实数k 组成的集合中所有元素的和与积分别为( )A .121-和0 B .121和121- C .121和0 D .41和121- 7.函数y =f (x )的曲线如图所示,那么函数y =f (2-x )的曲线是( )8.对某种有6件正品和4件次品的产品进行检测,任取2件,则其中一件是正品,另一间为次品的概率为( )A .92B .152 C .158 D .458 9.设F 1、F 2是双曲线12222=-by a x (a >0,b >0)的两个焦点,P 在双曲线上,若021=⋅PF PF ,ac PF PF 2||||21=(c 为半焦距),则双曲线的离心率为 ( )A .213- B .213+ C .2 D .215+ 10.在△ABC 中,A =120°,b =1,面积为3,则=++++CB A cb a sin sin sin( )A .3392 B .339 C .72D .7411.已知a 、b ∈R ,那么“22b a +<1”是“1+ab >a +b ” ( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件12.定义在R 上的f (x )满足f (-x )=- f (x +4),当x ≥2时,f (x )单调递增,如果x 1+x 2>4,且 (x 1-2)(x 2-2)>0,则f (x 1)+ f (x 2)的值为( )A .恒小于0B .恒大于0C .可能为0D .可正可负第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题。
济南市2009年高中阶段学校招生考试数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题4分,共48分) 题号 123456789 10 11 12 答案A B C C B B C CCDBB二、填空题(本大题共5个小题,每小题3分,共15分) 13. ()()33x x +- 14.3 15.2216.2 17.62.1 三、解答题(本大题共7个小题,共57分) 18.(本小题满分7分)(1)解:()()2121x x ++-=22122x x x +++- ···························································································· 2分 =23x + ·················································································································· 3分(2)解:去分母得:()213x x -=- ·············································································· 1分 解得1x =- ········································································································ 2分检验1x =-是原方程的解 ················································································· 3分 所以,原方程的解为1x =- ············································································· 4分 19.(本小题满分7分)(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥. ∴ADE FBC =∠∠ ······················································································ 1分 在ADE △和CBF △中,∵AD BC ADE FBC DE BF ===,∠∠, ∴ADE CBF △≌△ ···················································································· 2分 ∴AE CF = ····································································································· 3分(2)解:∵DE 是O 的直径∴90DBE =︒∠ ······························································································ 1分 ∵30ABD =︒∠∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ········································· 2分A E C DF B (第19题图 ①) A C DB E O(第19题图②)∵AC 是O 的切线∴90CAO =︒∠ ······························································································ 3分 又260AOC ABD ==︒∠∠∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠ ······················· 4分20.(本小题满分8分) 解:(1)k 为负数的概率是23··································································································· 3分 (2)画树状图或用列表法:第二次第一次1-2-31- (1-,2-)(1-,3) 2-(2-,1-) (2-,3)3(3,1-)(3,2-)·········································································· 5分共有6种情况,其中满足一次函数y kx b =+经过第二、三、四象限,即00k b <<,的情况有2种 ··························································································· 6分 所以一次函数y kx b =+经过第二、三、四象限的概率为2163= ··································· 8分 21.(本小题满分8分)解:(1)设职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元 ················· 1分由题意得20018001801700x y x y +=⎧⎨+=⎩·························································································· 3分解这个方程组得8005x y =⎧⎨=⎩ ······························································································ 4分答:职工月基本保障工资为800元,销售每件产品的奖励金额5元. ································· 5分 (2)设该公司职工丙六月份生产z 件产品 ··········································································· 6分由题意得80052000z +≥ ·························································································· 7分 解这个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 ········································································· 8分 22.解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==, ∴263k a ==, ······································································································ 2分 ∴反比例函数的表达式为:6y x= ········································································· 3分2- 3 1- 32- 11- 2-3开始第一次 第二次正比例函数的表达式为23y x =··········································································· 4分 (2)观察图象,得在第一象限内, 当03x <<时,反比例函数的值大 于正比例函数的值.··························· 6分 (3)BM DM = ···································································································· 7分 理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形即12OC OB =∵3OC = ∴4OB = ················································································································ 8分 即4n =∴632m n == ∴3333222MB MD ==-=,∴MB MD = ··········································································································· 9分23.(本小题满分9分) 解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ······································································································ 1分在Rt ABK △中,2sin 454242AK AB =︒==. 2cos 454242BK AB =︒==·········································································· 2分 在Rt CDH △中,由勾股定理得,22543HC =-=∴43310BC BK KH HC =++=++= ······························································ 3分 (第22题图) yxOADMCB(第23题图①)ADCBKH(第23题图②)ADCBGMN(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ·································································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ·········································································································· 5分 即10257t t -= 解得,5017t = ·········································································································· 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t =·················································································································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD == ∴535t t -= 解得258t = ·············································································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△A DC B MN (第23题图③) (第23题图④) A D CB M NH E∴NC ECDC HC = 即553t t -= ∴258t = ·················································································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===- 解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC = 即1102235tt-=∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ···················· 9分24.(本小题满分9分)解:(1)由题意得129302ba abc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ ············································································· 2分解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ······························································ 3分 (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的(第23题图⑤)A DCBH N MF点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,···························································· 4分解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--. ········································································ 5分 把1x =-代入得43y =- ∴P 点的坐标为413⎛⎫--⎪⎝⎭, ····················································································· 6分 (3)S 存在最大值 ································································································· 7分 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△.∴OD OE OC OA =,即223m OE-=. ∴333322OE m AE OE m =-==,,方法一:连结OPOED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ····································································································· 8分 ∵304-<∴当1m =时,333424S =-+=最大 ··································································· 9分方法二:OAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ (第24题图)O AC xy B E PD=()22333314244m m m -+=--+ ····································································· 8分 ∵304-<∴当1m =时,34S =最大 ···················································································· 9分。
济南市2006年高中阶段学校招生考试数学试题(非课改区)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1—2页,第Ⅱ卷3—10页,共120分.考试时间120分钟.第Ⅰ卷(选择题 共30分)注意事项: 1.数学考试允许使用科学计算器(凡符合大纲或课程标准要求的计算器都可带入考场). 2.数学考试允许考生进行剪、拼、折叠实验. 3.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡...上. 4.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效.......... 5.考试结束,监考人将本试卷和答题卡一并收回.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 如图,数轴上A B ,两点所表示的两数的( ) A.和为正数 B.和为负数C.积为正数 D.积为负数2.下列计算错误..的是( ) A.23a a a =B.222()ab a b = C.235()a a =D.2a a a -+=3.如图,是一个正在绘制的扇形统计图,整个圆表示某班参加 体育活动的总人数,那么表示参加立定跳远训练的人数占总人数 的35%的扇形是( ) A.MB.NC.PD.Q4.如图,直线a 与直线b 互相平行,则x y -的值是( )A.20 B.80 C.120 D.1805.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少..有300元.设x 个月后他至少有300元,则可以用于计算所需要的月数x 的不等式是( ) A.3045300x -≥ B.3045300x +≥1题图 PQMN 3题图x 303yab4题图C.3045300x -≤ D.3045300x +≤ 6.如图,雷达可用于飞机导航,也可用来监测飞 机的飞行.假设某时刻雷达向飞机发射电磁波,电 磁波遇到飞机后反射,又被雷达接收,两个 过程共用了55.2410-⨯秒.已知电磁波的传播速度为83.010⨯米/秒,则该时刻飞机与雷达站的距离是( )A.37.8610⨯米B.47.8610⨯米 C.31.57210⨯米 D.41.57210⨯米7.已知x =1xx -的值为( )A.2B.28.如图,一张长方形纸片沿AB 对折,以AB 的中点O 为顶点,将平角五等分,并沿五等分线折叠,再从点C 处剪开,使展开后的图形为正五边形,则剪开线与OC 的夹角OCD ∠为( )A.126 B.108 C.90 D.9.如图,直线l是函数132y x =+的图象.若点()P x y , 满足5x <,且132y x >+,则P 点的坐标可能是( ) A.(75), B.(46),C.(34),D.(21)-,10.如图,BE 是半径为6的D 的14圆周,C 点是BE 上 的任意一点,ABD △是等边三角形,则四边形ABCD 的周 长p 的取值范围是( )A.1218p <≤B.1824p <≤C.1818p <+≤D.1212p <+≤B6题图9题图8题图第Ⅱ卷(非选择题 共90分)注意事项: 1.第Ⅱ卷共8页,用钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共6小题,每小题3分,共18分,把答案填写在题中的横线上. 11.若分式11x x -+的值为零,则x 的值为 . 12.根据如图的程序,计算当输入3x =时,输出的结果y =13.如图,AC 是O 的直径,60ACB ∠=,连接AB ,过A B ,两点分别作O 的切线,两切线交于点P .若已知O 的半径为1,则PAB △的周长为 . 14.如图,1l 是反比例函数ky x=在第一象限内的图象,且过点2(21)A l ,,与1l 关于x 轴对称,那么图象2l 的函数解析式为 (0x >).15.如图,矩形ABCD 中,86AB AD ==,,将矩形ABCD 在直线l 上按顺时针方向不滑动的每秒转动90,转动3秒后停止,则顶点A 经过的路线长为 . 16.现有若干张边长不相等但都大于4cm 的正方形纸片,从中任选一张,如图从距离正方形的四个顶点2cm 处,沿45角画线,将正方形纸片分成5部分,则中间阴影部分的面积是 cm 2;若在上述正方形纸片中再任选一张重复上述过程,并计算阴影部分的面积,你能发现什么规律? . 12题图2cm 454545452cm2cmPB 6013题图3l15题图三、解答题:本大题共11小题,共72分,解答应写出文字说明或演算步骤. 17.(本题5分)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解.2224()19a x y b +, , , .18.(本题5分)解方程:233x x=-.19.(本题6分)已知关于x 的方程2210kx x +-=有两个不相等的实数根2x x 1,,且满足212()1x x +=,求k 的值.20.(本题7分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.21.(本题6分)元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,猜想y 与x 的函数关系,并求出函数关系式;(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?22.(本题6分)如图1,M N ,分别表示边长为a的等边三角形和正方形,P 表示直径为a 的圆.图2是选择基本图形M P ,用尺规画出的图案,228S a π=-阴影. (1)请你从图1中任意选择两种基本图形,按给定图形的大小设计一个新图案,还要选择恰当的图形部分涂上阴影,并计算阴影的面积;(尺规作图,不写作法,保留痕迹,作直角时可以使用三角板)(221题图图2 图123.(本题6分)某数学老师为了了解学生在数学学习中常见错误的纠正情况,收集了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对她所任教的初三(1)班和(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况: (1)利用图中提供的信息,补全下表:60名学生,请估计两班各有多少名学生成绩优秀;(3)观察图中的数据分布情况,你认为哪个班的学生纠错的整体情况更好一些?成绩(1)班成绩(2)班 23题图24.(本题7分)如图,在Rt ABC △与Rt ABD △中,90ABC BAD ∠=∠=,AD BC AC BD =,,相交于点G ,过点A 作AE DB ∥交CB 的延长线于点E ,过点B 作BF CA ∥交DA 的延长线于点F AE BF ,,相交于点H .(1)图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线) (2)证明四边形AHBG 是菱形; (3)若使四边形AHBG 是正方形,还需在Rt ABC △的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)FA24题图25.(本题7分)某校数学研究性学习小组准备设计一种高为60cm 的简易废纸箱.如图1,废纸箱的一面利用墙,放置在地面上,利用地面作底,其它的面用一张边长为60cm 的正方形硬纸板围成.经研究发现:由于废纸箱的高是确定的,所以废纸箱的横截面图形面积越大,则它的容积越大.(1)该小组通过多次尝试,最终选定下表中的简便且易操作的三种横截面图形,如图2,是根据这三种横截面图形的面积2(cm )y 与(cm)x (见表中横截面图形所示)的函数关系式而绘制出的图象.请你根据有信息,在表中空白处填上适当的数、式,并完成y 取最大值时的设计示意图;(2)在研究性学习小组展示研究成果时,小华同学指出:图2中“底角为60的等腰梯形”的图象与其他两个图象比较,还缺少一部分,应该补画.你认为他的说法正确吗?请简要说明理由.60图1 25题图26.(本题8分)如图1,以矩形OABC 的两边OA 和OC 所在的直线为x 轴、y 轴建立平面直角坐标系,A 点的坐标为(3)C ,0,点的坐标为(04),.将矩形OABC 绕O 点逆时针旋转,使B 点落在y 轴的正半轴上,旋转后的矩形为11111OA B C BC A B ,,相交于点M . (1)求点1B 的坐标与线段1B C 的长;(2)将图1中的矩形111OA B C 沿y 轴向上平移,如图2,矩形222PA B C 是平移过程中的某一位置,22BC A B ,相交于点1M ,点P 运动到C 点停止.设点P 运动的距离为x ,矩形222PA B C 与原矩形OABC 重叠部分的面积为y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)如图3,当点P 运动到点C 时,平移后的矩形为333PA B C .请你思考如何通过图形变换使矩形333PA B C 与原矩形OABC 重合,请简述你的做法.26题图1C 3C27.(本题9分)如图1,已知Rt ABC △中,30CAB ∠=,5BC =.过点A 作AE AB ⊥,且15AE =,连接BE 交AC 于点P . (1)求PA 的长;(2)以点A 为圆心,AP 为半径作A ,试判断BE 与A 是否相切,并说明理由; (3)如图2,过点C 作CD AE ⊥,垂足为D .以点A 为圆心,r 为半径作A ;以点C 为圆心,R 为半径作C .若r 和R 的大小是可变化的,并且在变化过程中保持A 和C 相切..,且使D 点在A 的内部,B 点在A 的外部,求r 和R 的变化范围.CD27题图图1图2济南市2006年高中阶段学校招生考试数学试题参考答案及评分标准(非课改区)一、 选择题1.D 2.C 3.C 4.A 5.B 6.A 7.A 8.C 9.B 10.C二、填空题11.1 12.2 13. 14.2y x=- 15.12π 16.8; ···································································································································· 2分 得到的阴影部分的面积是28cm ,即阴影部分的面积不变. ········································ 3分三、解答题17.本题存在12种不同的作差结果,不同选择的评分标准分述如下: 241a -;291b -;2249a b -;214a -;219b -;2294b a -这6种选择的评分范例如下: 例1:2249a b - ····················································································································· 2分 (23)(2a b a b =+-. ······························································································ 5分 2()1x y +-;22()4x y a +-;22()9x y b +-;21()x y -+;224()a x y -+;229()b x y -+这6种选择的评分范例如下:例2:21()x y -+ ··················································································································· 2分 [][]1()1()x y x y =++-+ ························································································· 4分 (1)(1x y x y =++--. ··························································································· 5分 提示:因式分解结果正确但没有中间步骤的不扣分.18.方程两边同乘以(3)x x -,得23(3)x x =-. ······························································ 2分 解这个方程,得9x =. ········································································································ 4分 检验:将9x =代入原方程,得左边13==右边. 所以,9x =是原方程的根. ································································································· 5分19.根据题意,得0k ≠, ····································································································· 1分 224(1)0k ∆=-⨯->,解得1k >-. ········································································ 3分 221k ⎛⎫-= ⎪⎝⎭,解得2k =±. ·························································································· 5分 所以2k =. ···················································································································· 6分20.(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得 ················································································································································· 1分 2168022280.x y x y +=⎧⎨+=⎩, ····················································································································· 3分 解这个方程组,得960360.x y =⎧⎨=⎩, 答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐. ························· 5分(2)因为9605360255205300⨯+⨯=>,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐. ········································ 7分21.(1)在所给的坐标系中准确描点. ················································································ 1分 由图象猜想到y 与x 之间满足一次函数关系. ····································································· 2分设经过(119),,(236),两点的直线为y kx b =+,则可得 19236.k b k b +=⎧⎨+=⎩,解得17k =,2b =.即172y x =+. 当3x =时,173253y =⨯+=;当4x =时,174270y =⨯+=.即点(353)(470),,,都在一次函数172y x =+的图象上. 所以彩纸链的长度y (cm )与纸环数x (个)之间满足一次函数关系172y x =+. ····· 4分(2)10m 1000cm =,根据题意,得1721000x +≥. ··················································· 5分 解得125817x ≥. 答:每根彩纸链至少要用59个纸环. ·················································································· 6分22.(1)正确运用两种基本图形进行组合设计. ································································· 3分 尺规作图运用恰当. ······························································································· 4分 阴影面积计算正确. ······························································································· 5分 参考举例:(2)写出在解题过程中感受较深且与数学有关的一句话. ·········································· 6分 参考举例:① 运用圆的半径,可以作正方形的边上的中点,这对于作图很有利.② 这三个图形关系很密切,能组合设计许多美丽的图案,来装饰我们的生活.22S a a π=-4阴影 22S a a π=-4阴影22S a =-阴影③ 数学作图中要一丝不苟,否则产生的作图误差会影响图形的美观.提示:本问题应积极评价学生富有个性和创造性的解答,只要回答合理,即可得分.23.(1)················································································································································· 3分(2)7604210⨯=(名),6603610⨯=(名). 答:(1)班有42名学生成绩优秀,(2)班有36名学生成绩优秀. ··················· 5分(3)(1)班的学生纠错的整体情况更好一些. ··························································· 6分24.(1)ABC BAD △≌△. ······························································································ 1分 90AD BC ABC BAD AB BA =∠=∠==,,,∴()ABC BAD SAS △≌△. ··············································································· 3分(2)AH GB BH GA ,∥∥,∴四边形AHBG 是平行四边形. ························· 4分ABC BAD △≌△,ABD BAC GA GB ∴∠=∠∴=,. ······························ 5分∴平行四边形AHBG 是菱形. ·········································································· 6分(3)需要添加的条件是AB BC =. ············································································ 7分 25.(1)表中空白处填写项目依次为2260y x x =-+;15;450. ···································· 3分 表中y 取最大值时的设计示意图分别为:················································································································································· 5分(2)小华的说法不正确. ······························································································ 6分 因为腰长x 大于30cm 时,符合题意的等腰梯形不存在,所以x 的取值范围不能超过30cm ,因此研究性学习小组画出的图象是正确的. ························································ 7分26.(1)如图1,因为15OB OB ===,所以点1B 的坐标为(05),. ················ 2分11541B C OB OC =-=-=. ······························································································ 3分 (2)在矩形111OA B C 沿y 轴向上平移到P 点与C 点重合的过程中,点1A 运动到矩形OABC的边BC 上时,求得P 点移动的距离115x =. 当自变量x 的取值范围为1105x <≤时,如图2,由2122B CM B A P △∽△, 30cm 20cm 20cm 20cm 60得1334x CM +=,此时,2221113334(1)224B A P B CM x y S S x +=-=⨯⨯-⨯+△△. 即23(1)68y x =-++(或23345848y x x =--+). ··························································· 5分 当自变量x 的取值范围为1145x ≤≤时, 求得122(4)3PCM y S x '==-△(或221632333y x x =-+). ················································ 7分 (3)部分参考答案: ············································································································· 8分 ①把矩形333PA B C 沿3BPA ∠的角平分线所在直线对折.②把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿y 轴向下平移4个单位长度.③把矩形333PA B C 绕C 点顺时针旋转,使点3A 与点B 重合,再沿BC 所在的直线对折. ④把矩形333PA B C 沿y 轴向下平移4个单位长度,再绕O 点顺时针旋转,使点3A 与点A 重合.提示:本问只要求整体图形的重合,不必要求图形原对应点的重合.27.(1)在Rt ABC △中,305CAB BC ∠==,,210AC BC ∴==. ······························································································ 1分AE BC ∥,APE CPB ∴△∽△. ::3:1PA PC AE BC ∴==.:3:4PA AC ∴=,3101542PA ⨯==. ······························································· 3分 (2)BE 与A 相切. ·································································································· 4分在Rt ABE △中,AB =,15AE =,tanAE ABE AB ∴∠===60ABE ∴∠=. ········································· 5分 又30PAB ∠=,9090ABE PAB APB ∴∠+∠=∴∠=,,BE ∴与A 相切. ································································································ 6分(3)因为5AD AB ==,r 的变化范围为5r << ······················· 7分当A 与C 外切时,10R r +=,所以R 的变化范围为105R -<;·································································································································· 8分当A 与C 内切时,10R r -=,所以R 的变化范围为1510R <<+·································································································································· 9分。
济南外国语学校高中部2009年面向全省招生考试数 学 试 题(09.5)时间:100分钟 满分:100分一、选择题(本大题共10小题, 每小题3分, 共30分. 在每小题给出的四个选项中,只有一个是正确的. 每小题选对得3分,选错、不选或多选,均不得分)1.已知211a aa a--=,则a 的取值范围是( ) A .0a ≤ B .0a < C .01a <≤ D .0a >2.图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )A .B .C .D . 3. 如果a<b<0,下列不等式中错误..的是( ) A. ab >0 B. a+b<0 C.ba<1 D. a-b<0 4. 如图2,一次函数y1=x-1与反比例函数y2=x2的图像交于点A(2,1),B(-1,-2),则使y1>y2的x的取值范围是( ) A. x>2 B. x>2 或-1<x<0 C. -1<x<2 D. x>2 或x<-15.如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则a 满足的关系式是( )A 、b a c =+B 、b ac =C 、222b ac =+ D 、22b a c ==2 1 3图yx图6.若不等式组530x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .53m ≥B .53m <C .53m >D .53m ≤7.袋中放有一套(五枚)北京奥运会吉祥物福娃纪念币,依次取出(不放回)两枚纪念币,恰好能够组成“北京”的概率是 ( )A .251B .201C .51D .101 8.小明从图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有( )A .2个B .3个C .4个D .5个9.如图,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC ,的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分面积)为( )A .77π338-B .47π338+C .πD .4π33+10.如图,在等腰三角形ABC 中,120ABC ∠=,点P 是底 边AC 上一个动点,M N ,分别是AB BC ,的中点,若PM PN +的最小值为2,则ABC △的周长是( ) A .2B .23+C .4D .423+座号二、填空题(本大题共4小题,每小题3分,共12分. 只要求填出最后结果)11.已知αβ,为方程2420x x ++=的二实根,则31450αβ++= .12.红丝带是关注艾滋病防治问题的国际性标志.将宽为1cm 的红丝带交叉成60°角重叠2- 1- 012 y x13x =AH B O C 1O 1H 1A1CAB CP M N贝贝晶晶欢欢迎妮妮在一起(如图),则重叠四边形的面积为_______2.cm第12题图第13题图13. 如图,已知A 、B 、C 是⊙O 上的三个点,且AB=15cm ,AC=33cm ,∠BOC=60°.如果D 是线段BC 上的点,且点D 到直线AC 的距离为2,那么BD= cm.14.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:㎝),在上盖中开有一孔便于插吸管,吸管长为13㎝, 小孔到图中边AB 距离为1㎝,到上盖中与AB 相邻的两边距离相等,设插入吸管后露在盒外面的管长为h ㎝,则h 的最小值大约为______㎝.235 2.2≈≈≈)三、解答题(本大题共5小题,共58分,写出必要的文字说明及解题步骤) 15.(本小题8分)先化简后求值.222212ab a b ab b a ab ab ⎛⎫+⎛⎫-÷+ ⎪ ⎪--⎝⎭⎝⎭,其中13a =-+13b =-.16.(本小题10分)设12x x ,是关于x 的一元二次方程222420x ax a a +++-=的两实根,当a 为何值时,2212x x +有最小值?最小值是多少?17.(本小题12分)为了更好治理水质,保护环境,市治污公司决定购买10台污水处理设备.现有AA 型B 型 价格(万元/台) ab处理污水量(吨/月)240200经调查:3台B 型设备少6万元.(1)求a b ,的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.18. (本小题14分)如图,已知⊙O的半径为2,以⊙O的弦AB为直径作⊙M,点C是⊙O优弧AB上的一个动点(不与点A、点B重合).连结AC、BC,分别与⊙M相交于点D、点E,连结DE.若AB=23.(1)求∠C的度数;(2)求DE的长;(3)如果记tan∠ABC=y,ADDC=x(0<x<3),那么在点C的运动过程中,试用含x的代数式表示y.19.(本小题满分14分)已知抛物线y=ax2+bx+c的顶点A在x轴上,与y轴的交点为B(0,1),且b=-4ac.(1) 求抛物线的解析式;(2) 在抛物线上是否存在一点C,使以BC为直径的圆经过抛物线的顶点A?若不存在说明理由;若存在,求出点C的坐标,并求出此时圆的圆心点P的坐标;(3) 根据(2)小题的结论,你发现B、P、C三点的横坐标之间、纵坐标之间分别有何关系?济南外国语学校高中部2009年面向全省招生考试数学试题答案(09.5)1-10 CACBA DDCCD座号O xyA第19题图B11.212.313.514.2 15.解:原式222()()2a b ab a b b a b a a b ab ⎡⎤++=-÷⎢⎥--⎣⎦2222()()a b ab ab a b a b -=-+ 2()()2()()a b a b ab ab ab a b +-=-+2a b=+. 当1a =-+1b =-时, 原式212==--.16.解答:22(2)4(42)0a a a ∆=-+-≥12a ∴≤ 又122x x a +=-,21242x x a a =+-222121212()2x x x x x x ∴+=+- 22(2)4a =--12a ≤∴当12a =时,2212x x +的值最小此时222121122422x x ⎛⎫+=--= ⎪⎝⎭,即最小值为12.17.(1)2326a b b a -=⎧⎨-=⎩1210a b =⎧∴⎨=⎩(2)设购买污水处理设备A 型设备X 台,B 型设备(10)X -台,则:1210(10)105X X +-≤2.5X ∴≤ X 取非负整数 012X ∴=,,∴有三种购买方案:①A 型设备0台,B 型设备10台;②A 型设备1台,B 型设备9台;③A 型设备2台,B 型设备8台.(3)由题意:240200(10)2040X X +-≥1X ∴≥ 又 2.5X ≤ X ∴为1,2.当1X =时,购买资金为:121109102⨯+⨯=(万元) 当2X =时,购买资金为:122108104⨯+⨯=(万元) ∴为了节约资金,应选购A 型设备1台,B 型设备9台18.解:(1)连结OB OM ,.B则在Rt OMB △中,2OB =,MB =,1OM ∴=.12OM OB=,30OBM ∴∠=.60MOB ∴∠=.连结OA .则120AOB ∠=.1602C AOB ∴∠=∠=. (2)在CDE △和CBA △中,CDE CBA ∠=∠,ECD ACB ∠=∠,CDE CBA ∴△∽△.DE DCAB BC∴=.连结BD .则90BDC ADB ∠=∠=. 在Rt BCD △中,60BCD ∠=,30CBD ∴∠=.2BC DC ∴=.12DC BC ∴=.即12DE AB =.1122DE AB ∴==⨯= (3)连结AE .AB 是M 的直径,90AEB AEC ∴∠=∠=.由ADx DC=,可得AD x DC =,(1)AC AD DC x DC =+=+. 在Rt ACE △中,cos CE ACE AC ∠=,sin AEACE AC∠=, 1cos (1)cos60(1)2CE AC ACE x DC x DC ∴=∠=+=+;3sin (1)sin 60(1)2AE AC ACE x DC x DC =∠=+=+. 又由(2),知2BC DC =.112(1)(3)22BE BC CE DC x DCx DC ∴=-=-+=-.在Rt ABE △中,1)3(1)2tan 13(3)2x DCAE x ABC BE x x DC ++∠===--,1)(03)3x y x x+∴=<<-.19.解:(1)由抛物线过B(0,1) 得c=1. 又b=-4ac, 顶点A(-ab2,0), ∴-a b 2=aac 24=2c=2.∴A(2,0).将A 点坐标代入抛物线解析式,得4a+2b+1=0 ,∴ ⎩⎨⎧=++-=.0124,4b a a b 解得a =41,b =-1.故抛物线的解析式为y=41x 2-x+1. (2)假设符合题意的点C 存在,其坐标为C(x ,y), 作CD ⊥x 轴于D ,连接AB 、AC .∵A 在以BC 为直径的圆上,∴∠BAC=90°. ∴ △AOB ∽△CDA .∴OB ·CD=OA ·AD . 即1·y=2(x-2), ∴y=2x-4. 由⎪⎩⎪⎨⎧+-=-=.141,422x x y x y 解得x 1=10,x 2=2.∴符合题意的点C 存在,且坐标为 (10,16),或(2,0).∵P 为圆心,∴P 为BC 中点.当点C 坐标为 (10,16)时,取OD 中点P 1 ,连PP 1 , 则PP 1为梯形OBCD 中位线.∴PP 1=21(OB+CD)=217.∵D (10,0), ∴P 1 (5,0), ∴P (5, 217).当点C 坐标为 (2,0)时, 取OA 中点P 2 ,连PP 2 , 则PP 2为△OAB 的中位线.∴PP 2=21OB=12.∵A (2,0), ∴P 2(1,0), ∴P (1,12).故点P 坐标为(5, 217),或(1,12).(3)设B 、P 、C 三点的坐标为B(x 1,y 1), P(x 2,y 2), C(x 3,y 3),由(2)可知:.2,2312312y y y x x x +=+=第19题图 O x yA CB PPD P P。
绝密★启用前济南市2009年高中阶段学校招生考试语文试题参考答案及评分标准一、积累与运用(11分)1.A.江入大荒流B.沉舟侧畔千帆过C.帘卷西风人比黄花瘦D.玉垒浮云变古今E.落红不是无情物化作春泥更护花F.不戚戚于贫贱不汲汲于富贵评分意见:本题共6分。
每小题1分,诗句填写正确且无错别字方可得分。
2.示例1:她用坚毅与刚强战胜病魔;她用读书与写作演绎人生;她用残缺的身体诠释破茧成蝶的真谛;她期待:蝴蝶飞越沧海。
示例2:一个柔弱的女子,用刚毅、执著书写烂漫心语,演绎完美人生。
意如向世人证明:人生有另一种可能。
评分意见:本题共5分。
突出安意如与病魔抗争的精神和人生价值得4分,语言简练、流畅得1分。
二、古诗文阅读(18分)3.示例:秋风乍起,树叶纷纷飘零,大雁南飞,北风呼啸,江上涌起层层巨浪,令人倍增寒意。
评分意见:本题共3分。
两句描写各占1分,语言完整简洁占1分。
4.示例:诗歌表达了诗人思归的哀情和前路茫茫的愁绪。
评分意见:本题共2分。
两个要点各占1分。
意思对即可。
5.其父兄之食粗而衣恶者/犹多矣评分意见:本题2分。
6.面对;成语示例:如临大敌临危不惧临危制变临危授(受)命居高临下评分意见:本题共2分,每空1分。
7.C评分意见:本题2分。
8.波动的光闪着金色,静静的月影像沉入水中的玉璧。
评分意见:本题共2分。
重点实词、虚词翻译正确,语句通顺即可得分。
9.先天下之忧而忧,后天下之乐而乐。
评分意见:本题2分。
摘抄无误且没有错别字方可得分。
10.示例:季文子与范仲淹都有忧国忧民的思想。
季文子身为国相,心系百姓,体恤民生疾苦。
因为“人之父兄”“食粗而衣恶者犹多”,自己就“妾不衣帛,马不食粟”。
这是季文子忧国忧民思想的具体体现。
评分意见:本题共3分。
两者的共同思想占1分,结合乙文内容分析占2分。
三、现代文阅读(41分)11.示例:点明本文的说明对象——食用薄膜,指明了食用薄膜可食、无毒的特点;题目新颖别致,用语生动,引发读者的阅读兴趣。
2009年全国各地中考试题及答案112份下载地址(截止到7月11日)(7月7日前的为红色)2009年安徽省初中毕业学业考试数学试题及答案2009年安徽省芜湖市初中毕业学业考试题及答案2009年北京高级中学中等学校招生考试数学试题及答案2009年福建省福州市课改实验区中考试卷及参考答案2009年福建省龙岩市初中毕业、升学考试试题及答案2009年福建省宁德市初中毕业、升学考试试题及答案2009年福建省莆田市初中毕业、升学考试试卷及答案2009年福建省泉州市初中毕业、升学考试试题及答案2009年福建省漳州市初中毕业暨高中阶段招生题及答案2009年甘肃省定西市中考数学试卷及答案2009年甘肃省兰州市初中毕业生学业考试试卷及答案2009年甘肃省庆阳市高中阶段学校招生考试题及答案2009年广东省佛山市高中阶段学校招生考试题及答案2009年广东省茂名市高中阶段招生考试试题及答案2009年广东省梅州市初中毕业生学业考试试题及答案2009年广东省清远市初中毕业生学业考试试题及答案2009年广东省深圳市初中毕业生学业考试试卷及答案2009年广东省肇庆市初中毕业生学业考试试题及答案2009年广西省崇左市初中毕业升学考试数学试题及答案2009年广西省桂林市百色市初中毕业暨升学试卷及答案2009年广西省河池市初中毕业暨升学统一考试卷及答案2009年广西省贺州市初中毕业升学考试试卷及答案2009年广西省柳州市初中毕业升学考试数学试卷及答案2009年广西省南宁市中等学校招生考试题及答案2009年广西省钦州市初中毕业升学考试试题卷及答案2009年广西省梧州市初中毕业升学考试卷及答案2009年贵州省安顺市初中毕业、升学招生考试题及答案2009年贵州省黔东南州初中毕业升学统一考试题及答案2009年河北省初中毕业生升学文化课考试试卷及答案2009年河南省初中学业水平暨高级中等学校招生卷及答2009年黑龙江省哈尔滨市初中升学考试题及答案2009年黑龙江省牡丹江市初中毕业学业考试题及答案2009年黑龙江省齐齐哈尔市初中毕业学业考试题及答案2009年黑龙江省绥化市初中毕业学业考试卷及答案(答案为扫描版)2009年湖北省鄂州市初中毕业及高中阶段招生题及答案2009年湖北省恩施自治州初中毕业生学业考试题及答案2009年湖北省黄冈市初中毕业生升学考试试卷及答案2009年湖北省黄石市初中毕业生学业考试联考卷及答案2009年湖北省黄石市初中毕业生学业考试试题及答案2009年湖北省十堰市初中毕业生学业考试试题及答案2009年湖北省武汉市初中毕业生学业考试试题及答案2009年湖北省襄樊市初中毕业、升学统一考试题及答案2009年湖北省孝感市初中毕业生学业考试试题及答案2009年湖北省宜昌市初中毕业生学业考试试题及答案2009年湖南省长沙市初中毕业学业考试试卷及答案2009年湖南省常德市初中毕业学业考试试题及答案2009年湖南省郴州市初中毕业考试数学试题及答案2009年湖南省衡阳市初中毕业学业考试试卷及参考答案2009年湖南省怀化市初中毕业学业考试卷及答案2009年湖南省娄底市初中毕业学业考试试题及答案2009年湖南省邵阳市初中毕业学业水平考试卷及答案2009年湖南省湘西自治州初中毕业学业考试卷及答案2009年湖南省益阳市普通初中毕业学业考试试卷及答2009年湖南省株洲市初中毕业学业考试数学试题及答案2009年吉林省长春市初中毕业生学业考试试题及答案2009年吉林省初中毕业生学业考试数学试题及答案2009年江苏省苏州市中考数学试题及答案(答案为扫描版)2009年江苏省中考数学试卷及参考答案2009年江西省中等学校招生考试数学试题及参考答案2009年辽宁省本溪市初中毕业生学业考试试题及答案2009年辽宁省朝阳市初中升学考试数学试题及答案2009年辽宁省抚顺市初中毕业生学业考试试卷及答案2009年辽宁省锦州市中考数学试题及答案2009年辽宁省铁岭市初中毕业生学业考试试题及答案2009年内蒙古赤峰市初中毕业、升学统一考试题及答案(答案为扫描版)2009年内蒙古自治区包头市高中招生考试试卷及答案2009年宁夏回族自治区初中毕业暨高中阶段招生题及答案2009年山东省德州市中等学校招生考试数学试题及答案2009年山东省东营市中等学校招生考试试题及答案2009年山东省济南市高中阶段学校招生考试试题及答案2009年山东省济宁市高中阶段学校招生考试试题及答案2009年山东省临沂市中考数学试题及参考答案2009年山东省日照市中等学校招生考试试题及参考答案2009年山东省泰安市高中段学校招生考试试题及答案2009年山东省威海市初中升学考试数学试卷及参考答案2009年山东省潍坊市初中学业水平考试数学试题及答案2009年山东省烟台市初中学生学业考试试题及答案2009年山东省枣庄市中等学校招生考试数学试题及答案2009年山东省中等学校招生考试数学试题及参考答案2009年山东省淄博市中等学校招生考试试题及答案2009年山西省初中毕业学业考试数学试卷及答案2009年山西省太原市初中毕业学业考试试卷及答案2009年陕西省初中毕业学业考试数学试题及答案2009年上海市初中毕业统一学业考试数学试卷及答案2009年四川省成都市高中学校统一招生考试试卷及答案2009年四川省达州市高中招生统一考试题及答案2009年四川省高中阶段教育学校招生统一考试题及答案2009年四川省泸州市高中阶段学校招生统一考试题及答(答案为扫描版)2009年四川省眉山市高中阶段教育学校招生试题及答案2009年四川省南充市高中阶段学校招生统一考试卷及答2009年四川省遂宁市初中毕业生学业考试试题及答案2009年台湾第一次中考数学科试题及答案2009年天津市初中毕业生学业考试数学试题及答案2009年新疆维吾尔自治区初中毕业生学业考试题及答案2009年云南省高中(中专)招生统一考试试题及答案2009年浙江省杭州市各类高中招生文化考试试题与答案2009年浙江省湖州市初中毕业生学业考试试题及答案2009年浙江省嘉兴市初中毕业生学业考试试卷及答案2009年浙江省金华市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试卷及答案2009年浙江省丽水市初中毕业生学业考试试题及答案2009年浙江省宁波市初中毕业生学业考试试题及答案2009年浙江省衢州市初中毕业生学业考试数学卷及答案2009年浙江省台州市初中学业考试数学试题及参考答案2009年浙江省温州市初中毕业生学业考试试题及答案(答案为扫描版)2009年浙江省义乌市初中毕业生学业考试题及参考答案2009年浙江省舟山市初中毕业生学业考试数学卷及答案2009年重庆市初中毕业暨高中招生考试数学试题及答案2009年重庆市江津市初中毕业学业暨高中招生试题及答2009年重庆市綦江县初中毕业暨高中招生考试题及答案。
全等三角形的认识与性质全等图形:能够完全重合的两个图形就是全等图形. 全等多边形:能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等.如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”.A'B'C'D'E'EDCBA全等三角形:能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等.知识点睛中考要求第一讲 全等三角形的 性质及判定全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.重、难点重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。
同时全等三角形的判定也是本章的重点,特别是几种判定方法,尤其是当在直角三角形中时,HL的判定是整个直角三角形的重点难点:本节的难点是全等三角形性质和判定定理的灵活应用。
济南市2009年高中阶段学校招生考试数 学 试 卷友情提示:一、认真对待每一次复习及考试。
.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。
三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效. 四、请仔细审题,细心答题,相信你一定会有出色的表现!注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共2页,满48分;第Ⅱ卷共6页,满分72分.本试题共8页,满分120分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内.3.第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效.4.考试期间,一律不得使用计算器;考试结束,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3-的相反数是( ) A .3 B .3- C .13D .13-2.图中几何体的主视图是( )3.如图,AB CD ∥,直线EF 与AB 、CD 分别相交于G 、H .60AGE =︒∠,则EHD ∠的度数是( ) A .30︒ B .60︒ C .120︒ D .150︒4.估计20的算术平方根的大小在( ) A .2与3之间 B .3与4之间AC E B FDHG(第3题图)正面(第2题图)A .B .C .D .C .4与5之间D .5与6之间5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A .535.910⨯平方米 B .53.6010⨯平方米 C .53.5910⨯平方米 D .435.910⨯平方米6.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .6 7.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( ) A .20、20 B .30、20C .30、30D .20、30 8.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( ) A .230cm B .230cm π C .260cm π D .2120cm1 2 A . B . 1 2 C . 1 2 D . 1 2 (第9题图)BACO ABCDOE(第10题图)捐款人数金额(元)1520 613208320 3050100(第7题图)1010.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.411.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( )12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-,GDCE F A Bba(第11题图)A .B .C .D .注意事项:1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.考试时间,一律不得使用计算器.第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中横线上) 13.分解因式:29x -= .14.如图,O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .15.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 . 16.“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得男子篮则该队主力队员身高的方差是 厘米.17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠;(2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.11.73≈)三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分7分) (1)计算:()()2121x x ++- (2)解分式方程:2131x x =--. 19.(本小题满分7分)(第14题图) OA B (第15题图) A DBEC60°(第17题图)(1)已知,如图①,在ABCD 中,E 、F 是对角线BD 上的两点,且BF DE =.求证:AE CF =.(2)已知,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD =︒∠,求EBO ∠和C ∠的度数. 20.(本小题满分8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b . (1)写出k 为负数的概率;(2)求一次函数y kx b =+的图象经过二、三、四象限的概率.(用树状图或列表法求解) 21.(本小题满分8分)AE C DF B (第19题图 ①)E(第19题图②)1- 2- 3-正面背面自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×销售的件数).下表是甲、乙两位职工今年五月份的工资情况信息:( (2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品? 22.(本小题满分9分) 已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,. (1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.23.(本小题满分9分)如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.C(第22题图)24.(本小题满分9分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.济南市2009年高中阶段学校招生考试数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共5个小题,每小题3分,共15分) 13. ()()33x x +- 14.3 15.216.2 17.62.1 三、解答题(本大题共7个小题,共57分) 18.(本小题满分7分)(1)解:()()2121x x ++-=22122x x x +++- ········································································· 2分 =23x + ·························································································· 3分(2)解:去分母得:()213x x -=- ····························································· 1分(第24题图)解得1x =- ·················································································· 2分 检验1x =-是原方程的解 ································································ 3分 所以,原方程的解为1x =- ····························································· 4分 19.(本小题满分7分)(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥. ∴ADE FBC =∠∠ ···································································· 1分 在ADE △和CBF △中,∵AD BC ADE FBC DE BF ===,∠∠, ∴ADE CBF △≌△ ··································································· 2分 ∴AE CF =················································································ 3分(2)解:∵DE 是O 的直径∴90DBE=︒∠ ·········································································· 1分 ∵30ABD =︒∠∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ································ 2分 ∵AC 是O 的切线∴90CAO =︒∠ ·········································································· 3分 又260AOC ABD ==︒∠∠∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠ ·················· 4分20.(本小题满分8分) 解:(1)k 为负数的概率是23················································································ 3分 (2)画树状图或用列表法:······ 5分共有6种情况,其中满足一次函数y kx b =+经过第二、三、四象限,A E C DF B (第19题图 ①) E (第19题图②) 2- 3 1- 32- 11- 2-3开始第一次 第二次即00k b <<,的情况有2种 ········································································ 6分 所以一次函数y kx b =+经过第二、三、四象限的概率为2163= ···························· 8分 21.(本小题满分8分) 解:(1)设职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元 ··············· 1分由题意得20018001801700x y x y +=⎧⎨+=⎩······································································· 3分解这个方程组得8005x y =⎧⎨=⎩ ·········································································· 4分答:职工月基本保障工资为800元,销售每件产品的奖励金额5元. ························· 5分 (2)设该公司职工丙六月份生产z 件产品 ··························································· 6分由题意得80052000z +≥ ······································································· 7分 解这个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 ························································· 8分 22.解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==, ∴263k a ==, ················································································· 2分 ∴反比例函数的表达式为:6y x = ························································· 3分正比例函数的表达式为23y x = ··························································· 4分(2)观察图象,得在第一象限内,当03x <<时,反比例函数的值大 于正比例函数的值.····················· 6分 (3)BM DM = ··············································································· 7分 理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形即12OC OB = ∵3OC = ∴4OB = ························································································ 8分 即4n = ∴632m n == (第22题图)∴3333222MB MD ==-=, ∴MB MD = ···················································································· 9分23.(本小题满分9分) 解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==.················································································ 1分 在Rt ABK △中,sin 454AK AB =︒== 2cos 454242BK AB =︒== ·························································· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ················································· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ············································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG =··················································································· 5分 即10257t t -= 解得,5017t = ···················································································· 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t = ·························································································· 7分(第23题图①) A D C B K H (第23题图②) A D C B G MNADAD N②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ······················································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t = ·························································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===- 解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△∴FC MCHC DC = 即1102235tt -= (第23题图⑤)A DCBH N MF∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ··············· 9分24.(本小题满分9分)解:(1)由题意得129302ba abc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ ······························································ 2分解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ················································· 3分 (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,··············································· 4分解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--. ························································ 5分 把1x =-代入得43y =-∴P 点的坐标为413⎛⎫-- ⎪⎝⎭,··································································· 6分 (3)S 存在最大值 ············································································ 7分 理由:∵DE PC ∥,即DE AC ∥. ∴OED OAC △∽△. ∴OD OE OC OA =,即223m OE-=.(第24题图)∴333322OE m AE OE m =-==,, 方法一: 连结OPOED POE POD OED PDOE S S S S S S =-=+-△△△△四边形=()()13411332132223222m m m m ⎛⎫⎛⎫⨯-⨯+⨯-⨯-⨯-⨯- ⎪ ⎪⎝⎭⎝⎭=23342m m -+ ··············································································· 8分 ∵304-<∴当1m =时,333424S =-+=最大 ····················································· 9分方法二:OAC OED AEP PCD S S S S S =---△△△△=()1131341323212222232m m m m ⎛⎫⨯⨯-⨯-⨯--⨯⨯-⨯⨯ ⎪⎝⎭ =()22333314244m m m -+=--+ ······················································ 8分 ∵304-<∴当1m =时,34S =最大 ·································································· 9分。
济南市2009年高中阶段学校招生考试数 学 试 卷注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷共2页,满48分;第Ⅱ卷共6页,满分72分.本试题共8页,满分120分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷的密封线内. 3.第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,答案写在试卷上无效. 4.考试期间,一律不得使用计算器;考试结束,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.3-的相反数是( ) A .3 B .3- C .13D .13-2.图中几何体的主视图是( )3.如图,AB CD ∥,直线EF 与AB 、CD 分别相交于G 、H .60AGE =︒∠,则EHD ∠的度数是( ) A .30︒ B .60︒ C .120︒ D .150︒4.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间5.2009年10月11日,第十一届全运会将在美丽的泉城济南召开.奥体中心由体育场,体育馆、游泳馆、网球馆,综合服务楼三组建筑组成,呈“三足鼎立”、“东荷西柳”布局.建筑面积约为359800平方米,请用科学记数法表示建筑面积是(保留三个有效数字)( ) A .535.910⨯平方米 B .53.6010⨯平方米 C .53.5910⨯平方米 D .435.910⨯平方米AC EB FD HG (第3题图)正面(第2题图)A .B .C .D .6.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .67.“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是( )A .20、20B .30、20C .30、30D .20、30 8.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )9.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径6cm OB =,高8cm OC =.则这个圆锥漏斗的侧面积是( ) A .230cm B .230cm π C .260cm πD .2120cm10.如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.411.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若a b Rt GEF ∥,△从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( ) 1 2 A . B . 1 2 C . 1 2 D . 1 2 (第9题图) B A C OA B C D O E(第10题图)金额(元)50100(第7题图)12.在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-,G DCE F A Bba(第11题图)A .B .C .D .注意事项:1.第Ⅱ卷共6页.用蓝、黑钢笔或圆珠笔直接答在考试卷上.2.答卷前将密封线内的项目填写清楚.考试时间,一律不得使用计算器.第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题中横线上) 13.分解因式:29x -= .14.如图,O 的半径5cm OA =,弦8cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是 cm .15.如图,AOB ∠是放置在正方形网格中的一个角,则cos AOB ∠的值是 . 16.“五一”期间,我市某街道办事处举行了“迎全运,促和谐”中青年篮球友谊赛.获得则该队主力队员身高的方差是 厘米.17.九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作:(1)在放风筝的点A 处安置测倾器,测得风筝C 的仰角60CBD =︒∠;(2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米.根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1 1.73≈)三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分7分) (1)计算:()()2121x x ++- (2)解分式方程:2131x x =--. 19.(本小题满分7分)(第14题图) OA B (第15题图) A DBEC60°(第17题图)(1)已知,如图①,在ABCD中,E 、F 是对角线BD 上的两点,且BF DE =.求证:AE CF =.(2)已知,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O 于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD =︒∠,求EBO ∠和C ∠的度数. 20.(本小题满分8分)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b . (1)写出k 为负数的概率;(2)求一次函数y kx b =+的图象经过二、三、四象限的概率.(用树状图或列表法求解)AE C DF B (第19题图 ①)E(第19题图②)1- 2- 3-正面背面21.(本小题满分8分)自2008年爆发全球金融危机以来,部分企业受到了不同程度的影响,为落实“促民生、促经济”政策,济南市某玻璃制品销售公司今年1月份调整了职工的月工资分配方案,调整后月工资由基本保障工资和计件奖励工资两部分组成(计件奖励工资=销售每件的奖励金额×(1)试求工资分配方案调整后职工的月基本保障工资和销售每件产品的奖励金额各多少元?(2)若职工丙今年六月份的工资不低于2000元,那么丙该月至少应销售多少件产品? 22.(本小题满分9分) 已知:如图,正比例函数y ax =的图象与反比例函数ky x=的图象交于点()32A ,. (1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m<<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.23.(本小题满分9分)如图,在梯形ABCD 中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.C(第23题图)(第22题图)24.(本小题满分9分)已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,. (1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标. (3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.济南市2009年高中阶段学校招生考试数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共5个小题,每小题3分,共15分) 13. ()()33x x +- 14.3 1516.2 17.62.1 三、解答题(本大题共7个小题,共57分) 18.(本小题满分7分)(1)解:()()2121x x ++-=22122x x x +++- ···························································································· 2分 =23x + ·················································································································· 3分(第24题图)(2)解:去分母得:()213x x -=- ·············································································· 1分 解得1x =- ········································································································ 2分 检验1x =-是原方程的解 ················································································· 3分 所以,原方程的解为1x =- ············································································· 4分 19.(本小题满分7分)(1)证明:∵四边形ABCD 是平行四边形,∴AD BC AD BC =,∥. ∴ADE FBC =∠∠ ······················································································ 1分 在ADE △和CBF △中,∵AD BC ADE FBC DE BF ===,∠∠, ∴ADE CBF △≌△ ···················································································· 2分 ∴AE CF = ····································································································· 3分(2)解:∵DE 是O 的直径∴90DBE =︒∠ ······························································································ 1分 ∵30ABD =︒∠∴903060EBO DBE ABD =-=︒-︒=︒∠∠∠ ········································· 2分 ∵AC 是O 的切线∴90CAO =︒∠ ······························································································ 3分 又260AOC ABD ==︒∠∠∴180180609030C AOC CAO =︒--=︒-︒-︒=︒∠∠∠ ······················· 4分20.(本小题满分8分) 解:(1)k 为负数的概率是23····································································································· 3分 (2)画树状图或用列表法:········ 5分A E C DF B (第19题图 ①) E (第19题图②) 2- 3 1 32 11- 2-3开始第一次 第二次共有6种情况,其中满足一次函数y kx b =+经过第二、三、四象限,即00k b <<,的情况有2种 ··························································································· 6分 所以一次函数y kx b =+经过第二、三、四象限的概率为2163= ··································· 8分 21.(本小题满分8分) 解:(1)设职工的月基本保障工资为x 元,销售每件产品的奖励金额为y 元 ··················· 1分由题意得20018001801700x y x y +=⎧⎨+=⎩ ·························································································· 3分解这个方程组得8005x y =⎧⎨=⎩······························································································ 4分答:职工月基本保障工资为800元,销售每件产品的奖励金额5元. ································· 5分(2)设该公司职工丙六月份生产z 件产品 ··········································································· 6分由题意得80052000z +≥ ·························································································· 7分 解这个不等式得240z ≥答:该公司职工丙六月至少生产240件产品 ········································································· 8分 22.解:(1)将()32A ,分别代入k y y ax x ==,中,得2323ka ==, ∴263k a ==, ······································································································ 2分 ∴反比例函数的表达式为:6y x = ········································································· 3分正比例函数的表达式为23y x = ··········································································· 4分(2)观察图象,得在第一象限内,当03x <<时,反比例函数的值大 于正比例函数的值.··························· 6分 (3)BM DM = ···································································································· 7分 理由:∵132OMB OAC S S k ==⨯=△△ ∴33612OMB OAC OBDC OADM S S S S =++=++=△△矩形四边形即12OC OB =∵3OC = ∴4OB = ················································································································ 8分 即4n =(第22题图)∴632m n == ∴3333222MB MD ==-=,∴MB MD = ··········································································································· 9分23.(本小题满分9分) 解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. ······································································································ 1分在Rt ABK △中,sin 454AK AB =︒==cos 454BK AB =︒== ·········································································· 2分 在Rt CDH △中,由勾股定理得,3HC∴43310BC BK KH HC =++=++= ······························································ 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ·································································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG = ·········································································································· 5分 即10257t t -= 解得,5017t = ·········································································································· 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-(第23题图①) A D C B K H (第23题图②) A D C B G MN∴103t =·················································································································· 7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD == ∴535t t -= 解得258t = ·············································································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC = 即553t t -= ∴258t = ·················································································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC= A DC B MN (第23题图③) (第23题图④) A D CB M NH E (第23题图⑤)A DCBH N MF即1102235tt-=∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ···················· 9分24.(本小题满分9分)解:(1)由题意得129302ba abc c ⎧=⎪⎪⎪-+=⎨⎪⎪=-⎪⎩ ··············································································· 2分解得23432a b c ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩∴此抛物线的解析式为224233y x x =+- ······························································ 3分 (2)连结AC 、BC .因为BC 的长度一定,所以PBC △周长最小,就是使PC PB +最小.B 点关于对称轴的对称点是A 点,AC 与对称轴1x =-的交点即为所求的点P .设直线AC 的表达式为y kx b =+则302k b b -+=⎧⎨=-⎩,···························································· 4分解得232k b ⎧=-⎪⎨⎪=-⎩∴此直线的表达式为223y x =--. ········································································ 5分 把1x =-代入得43y =- ∴P 点的坐标为413⎛⎫--⎪⎝⎭, ····················································································· 6分 (3)S 存在最大值 ································································································· 7分(第24题图)。